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Abstract: This study evaluates the potential of C- and L-band polarimetric SAR data for 
the discrimination of iron-mineralized laterites in the Brazilian Amazon region. The study 
area is the N1 plateau located on the northern border of the Carajás Mineral Province, the 
most important Brazilian mineral province which has numerous mineral deposits, 
particularly the world’s largest iron deposits. The plateau is covered by low-density 
savanna-type vegetation (campus rupestres) which contrasts visibly with the dense 
equatorial forest. The laterites are subdivided into three units: chemical crust, iron-ore 
duricrust, and hematite, of which only the latter two are of economic interest. Full 
polarimetric data from the airborne R99B sensor of the SIVAM/CENSIPAM (L-band) 
system and the RADARSAT-2 satellite (C-band) were evaluated. The study focused on an 
assessment of distinct schemes for digital classification based on decomposition theory and 
hybrid approach, which incorporates statistical analysis as input data derived from the 
target decomposition modeling. The results indicated that the polarimetric classifications 
presented a poor performance, with global Kappa values below 0.20. The accuracy for the 
identification of units of economic interest varied from 55% to 89%, albeit with high 
commission error values. In addition, the results using L-band were considered superior 
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compared to C-band, which suggest that the roughness scale for laterite discrimination in 
the area is nearer to L than to C-band. 

Keywords: polarimetric SAR; digital classification; geology/laterites mapping; 
Carajás Province 

 

1. Introduction 

The use of radar images in geological surveys is a well-established procedure, and has been 
employed in several studies in the moist tropics, such as integrated, multisource data procedures [1–5], 
monoscopic and stereoscopic visual analysis [6], and digital classification based on textural  
attributes [7]. In all these cases, the data were analyzed based on the amplitude or intensity of the 
backscattered signal. These approaches exploit primarily the brightness and texture of the images in 
different configurations of viewing geometry, polarization, and frequencies. However, when using 
intensity, only part of the signal attributes is available for deriving target information. This limitation 
can be overcome through the use of polarimetric data, on which intensity and vector phase 
representing the electromagnetic wave polarization of each pixel are fully measured and recorded.  

Techniques based on the target decomposition theory and statistical properties of the backscattered 
signal constitute the primary approach to the radar polarimetric classifications, which are used mainly 
in environmental applications, particularly for forest type classifications [8]. On the other hand, 
geosciences applications using polarimetric data are still scarce in radar literature, given that this kind 
of data has only become available with the advent of ALOS (2004) and RADARSAT-2 (2007) 
satellites. Trisasongko et al. [9] presented one of the few examples of the application of SAR polarimetry 
in geology using classification techniques for tailing deposits mapping on a mining area in Indonesia. 
Hugenholtz and van der Sanden [10] also used airborne C-band polarimetric images to map different types 
of coastal environments in the intertidal zone of Bay of Fundy, Canada. Ramsey III., et al. [11] applied 
decomposition in L-band polarimetric images acquired by unmanned airborne vehicle to assess 
environmental impacts on coastal marshes of Barataria Bay disaster caused by the oil spill in the Gulf 
of Mexico. This technique was also used by Yonezawa et al. [12] to examine landslides caused by an 
earthquake in northern Japan using L-band images from PALSAR/ALOS. Thus, the objective of the 
present investigation is to evaluate the potential of polarimetric L- and C-bands data for discrimination 
of iron-mineralized laterites in the N1 iron deposit, located in the Carajás Mineral Province, 
easternmost border of the Brazilian Amazon region. This study is an outgrowth of previous researches 
of the authors focusing on the use of orbital SAR data to improve the critical lack of environmental 
and geological information in Carajás Province. Due to the economic importance of this area, there is a 
practical need to provide accurate and up-to-date surface maps to support mineral exploration and 
environmental programs. 
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2. Study Area 

Fully owned by Vale mining company, the world’s biggest producer of iron ore and pellets and the 
world’s second largest miner, Carajás Province contains known reserves of the order of 18 billion tons 
with an average grade of 65.4% Fe content. Following these discoveries, numerous other metalliferous 
deposits have been identified including manganese, alumina, nickel, tin, gold, platinum group elements 
and copper. More recently, the area has been recognized as a major copper-gold province, after the 
discovery of a number of world-class iron oxide, copper-gold deposits, and an emerging nickel laterite 
district, making Carajás an important and under-explored metallogenic province. The N1 deposit is the 
first of a series of similar plateaus located in the northern border of the Carajás Mineral Province 
(CMP), in the central-southern region of Pará state (Figure 1). This deposit is part of a 24 km2 plateau 
that contains approximately 854 million tons with 66.4% iron concentration [7]. Since 1967, when the 
deposit was discovered, a remarkable geobotanical control has been characterized, which is expressed 
by the iron-mineralized laterites and low-density savanna-type vegetation (campus rupestres) 
contrasting markedly with the dense rainforest found in the surrounding area [13].  

Figure 1. Location of the study area in the Brazilian state of Pará. 

