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Abstract: In recent years, the use of high temporal resolution satellite data has been 
emerging as an important tool to study crop phenology. Most methods to detect 
phenological events based on satellite data use thresholds to identify key events in the 
lifecycle of the crop. In this study, a new method was used to define such thresholds for 
identifying the start and end of the growing season (SOS/EOS) for 43 different agricultural 
zones in China. The method used 2000–2003 NOAA Advanced Very High Resolution 
Radiometer (AVHRR) satellite data with a spatial resolution of eight kilometers and a 
temporal resolution of 15 days. Following data pre-processing, time series for the 
normalized difference vegetation index (NDVI or N), slope of the NDVI curve (S), and 
difference (D) between the NDVI value and a base NDVI value for bare land without snow 
were constructed. For each zone, an optimal set of threshold values for N, D, and S was 
determined, based on the remote sensing data and observed SOS/EOS data for 2003 at 261 
agro-meteorological stations. Results were verified by comparing the accuracy of the new 
proposed NDS threshold method with the results of three other methods for SOS/EOS 
detection with remote sensing data. The findings of all four methods were compared to  
in situ SOS/EOS data from 2000 to 2002 for 110 agro-meteorological stations. Results 
show that the developed NDS threshold method had a significantly higher accuracy 
compared with other methods. The method is mainly limited by the observed data and the 
necessity of reestablishing the thresholds periodically. 
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1. Introduction 

Phenology is the study of periodic events in the life cycle of living species. In the case of crops, 
understanding the timing of periodic events in the life cycle of a crop is relevant for various activities, 
such as irrigation scheduling, fertilizer management, evaluating crop productivity, and analyzing 
seasonal ecosystem carbon dioxide (CO2) exchanges [1]. Especially, in an increasingly food insecure 
world, a comprehensive understanding of global croplands is a critical need [2,3], and crop phenology 
is a very important element in it. Detailed information about crop phenology and in particular changes 
in the start and end of the crop growing seasons across China over the last 30 years are also important 
for the study of the impact of climate change on crops.  

In recent years, the detection of phenological events using high temporal resolution satellite data 
(e.g., NOAA-AVHRR normalized difference vegetation index (NDVI) and Terra/Aqua-MODIS EVI) 
has been emerging as an important tool for ecological and climate change studies for larger areas. Many 
methods have been developed to detect important phenological events based on the remote sensing 
information. The majority of these methods consist of two key steps to (1) expand the satellite derived 
vegetation indices into a time series and then (2) use this time series to determine specific phenological 
events based on a set of rules [4]. 

The first step—developing the time series—involves the construction of an NDVI time series based 
on available data and filtering the data to reduce noise and produce a smoother time series. The 
primary methods for this step involve the use of various filters and functions, including the 
(1) Savitzky-Golay filter [4–8], which applies an iterative weighted moving filter to the NDVI time  
series [7]; (2) the asymmetric Gaussian function [4,7–11], which describes the NDVI time series by 
merging local, nonlinear fitting curves [7]; (3) the Fourier filter [9,10,12], which decomposes the 
NDVI time series into sine and cosine parts and filters out high frequency noise fluctuations so that a 
smoothed set of data can be reconstructed; (4) the logistic function, first presented by Zhang et al. [13] 
and enhanced to a double logistic function by Beck et al. [9] and applied in various studies [7,10]; 
(5) the Whittaker smoother [10,14–16], which fits a discrete series to discrete data and balances the 
reliability of the data and roughness of the fitted data [10]; (6) high-order splines with a roughness 
damping method [17], which divides the period of NDVI times series into several subintervals and 
defines a local Mth-order polynomial within each subinterval; and (7) the changing-weight filter 
method [18], in which the local maximum/minimum points in a growth cycle along an NDVI temporal 
profile are detected based on a mathematical morphology algorithm and a rule-based decision process, 
followed by a filtering of the NDVI time series with a three-point changing-weight filter. 