The CMP is part of the Archean tectonic domain known as the Itacaiúnas Shear Belt, found in the 
eastern portion of the Amazonian craton, which is composed of high-grade metamorphic complexes, 
volcanic-sedimentary sequences, and granite-greenstone terrains [14]. The Carajás Belt is a highly 
mineralized province, with enormous reserves of iron and manganese, as well as Au-Cu deposits 
encompassing the Carajás gold-copper belt [15]. The N1 area has rocks of the Grão Pará Group, and 
has been subdivided into two units: volcanic rocks of the Parauapebas Formation [16], and the 
ironstones of the Carajás Formation [17]. The volcanic-sedimentary sequences of the Carajás region 
are covered by a thick layer of laterite, which was probably formed during the lower Tertiary. During 
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the upper Tertiary and the Quaternary, the area was subjected to a regional uplifting that  
led to the dissection of the lateritic cover and the formation of the individual plateaus observed in the 
present day [18].  

The ironstones of the Carajás Formation are composed of distinct types of iron ore from oxide 
facies, mainly jaspelite and interlayered hematite and silica types. Due to a deep lateritic weathering 
caused by the humid tropical climate conditions, ferruginous lateritic duricrusts and latosoils are well 
developed in the whole plateau, showing varying degrees of weathering expressed by differences in 
mineral composition, hardness and texture. The lateritic crusts are covered by a specific low-dense 
savanna-type vegetation (“campus rupestres”), characterized by a dominance of low bushes (mostly 
herbaceous grass-like plants, shrubs and herbs). The presence of arboreal components is restricted [13]. 
The N1 plateau was mapped in the late 1960s (Figure 2(a)) during the economic evaluation of the iron 
reserves in the Province [19] and the ferruginous crusts were classified as: duricrust (in situ duricrusts 
with limonite blocks), chemical crust (hematite fragments with goethitic pisolites), iron-ore duricrusts 
(hematite ore blocks and subordinately specularite, cemented with hydrous ferric oxides) and hematite 
(mainly outcrops). However, for field operational purposes, the laterite crusts are currently classified 
by Vale mining company, in just two classifications: a chemical crust which covers the volcanic rocks, 
and an iron-ore duricrust, consisting of iron mineralization, with a 15–20 m thick layer, and considered 
to be a good indicator for surveying of deposits [20]. For the purpose of this investigation, an 
integrated surficial geological map was produced, which took into account the previous and the current 
information produced by Vale. This map was used as the reference map for the validation of the 
products generated by the digital classification (Figure 2(b)). In this map, the hematite and iron-ore 
duricrust classes were grouped as a single entity—referred to as the economic interest ore class—while 
the remaining classes from the original map were grouped together as the chemical crust class. 

Figure 2. (a) Map of the surface geology of the N1 plateau presented by Resende and 
Barbosa (1974) [19]; (b) Reference map for this study adapted from [19] used for the 
validation of the classifications.  

 
(a) (b) 
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3. Material and Methods 

The present study was based on the analysis of L-band images obtained from the airborne  
SAR-R99B sensor, and C-band images from the orbital RADARSAT-2 sensor. For the acquisition of 
L-band data, the airborne sensor SAR-R99B from the Brazilian SIVAM (Amazon Surveillance 
System) was used. The SAR-R99B was developed by MacDonald Dettwiler and was installed on a 
modified EMBRAER jet (EMB-145) presenting fully polarimetric L-band mapping mode attributes. The 
SAR-R99B images used in the present study were provided through an extensive airborne acquisition 
campaign carried out in 2005, as part of the simulation mission MAPSAR, a German-Brazilian 
feasibility study focusing on an L-band light SAR [21]. The calibration of the airborne images was 
done in three steps, the first one was the antenna pattern correction, the second was the polarimetric 
calibration and the last one was the estimation of the sigma nought based on the response of the 
trihedral corner reflectors deployed in the field during the flight campaign. Details of these procedures 
can be found in [22]. The polarimetric calibration was based on the method of Quegan [23], in which 
the system noise is corrected using the crosstalk and imbalance channel techniques, in addition to 
absolute calibration based on the peak potential technique using the backscattered cross-section of the 
corner reflectors. The values obtained in the calibration of the R99B images were considered to be 
satisfactory by Mura et al. [22] and the quality of the images was reinforced by crosstalk levels of less 
than −30 dB. On the other hand, the quality of the RADARSAT-2 polarimetric images is supported by 
the values of the 0.3 dB imbalance channel and −40 dB crosstalk [24]. The RADARSAT-2 images 
available for the investigation were provided under the Science and Operational Applications Research 
(SOAR) programme, and refer to a Fine Quad Pol mode (FQP) coverage in ascending orbit, acquired 
over the study area in November 2008. It is important to mention that both SAR data can be considered 
as related to the dry season, since no relevant variation of moisture was associated with the 
acquisitions. The main characteristics of the SAR dataset are shown in Table 1.  

Table 1. Characteristics of the SAR images acquired by the R99B and RADARSAT-2 sensors. 

Parameter 
Sensor 

R99B RADARSAT-2 
Frequency GHz (Band) 1.28 (L) 5.40 (C) 

Wave length (cm) 23.9 5.6  
Polarization 

(Acquisition mode) 
HH/HV/VH/VV 

(Quad-Pol) 
HH/HV/VH/VV 
(Fine-Quad-Pol) 

Processing level SLC * SLC * 
Type of data (n. de looks) Polarimetric (8) Polarimetric (1) 
Resolution/m (rg × az.) 6.0 × 0.5 5.2 × 7.6 

Pixel spacing/cm (rg × az.) 2.5 × 1 (slant) 4.73 × 4.98 (slant) 
Orbit Descending Ascending 

Acquisition date 15/June/2005 15/Nov/2008 
Incidence angle interval 53.37°–67.23° 31.297°–32.987° 

* SLC—Single Look Complex.  
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The R99B and RADARSAT-2 images were processed in Single Look Complex (SLC) format. The 
images were converted to scattering matrix [S] and then to covariance [C] and coherence [T] matrices. 
In order to reduce speckle the modified Lee filter (5 × 5 window) was then applied to the data. The 
polarimetric classifiers evaluated here were based on the target decomposition theorem. The principal 
aim of this theorem is to characterize the target polarimetric responses as a combination of polarimetric 
responses to canonical scattering mechanisms, in which the proportional contribution of each 
scattering to the mean response is represented by the scattering coefficient [25]. The techniques 
proposed by Freeman and Durden [26] and Cloude and Pottier [27] were evaluated in this 
investigation. The Freeman-Durden approach decomposes a measured covariance matrix [C] into three 
scattering matrices corresponding to rough surface scatter (first-order Bragg surface scatter), volume 
scatter (canopy scatter from randomly oriented dipole), and a double bounce scatter based on physical 
model. These components are the principal elements in the backscattering from natural terrain [28]. 
The covariance matrix [C] for reciprocal media (or isotropic natural targets) is defined as:  , √2 ,  

 
(1)

where  and † are a target vector and transpose, respectively, * denote complex conjugate, …  denote 
ensemble averaging operation. Sij is the scattering coefficient, transmitted in the j polarization plane, and 
received in the i polarization plane.  

The model estimates the contribution of each of these components to total scattering as:  

 (2)

where  is the covariance matrix of the volumetric scattering,  is the covariance matrix of 
surface scattering, and  is the covariance matrix of double-bounce scattering. The terms , , 
and  are the surface, double-bounce, and volume scatter components, respectively, and correspond to 
the individual contribution of each scattering component to the final matrix of covariance.  

The contribution of each scattering mechanism to the total power P is estimated as:  | | | | | |  (3)

where 1 | |  1 | |  8 /3 
(4)

α and β are a ratio of hh backscatter to vv backscatter concerning the double bounce and surface 
scattering. 

The technique developed by Cloude and Pottier [27] considers that the information contained in the 
coherence matrix [T] is the result of the contribution of the three types of scattering mechanisms, in 
which each scattering is modeled by a canonical target represented by its scattering matrix , based 
on the expression:  

 (5)
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where  are the eigenvalues of  and  its related eigenvector.  
The relative importance of each scattering to the value of  is given by the eigenvalue derived 

from the coherence matrix [27]. 
In order to simplify the analysis of the physical information provided by the eigenvector-eigenvalue 

decomposition procedure, three secondary parameters are defined as a function of the eigenvectors and 
eigenvalues of :  

(i) Entropy (H), which measures the degree of randomness or statistical disorder of the scattering 
process (H = 0 indicates the presence of a totally polarized signal, which implies that the 
scattering is controlled by a pure or localized target, whereas H = 1 implies that scattering is 
due to a number of well-distributed targets); 

(ii) Anisotropy (A), defined as a complementary parameter to entropy, which provide information 
on the relative importance of the second and third scattering mechanisms based on the 
relationship between their respective eigenvalues (λ2 and λ3). In practical terms, anisotropy may 
be used as a source of discrimination when H > 0.7. This is because, when entropy is low,  
and  are affected considerably by noise, as is anisotropy [29];  

(iii) Mean alpha angle ( ) stands for the indicator of the mean scattering mechanism. A value close 
to zero relates surface reflection for scattering, from a dipole  equals π/4 and reaches π/2 when 
the target consists in a metallic dihedral scatterer.  

The H and  parameters clearly define the scattering characteristics of a medium, and the plane 
formed by these values is used as a reference for the classification procedures. The H-  is divided into 
nine zones [27]. The limits of each zone are arbitrary and the absolute magnitude of the eigenvalues 
and other angles are not incorporated into the classification scheme [29]. Table 2 shows a nine-zone 
segmentation scheme and represents scattering mechanisms on the H-  plane [12]. 

Table 2. The H-  plane partioned into nine zone (adapted from Cloude and Pottiers [27]).  