After the time series are constructed, in the second step of most phenology detection methods, the 
constructed time series are analyzed to detect specific phenological events such as the start, end, and 
length of the growing season (SOS, EOS, and LOS) [19] based on certain rules. The most common 
methods for this step include threshold methods, curvature change-rate methods, harmonic analysis, 
moving average methods, and maximum slope and inflection point methods. Among these methods, 
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threshold methods are common and many types exist. Examples of threshold methods include the one 
by Lloyd [20], who simply used an NDVI value of 0.099 as the threshold for SOS, or by Delbart et al. [21] 
who determined the onset of greening as the last date at which the Normalized Difference Water Index 
(NDWI) is lower than the minimum NDWI increased by 20% of the NDWI spring amplitude. Another 
threshold method was developed by Jeong et al. [19], who used the time of the maximum and minimum 
slope of the NDVI curve (with NDVIslope(t) = [NDVI(t + 1) − NDVI(t)]/NDVI(t)) and the corresponding 
NDVI value (NDVI(t)) as a threshold for determining SOS and EOS. White and Nemani [22] calculated 
the NDVI threshold as the value halfway between the minimum and maximum NDVI, which generally 
corresponds to the time of maximum NDVI increasing and decreasing, while Wu et al. [23] estimated 
the SOS as the time point at which the value of a fitted function first exceeds 20% of the distance 
between the minimum and maximum values for NDVI along the rising part of the curve. In the second 
category of methods, the curvature-change rate (CCR) methods, important transition dates (such as 
greenup, maturity, senescence, and dormancy) are defined as local minima and maxima in the 
curvature-change rate of logistic models designed to represent vegetation growth cycles [13]. In 
harmonic analysis, as described by Moody and Johnson [24], a discrete Fourier transform (DFT) is 
used. The analysis of the DFT harmonics provides a basis for linking the DFT results to basic 
vegetation types according to their characteristic phenologies. For example, SOS/EOS can be 
determined by analyzing the phase of the harmonics. The fourth type of method, the moving average 
method, was first put forward by Reed et al. [25] as the delayed moving average method to monitor the end 
of the growing season of crops, forest, and grass. The method was further used by Duchemin et al. [26], 
who applied the moving average method to monitor two key stages (budburst and senescence) in the 
life cycle of deciduous forests. Finally, as the last category of methods to detect phenological events in 
remote sensing data, maximum slope and inflection point methods can be applied. In the case of the 
maximum slope method, SOS and EOS are defined as the periods when vegetation growth begins to 
either rapidly increase (SOS) or decrease (EOS), identified based on the maximum or minimum slope 
of the NDVI curve [27]. In the case of the inflection point method, an algorithm is used to find valley 
points in the EVI/NDVI curve [1,28]. 

Of the various methods, threshold methods are often used as they generally keep dates within a 
certain reasonable range based on the threshold conditions and can thus achieve a relatively high level 
of accuracy. When setting thresholds, however, the characteristics of the NDVI curve are important, 
but these characteristics vary among crop types. Different crops have their own phenological stages 
during their growing seasons [29]. The use of just one threshold value for a research area, in most 
threshold studies, ignores the differences among crop types and physical environments. Not only crop 
type, but also planting patterns and climatic conditions can affect crop phenological events within a 
region. Therefore, it is critical to choose the “right” method for the “right” place [4] and for threshold 
methods to choose the “right” threshold for the “right” place. This is especially true in the case of 
China, with its large variety of crops growing in zones with different crop proportions and climates. 

In this paper, a threshold method was introduced to study the SOS and EOS for crops in China, 
taking into account the varying conditions and crop proportions across the country. The method used 
NOAA AVHRR NDVI data and values for NDVI (N), for the slope (S) of the NDVI curve, and for the 
difference (D) between the NDVI value and a base value for NDVI to determine the optimal set of 
thresholds (for N, D, and S) for 43 agricultural zones, with different crop proportions and climate 
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conditions. The method further used the combination of three threshold values (for N, S, and D) for 
each zone, to increase the percentage of accepted pixels in each zone for which an appropriate 
threshold can be defined. Results were verified using field observation data and the method’s accuracy 
was compared to those of three other phenology detection methods. 

2. Materials and Methods 

2.1. Materials 

NOAA-AVHRR NDVI data for 2000–2003 with a spatial resolution of 8 km and a temporal 
resolution of 15 days was obtained from the Global Inventory Monitoring and Modeling Studies 
(GIMMS) group. Data corrections (e.g., for aerosols, clouds, volcanic ash, and sensor degradation) had 
already been performed to improve data quality [30]. The datasets were developed by the maximum 
value composite (MVC) technique, which produces a composite image over a fixed period of time by 
retaining for each pixel the maximum NDVI value from daily images [23]. For each month, two 
composite images were available and the early composite was assigned to the first day of the month, 
while the late composite was assigned to the 16th day of the month [22]. For this study, AVHRR 
NDVI data was chosen over the higher quality MODIS data, to be able to use the method to study 
changes in crop phenology in China over the last 30 years. MODIS data is not available for that entire 
time frame.  

Data about percentages of cropland (1:100,000) across China [31] was used to derive cropland 
density at a resolution of 8 km (Figure 1). 

Figure 1. Map of cropland density in China at a resolution of 8 km. 
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In situ observation data of the SOS and EOS of major crops at 261 agro-meteorological stations was 
obtained from China Meteorological Administration (CMA). The 2003 data from these stations were 
used to determine phenology thresholds for the various agricultural zones, while 2000–2002 data from 
110 stations were used to verify results. The stations for which 2003 data was used are all located in an 
area with a percentage of cropland above 50% (see Figure 1), as identified by the percentage of 
cropland for the pixel corresponding to the station location. The 110 sites used to provide 2000–2002 
data for verification were selected for having a planting pattern consistent with that of the agricultural 
zone in which they are situated. For the in situ data, the SOS for spring wheat, corn, and soybean was 
defined as the crop’s seeding stage. For winter wheat, the SOS was defined as the time of returning-green, 
while for rice the time of transplanting was used as the SOS. For all crops the mature period of the 
crop was defined as EOS. In the case of double cropping and triple cropping, only the observed date of 
the SOS of the first growing season and the EOS of the last growing season were used.  

Figure 2. Map of agro-meteorological stations and crop proportion zones in China.  
W = wheat, Spr. W = spring wheat, Win. W = winter wheat, M = maize, Spr. M = spring 
maize, Sum. M = summer maize, R = rice, S = soybean. 
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Selection of the various agricultural zones for China, based on crop proportions and climate 
conditions, was based on Meng et al. [32], who divided China into 43 zones based on temperature, 
precipitation, solar radiation, landform, and planting pattern indices (see Figure 2).  

To identify snow coverage, MOD10A2 data was used. This data was provided by the National 
Snow and Ice Data Center (NSIDC).  

2.2. Methods 

To determine and verify thresholds for SOS/EOS for the different agricultural zones in China, the 
methodology for this study included three distinct phases as presented in the flowchart in Figure 3. 
First the data was preprocessed to get high-quality NDVI time series for all pixels with a percentage of 
cropland above 50%. Next, statistical analysis of remote sensing data compared with field observations 
and an algorithm were used to determine threshold values for SOS and EOS. Finally, results were 
verified with in situ data and compared to other threshold methods to analyze the method’s accuracy. 
All of the steps will be discussed in detail below. 

Figure 3. Study methodology consisting of (1) data preprocessing, (2) determination of 
phenology detection thresholds, and (3) verification and comparison. 
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2.2.1. Data Preprocessing 

Although it is generally acknowledged that composite NDVI images can greatly reduce cloud and 
other atmospheric noise while retaining dynamic vegetation information, residual atmospherically 
related noise, as well as some noise due to other factors (e.g., surface anisotropy), remain in the NDVI 
datasets [25]. To further remove noise and reconstruct a high-quality NDVI time-series dataset, a 
developed Savitzky-Golay filter was applied [6], followed by a linear interpolation of daily NDVI 
values for each pixel [22]. 

Because the study focuses on crop phenology, only pixels with a crop density greater than 50% 
were defined as cropland and included in the study. Pixels with or less than 50% cropland were 
excluded to eliminate the effect from bare land and natural vegetation as much as possible. 