Zone Entropy, H Alpha, (°) Scattering Type 
1 0.9–1.0 55–90 High Entropy Multiple Scattering 
2 0.9–1.0 40–45 High Entropy Vegetation Scattering 
3 0.9–1.0 0–40 High Entropy Surface Scattering 
4 0.5–0.9 50–90 Medium Entropy Multiple Scattering 
5 0.5–0.9 40–50 Medium Entropy Vegetation Scattering 
6 0.5–0.9 0–40 Medium Entropy Surface Scattering 
7 0–0.5 47.5–90 Low Entropy Multiple Scattering Events 
8 0–0.5 42.5–47.5 Low Entropy Dipole Scattering 
9 0–0.5 0–42.5 Low Entropy Surface Scattering  

Cloude and Pottier [27] developed an approach derived from the reference system based on the H 
plane by aggregating a new dimension provided by the anisotropy values. Each valid zone on the H 
plane was divided into two, with an anisotropy value of 0.5 being accepted as an arbitrary cutoff point. 
According to the authors, this new 3D reference space permits the resolution of ambiguities in entropy 
which may arise in the scattering mechanisms which have different eigenvalue distributions, but 
similar values of intermediate entropy. 
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A second category of classifiers evaluated in the study, was the hybrid methods that use the results 
derived from the target decomposition methods as input data for a combined classification scheme based 
on statistical properties. The pixels are classified based on the statistical distance derived from the complex 
Wishart multivariate distribution, calculated from the covariance matrix [30]. Lee et al. [31] proposed a 
method that uses the classes resulting from the target decomposition scheme of Cloude and Pottier  
(H-  plane) as input. Pottier and Lee [32] subsequently introduced anisotropy A into the reference 
space and increased the number of initial training classes to 16. In both algorithms, however, the final 
classification may be substantially different from the initial version, which means that pixels originally 
allocated to one zone may migrate to a different one, characterized by distinct mechanisms of 
scattering. According to Lee et al. [33], this is due to the fact that the Wishart interactions are based 
solely on the statistical characteristics of each pixel, without taking its physical scattering 
characteristics during the interactions into account. 

Lee et al. [33] presented a new classification system, in which the decomposition method developed 
by Freeman and Durden [24] is used initially to generate the training classes for the subsequent 
interactions of the Wishart K-mean classifier, grouping the pixels into three classes based on the 
predominant scattering mechanism (volumetric, double-bounce or surface). The advantage of this 
approach is that it preserves the characteristics of the pixel scattering mechanisms. For this, the 
Wishart interactions were restricted to the pixels present in each class, avoiding the possibility that a 
pixel initially allocated to one class, e.g., volumetric, might be classified differently by the end of the 
process. Following the final classification, each class is automatically assigned to a color, according to 
the predominant scattering mechanism—blue (surface), green (volumetric), and red (double-bounce). 
The variation in the brightness of the tone of each color corresponds to the mean potential of the class 
within each category. The error matrices obtained from the cross-referencing of the classified images 
with the reference map were used to analyze the results of the classification quantitatively [34]. The 
processed images were orthorectified to a Universal Transverse Mercator (UTM) Zone-22 projection 
with a WGS84 datum. The images were orthorectified after the polarimetric analysis was completed 
because orthorectification could corrupt the phase information contained in the polarimetric images. 
The orthorectification process was performed with the Rational Function Model function of the 
Orthoengine module of PCI Geomatica. A SRTM DEM and ground control points (GCPs) extracted 
from Landsat-7 ETM+ images were used in the process. The planimetric accuracies expressed by Root 
Mean Square Error (RMSE) were 7.54 m and 7.75 m to R99B and RADARSAT-2, respectively.  

During the validation process, the classes resulting from the classifications were also combined. 
This is allowed for a range of possible combinations, given that it is a subjective procedure, but in 
order to minimize the subjectivity of this procedure, it was based on the arrangement that best 
coincided spatially with the units of the combined geological surface map of Resende and Barbosa 
(Figure 2(b)). Measurements of superficial roughness were taken from 74 sites on the N1 plateau, of 
which 28 coincided with the chemical crust, 28 with the mineral crust, and 18 with hematite. The 
parameter used here was the standard deviation of the vertical height of the terrain profile Hrms [35]. A 
meshboard technique was used that involved placing a thin plastic gridded board (1.2 m long × 20 cm 
height and 2 cm intervals grid) on the surface, taking a picture of the plate, and digitizing the  
picture [36]. Six profile measurements were taken continuously at each site, producing a 7.2 long 
transect (multisite database of 1.2 m profiles). The use of this long length was necessary to avoid 
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profile too short so that the roughness data could be smaller than the intrinsic values. In addition, this 
dimension was also close to the spatial resolution of the orbital and airborne SAR data. 

4. Results and Discussion 

4.1. Polarimetric Decomposition Method 

4.1.1. Cloude-Pottier Method 

The images corresponding to the parameters entropy, anisotropy, and mean alpha angle derived 
from the Cloude-Pottier decomposition method applied to the R99B data are shown in Figure 3. The 
entropy image (Figure 3(a)) indicates that on N1, the targets present a high degree of randomness, 
which suggests that at least two scattering mechanisms make a major contribution to the backscattering 
value, except for the areas adjacent to lakes, where the surface of the rocks is probably smoother. The 

 values are clustered around the 45° mark (37° <  < 54°). However, the asymmetric histogram in 
Figure 3(b), in which the mode is among the larger angles, indicates that the majority of the targets 
present a scattering mechanism resulting from a combination of volumetric with double-bounce (to a 
much lesser extent). The anisotropy values (Figure 3(c)) were mainly low, with a mode of approximately 
0.20. This indicates that the second and third scattering mechanisms have a similar contribution to 
the total backscattering, and are far less important than the first mechanism. According to Lee and 
Pottier [29], this situation may correspond to a simple dominant scattering mechanism or a type of 
random scattering. The total scattering of the areas in which anisotropy values are close to the mean is 
affected by two mechanisms. 

Figure 3. Images resulting from the parameters derived from the eigenvalue-eigenvector 
decomposition model for the R99B image: (a) entropy; (b) mean alpha angle; (c) anisotropy. 

 

The results of the classification based on the H-  reference plane are shown in Figure 4(a). It is 
observed that the majority of the area of N1 is located in zone 2 (blue), characterized by high entropy 
and scattering of the volumetric type, with some double-bounce. Zone 5 was also characterized by 
volumetric component, which can be identified in the image as magenta color, which appears in the 
domain of the smoother surfaces. This class is different from the former one due to its lower entropy 
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values, which indicates reduced randomness of the scattering contained in the resolution cell of the 
image. In addition to these two classes, which predominate over most of the surface of the N1 plateau, 
classes 4 and 8 can be observed in restricted areas. Class 4 is characterized by multiple scattering type 
with medium entropy, while class 8 is characterized by dipole scattering with low entropy. The 
incorporation of anisotropy contributed very little to the results of the final classification. Once again, 
only two classes were predominant, despite the fact that the number of reference zones doubled 
(Figure 4(b)). These classes correspond to classes 2 and 5 in the H-  plane, with anisotropy above 0.5. 

Figure 4. Classification of the R99B image by the decomposition method based. (a) the  
H-  reference plane; (b) the H- -A reference space. 

 

The maps derived from the RADARSAT-2 images based on entropy (H), the mean alpha angle ( , 
and anisotropy (A), are shown in Figure 5, respectively. These figures show that entropy is high 
throughout most of the N1 plateau, indicating that at least two prominent scattering mechanisms affect 
each cell at the resolution. In contrast with the results obtained for the R99B images, anisotropy has a 
complementary function for the RADARSAT-2 image, and its use is recommended when H > 0.7 [29]. 
The  values are clustered around 25°, that is, within a range which is affected by volumetric and 
surface components. 

Figure 6(a) shows the results of the classification based on the zones defined by the H-  plane. The 
majority of the pixels were assigned to zones 5 and 6, that is, of medium entropy, but with 
predominance of volumetric, and to a lesser extent, surface components. The pixels that correspond to 
lakes were assigned to zone 7, characterized by low entropy and scattering of the double-bounce type. 
The N1 plateau is also characterized by zone 2 pixels, which are dispersed and discontinuous. This 
zone is associated with low entropy and volumetric component. The incorporation of anisotropy into 
the H-  plane classification scheme (Figure 6(b)) did not improve the performance of this algorithm 
for the mapping of the lateritic crusts of the N1 plateau. What can be observed in this image is a 
random distribution of the reference classes, which makes the establishment of a relationship with the 
geological reference map difficult. 
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Figure 5. Images resulting from the parameters derived from the eigenvector-eigenvalue 
decomposition model applied to the RADARSAT-2 image: (a) entropy; (b) mean alpha 
angle; (c) anisotropy. 

 

Figure 6. RADARSAT-2 image classified by the decomposition method: (a) based on the 
H-  reference plane; (b) the H- -A reference space. 

 

4.1.2. Freeman-Durden Polarimetric Decomposition Method 

The Freeman-Durden polarimetric decomposition method was applied to the analysis of the 
polarimetric R99B image, resulting in the maps in Figure 7(a–c), which show the individual 
contribution of the volumetric, superficial, and double-bounce scattering mechanisms, respectively. 
The color scale in these figures represents the backscattering values, on a linear scale, associated with 
the respective scattering mechanism. The volumetric component presents the highest absolute values, 
followed by surface and double-bounce mechanisms.  

The relative contribution of the different mechanisms to the reflected signal of each pixel can be 
better observed when an RGB combination is applied (Figure 8). The colors resulting from the 
combination of the R (volumetric—Pv), G (superficial—Ps), and B (double-bounce—Pd) mechanisms 
help to understand the relative importance of each mechanism in the backscattered response of the 
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targets. The reddish color indicates the pixels in which volumetric component is predominant. Where 
the double-bounce mechanism also contributes to total response, the pixels present tones towards 
magenta, as can be observed in the northwestern and eastern portions of N1 (indicated by the letter A 
in Figure 8(a)). In the areas in which the color green predominates, scattering component is primarily 
surface, whereas in the darkened areas, scattering is of the speculate type, indicating the presence of 
very smooth surfaces. The rocky outcrops in these areas are associated to a flatter surface showing low 
roughness, and normally represent the chemical duricrust with small lakes. Specular component is 
detected in the north sector of the plateau, where the terrain was compressed for the construction of a 
small aircraft landing strip. 

Figure 7. Images resulting from the Freeman-Durden decomposition method applied to the 
R99B images, showing the intensity of the different mechanisms in the total backscattering: 
(a) volumetric; (b) superficial; (c) double-bounce. 

 

Figure 8. (a) RGB combination of the scattering mechanisms derived from the  
Freeman-Durden for the R99B images. The letters A, B, and C indicate colors associated 
with the relative contribution of the component mechanisms, as described in the text; 
(b) Classes labeled according to the relationship between the types of scattering 
mechanisms derived from the Freeman-Durden decomposition model. 
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There is also a greater contribution of volumetric scattering in the areas where the pixels have been 
assigned an orange-ochre color (indicated by the letter B in Figure 8(a)), although there is a slight 
predominance of the surface scattering component over the double-bounce type (Pv > Ps > Pd). The 
areas around lakes are assigned a bluish color, indicating a greater contribution of double-bounce type 
over other mechanisms (indicated by the letter C in Figure 8(a)). This is due to the presence of aquatic 
vegetation in the lakes and on their margins, which grows above the water line. This favors the  
double-bounce contribution to the backscattered signal, involving the water surface and the plant 
stems. In addition, the presence of lateritic blocks along the margins of the lakes also contributes to the 
double-bounce scattering. 

The reddish color observed in localized areas of the plateau is related to the predominance of 
volumetric scattering over the other types (Pv >> Ps > Pd). Overall, the Freeman-Durden decomposition 
results indicates that in large sectors of N1 plateau the total backscattering is related to a medium degree 
of entropy with effective contribution of at least two types of scattering mechanism. The predominant 
mechanism in most of N1 is volumetric (or multiple) type, which is evident in Figure 8(b), where 
different classes were defined and labeled according to the relative contribution of the Freeman-Durden 
scattering mechanisms to the total backscattering of the resolution element. The relationships that define 
each class are shown in the figure legend, together with the percentage of the area of each class in N1. 
The multi-reflection that characterizes the volumetric scattering mechanism is mainly due to the 
interaction of the microwaves with the highly rough surfaces due to the abundance of rocky blocks 
resulting from the disintegration of laterites, duricrusts, particularly within the spatial domain of the 
mineral duricrusts and hematite, and subordinately with the architecture of the bushes of the 
savanna vegetation. 

The results of the Freeman-Durden decomposition with RADARSAT-2 data are shown in  
Figure 9(a–c). Only volumetric scattering has a direct relationship with the surface roughness, 
providing a reasonable characterization of the smoother areas with lower values of scattering intensity. 
However, in comparison with the results obtained for the R99B images, the classification results 
obtained from RADARSAT-2 data can be considered inferior. It is important to mention that 
RADARSAT-2 images were acquired under wetter conditions and the contribution of moisture and 
vegetation (leaves) in the detected responses are higher. These influences can explain the poor 
performance of the orbital data for the laterite discrimination. 

In Figure 9(d), volumetric, superficial, and double-bounce scattering mechanisms are related to 
RGB colors. Clearly, the volumetric component contributes most here, given that reddish colors 
dominate most of the N1 plateau surface, and is in fact more widespread than in the equivalent color 
composite product derived from the R99B sensor. The areas in cyan indicate an equivalent 
contribution of the superficial and double-bounce mechanisms. Overall, the results of the  
Freeman-Durden decomposition of RADARSAT-2 images presented a lower performance compared 
to R99B data, and suggested that the L band is more sensitive to the variation in the surface roughness 
on the N1 plateau due to its longer wavelength. 
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Figure 9. Intensities corresponding to the Freeman-Durden decomposition derived from 
the RADARSAT-2 image: (a) volumetric scattering Pv; (b) surface scattering Ps; 
(c) double-bounce scattering Pd; (d) the mechanisms are combined through a color 
composite image (R—Pv, G—Ps, B—Pd); (e) Classes labeled according to the relationship 
between the types of scattering mechanism derived from the Freeman-Durden 
decomposition model.  

 

4.2. Classification Methods Based on Hybrid Processes 

4.2.1. Wishart-Cloude-Pottier Classification 

The images resulting from the H-  and H- -A methods were used as input for the algorithm based 
on the Wishart statistical distance as the criterion for the pixels aggregation. The Wishart-H-  
classification is shown in Figure 10(a). In order to validate the classification, classes 1, 3, 5, 6, and 7 
were combined and assigned to the chemical laterite crust unit, while classes 2, 4, and 8 were 
considered to represent the class of economic interest (Figure 10(b)). The cross-referencing of the 
combined classification image with the reference geological map generated an error matrix with a 
general Kappa value of 0.16, and 55.5% accuracy for the class of economic interest, with omission and 
commission errors, respectively, of 44.4% and 57.5% (Table 3). Figure 10(c) shows the classification 
based on the Wishart-H- -A method. The resulting image has 16 classes due to the input from 
anisotropy. In the color composite product, classes 7, 8, 10, and 16 were considered to represent the 
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economic interest class, while all other classes were defined as chemical crust. For this configuration, 
the general Kappa value was 0.14, accuracy for the economic interest class was 68%, and omission and 
commission errors were 32% and 60%, respectively.  

Figure 10. Classifications of the R99B images using hybrid methods: (a) image 
classified by the Wishart-H-  method; (b) composite image of the classification by the 
Wishart-H-  method; (c) image classified by the Wishart-H- -A method; (d) composite 
image of the classification by the Wishart-H- -A method. 

 

 

Table 3. Parameters derived from the error matrix for the evaluation of the performance of 
the hybrid algorithms of polarimetric classification for the R99B and RADARSAT-2 
images: global Kappa, accuracy for the class of economic interest, omission and 
commission errors.  

Sensor Algorithm 
Global 

Kappa 

Accuracy (%)  

for the Class of 

Economic Interest 

Omission 

Error (%) 

Commission Error 

(%) 

R99B 

Wishart-H-  0.16 55 44 58 

Wishart-H- -A 0.14 68 32 60 

Wishart-Freeman-

Durden 

0.16 69 31 60 
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Table 3. Cont. 

Sensor Algorithm 
Global 

Kappa 

Accuracy (%)  

for the Class of 

Economic Interest 

Omission 

Error (%) 

Commission Error 

(%) 

RADARSAT-2 

Wishart-H-  0.09 38 62 59 

Wishart-H- -A 0.08 42 58 60 

Wishart-Freeman-

Durden 

0.08 51 50 61 

4.2.2. Wishart-Freeman-Durden Classification  

The classification result by the Wishart-Freeman-Durden algorithm is shown in Figure 11(a). The 
greenish and bluish colors indicate the predominance of volumetric and superficial scattering 
mechanisms. The variation in the brightness of the tone of each color corresponds to the mean 
potential of the class within each category. Combined classes were also used here in order to produce a 
labeled image with only two classes, one corresponding to the substrate of economic interest, and the 
other to country rocks (Figure 11(b)), for comparison with the combined geological reference map. 
The error matrix of the cross-referencing of the two maps had a global Kappa index of 0.16, but 
accuracy of 69% for the economic interest class, omission error of 31%, and commission error of 60%. 

Figure 11. Classification of the R99B images using hybrid methods: (a) image 
classified by the Wishart-Freman-Durden method; (b) composite image classified by the 
Wishart-Freman-Durden method. 

 

The hybrid methods were also applied to the RADARSAT-2 images. The results proved to be 
inferior to those of the images of the R99B sensor, as shown through the statistical parameters derived 
from the error matrix, shown in Table 3. 

4.3. Discussion 

The results of the present study provide a way to evaluate the importance of the phase attribute 
aiming at the discrimination of the lateritic crusts in the study area. In order to address this subject, it is 
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necessary to consider the results of Morais et al. [37] dealing with L-band SAR images for lateritic 
mapping in the same plateau. In this previous study, textural classification attributes were derived from 
first and second order measurements obtained from the matrix of co-occurrence of the gray levels 
(MCGL), using the multipolarized L-band images from the same sensor (R99B). The textural approach 
was based solely on the amplitude attribute of the microwave signal. While the validation procedures 
adopted in this previous study were not strictly the same of the present research, it is possible to make 
some comparisons. In this work the authors obtained an accuracy of 19% for iron-ore crust and 
hematite. The identification rate (Accuracy (%) in Table 2 (column 4)) for the class of economic 
interest clearly indicates that the inclusion of phase attribute had a positive effect, considering that, 
even with the classification that produced the worst result (Wishart-H-  ) has provided an accuracy of 
55% for the unit of economic interest. When the performance of the classifiers for the L and C band 
images is evaluated, the results for the L band are clearly superior. So far, few studies were published 
focusing on the evaluation of polarimetric classifiers for geological mapping, which makes it difficult 
to establish a discussion with our results. Some works have been developed relating polarimetric 
signatures with rock types [38] or with lava flows changes over time, closely related to roughness 
variation [38,39]. One of the conclusions from Evans et al. [38] showed that an extremely rough 
surface would yield similar polarimetric characteristics to those observed in vegetated areas due to 
multiple scatter. This explains the predominance of volume scattering observed in both  
Freeman-Durden and Cloude-Pottier decompositions caused by multiple scattering of rough surfaces 
of duricrusts. A recent article from Shelat et al. [40] assessed the effect of RADARSAT-2 incidence 
angle on polarimetric classifications for mapping surficial materials (bedrock, boulders, organic 
deposits, sand and gravel, thick till with dense vegetation, thick till with sparse vegetation, and thin 
till) in Arctic Canada. Polarimetric analyses included computation of polarimetric signatures, Wishart 
supervised classification, as well as Wishart-H- , Wishart-H- -A and Wishart-Freeman-Durden 
unsupervised classifications. One of conclusions of this research is that RADARSAT-2 images with 
medium incidence angle (around 32 degrees) produced the best overall polarimetric classification 
accuracy. This incidence angle was almost the same used in Carajás and it suggests that the low 
RADARSAT-2 performance in our research cannot be attributed to viewing geometry. Given that the 
surface moisture presented small variation between the acquisition dates for RADARSAT-2 and R99B 
imageries, the difference in performance is probably due to way that roughness of the landscape is 
perceived by the sensors.  

The effective classification of roughness surface depends on the sensor wavelength and incidence 
angle. One of the criteria for surface roughness classification was proposed by Peake and Oliver [41], 
which establishes three categories—smooth, intermediate, and rough—based on the limits defined by 
the following expressions: 

Smooth surface Intermediate surface Rough surface 
(6)

25cosrms
inc

h λ
θ

<  
25cos 4cosrms

inc inc

hλ λ
θ θ

< <  
4cosrms

inc

h λ
θ

>  

where λ and θinc are the wavelength and the incidence angle, respectively, and hrms is the standard 
deviation of the surface height variation [35]. Table 4 shows the limits between the roughness 
categories, based on the Peake and Oliver [41] criteria for the SAR configurations in the present study.  
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Table 4. Limits of the roughness categories calculated according to the criterion of Peake 
and Oliver [41] for the RADARSAT-2 and R99B images. The first column shows the 
wavelength (λ) and angle of incidence (θi) values for each type of image. 

 Roughness 
Smooth 
hrms < 

Intermediate 
< hrms < 

Rough 
hrms > 

RADARSAT2 (λ = 5.6 cm, θi = 32°) 0.264 0.264–1.651 1.651 
R99B (λ = 23.9 cm, θi = 55°) 1.667 1.667–10.417  10.417 

A surface roughness measurement campaign was carried out in the N1 plateau and the mean hrms 
values obtained from 74 sites representing the chemical duricrust, iron-ore duricrust, and  
hematite were 1.807 cm, 5.197 cm, and 5.700 cm, respectively [42]. Taking these values into account, 
the limits for RADARSAT-2 data that define roughness classes are lower than those for L-band data. 
This aspect effectively reduces the C-band sensor capacity to discriminate distinct texture classes, 
given that, at hrms values equal to or above 1.651 cm, all the surfaces are considered to be rough, 
implying a high σ0 return. 

Similar results were reported by Gaddis [43] when dealing with C-, L-, and P-band images for the 
textural discrimination of volcanic lavas showing that L-HV band was the most effective for the lava 
type discrimination. In addition, the investigation from Dierking [44], which evaluated the sensitivity 
of backscattering as a function of superficial roughness through theoretical models, is also relevant 
here. One of the results demonstrated that the rougher the surface is and/or the steeper the terrain, this 
increases the sensitivity of σ0 for terrain roughness when using imaging radar at lower frequency.  

5. Conclusions 

In this research, polarimetric SAR images from two frequencies (L-band from airborne SAR-R99B 
sensor, C-band from Fine Quad RADARSAT-2) were evaluated for mapping iron-mineralized laterites 
in the N1 plateau, Brazilian Amazon region. The datasets were acquired with distinct viewing 
geometry, airborne images simulating a satellite descending orbit (west-looking) and shallow 
incidence range (53.37°–67.23°), RADARSAT-2 images collected under ascending pass (east-looking) 
and steeper incidence (31.29°–32.98°). The polarimetric analysis included target decompositions models 
(Cloude-Pottier, Freeman-Durden) as well as unsupervised classifications (Wishart-Cloude-Pottier, 
Wishart-Freeman-Durden). A detailed geological mapping showing the spatial distribution of laterites 
classes was used for validation. Information of the terrain roughness expressed as the vertical height 
variation (hrms) was available from a large collection of field measurements. In order to distinguish 
types of scattering mechanism decomposition parameters (entropy, anisotropy, mean alpha angle) H- , 
H- -A were analyzed. Classification accuracies were assessed based on error matrices with Kappa 
coefficients obtained from the cross-referencing of the classified images with the reference map.  

Conclusions from this investigation can be summarized as follows: 

(1) For both frequencies, Cloude-Pottier and Freeman-Durden decompositions help to understand the 
different scattering mechanisms in relation to the surface covers. However, Freeman-Durden 
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RGB color composite using L-band presented the best result, providing insights concerning 
scattering mechanisms in physical properties of main mineralized laterites. 

(2) Results of the unsupervised classification for both datasets using the H-  plane did not show 
good spatial correspondence with the geological map. The inclusion of anisotropy did not 
improve the classification result.  

(3) The Wishart-H- -A and Wishart-Freeman-Durden hybrid classifications presented low levels 
of performance with Kappa values lower than 0.20. Accuracy for the identification of units of 
economic interest ranged from 55% to 69%, albeit with high commission error values.  

(4) Comparing both frequencies, the performance of L-band was superior. This was probably due 
to the way that the landscape roughness was perceived by the sensors. Taking the Peake and 
Oliver criterion into account [41], the roughness scale for the discrimination of rock alteration 
products in the area is closer to L than to C-band.  

This study showed that the information derived from both sources of SAR polarimetric data was 
limited for the purposes of rock alteration mapping in the area. However, the combination of surface 
scattering mechanisms through Freeman-Durden color composites using L-band can provide the 
geoscientist with an interesting terrain visualization of the rock alteration products that can be used for 
preliminary mapping (i.e., as a guide for geological field based verification). Since only L-band images 
at shallow incidence angles were available for this investigation, one possibility that deserves further 
analysis is the use of images at steeper incidence angles.  
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