2.2.2. Determining Thresholds for Phenology Detection 

The proposed method is based on the principles of the threshold method, in which the SOS and 
EOS are assumed to occur when the NDVI exceeds a certain value [33]. Unlike other threshold 
methods, the method in this study uses a combination of three threshold values for (1) NDVI, (2) the 
slope of the NDVI curve, and (3) the difference between the NDVI value and a base value.  

First, the NDVI time series is used to determine time-series for the other two possible threshold 
values: slope and difference. The slope (S) of the NDVI curve describes the growing rate of the crops 
(Equation (1)) [34],  

( 1) ( )( )
( )

NDVI i NDVI iS i
NDVI i
+ −=  (1)

where S(i) is the slope value of date i, NDVI(i) is the NDVI value of date i, and NDVI(i + 1) is the 
NDVI value of date i + 1. 

Difference (D) is defined as the difference between the NDVI value on a given date and a base 
value for the pixel representing the NDVI of bare soil. This base value is calculated as the average of 
the three lowest NDVI values in a year. For cropland areas with snow cover during the winter, the 
three lowest NDVI values are used for when the ground is not covered by snow, as identified by the 
MOD10A2 data from the National Snow and Ice Data Center (NSIDC). Formula 2 shows the 
calculation of difference (D) between NDVI and the base value:  

( ) ( ) ( )( ) ( )
3

NDVI l NDVI m NDVI nD i NDVI i + += −  (2)

where NDVI(l), NDVI(m), and NDVI(n) are the lowest three NDVI values in a year.  
Following the construction of the time series for S and D for each pixel with a crop land area above 

50%, field observed dates for SOS/EOS for 2003 at 261 agro-meteorological stations across China are 
used to identify the corresponding NDVI (N), Slope (S), and Difference values (D) for the time of SOS 
and EOS at each station, as shown in Figure 4. These are the N, S, and D values of the pixel associated 
with each station. These N, S, and D values for the various stations in a zone are used to calculate the 
mean and standard deviation (Stdev) for N, S, and D for each zone.  



Remote Sens. 2013, 5 3197 
 

 

Figure 4. Deriving values for NDVI (N), Slope (S), and Difference (D) for each  
agro-meteorological station based on the observed start of the growing season (SOS) or 
end of the growing season (EOS). 

 

Next, also for each zone, the range of acceptable values for SOS and EOS is determined based on 
the observed dates of SOS and EOS for the stations in a zone. This acceptable range is from a 
minimum SOS (MinSOS) to a maximum SOS (MaxSOS) or from a minimum EOS (MinEOS) to a 
maximum EOS (MaxEOS). If the difference between the first and last observed SOS within a zone is 
less than or equal to 30 days, the SOS range for that zone is defined by those two values. If the 
difference between those two observed dates is above 30 days, the mean SOS of the two values is 
calculated and the range is identified as the [meanSOS − 15, meanSOS + 15]. Similarly, in the case of 
EOS, the acceptable range is defined as the dates between the first and the last observed value for EOS 
(at any of the stations in a zone) if the difference is less than or equal to 30 days, or as a range of 
[meanEOS − 15, meanEOS + 15] if the difference is larger than 30 days. These ranges will be used to 
identify which findings of SOS and EOS will be deemed “acceptable” as described below. 

In a few zones, no, or just one or two, stations are present. In those cases, the zones are combined 
with adjacent zones with similar planting patterns to calculate the mean and standard deviation for N, 
S, and D, as well as the [MinSOS, MaxSOS] and [MinEOS, MaxEOS] ranges for the combined zone. 
Specifically, considering the spatial relationship and crop proportions, zones have been combined as 
follows: zones 1-1, 1-2, 1-4, and 5-1; zones 4-2 and 1-11; zones 2-3 and 2-4; zones 4-5 and 4-8; 
zones 4-3 and 4-14; zones 3-11 and 3-13; and zones 1-3, 3-3, and 3-9. 

With the mean and Stdev for N, S, and D values determined for each zone (based on the N, S, and D 
values corresponding with the SOS or EOS at each station in a zone), the possible range and values for 
N, D, and S as threshold values for SOS/EOS detection are defined as: Mean − Stdev to Mean + Stdev, 
with a step increase of 0.2 × Stdev. If for example the mean N for an agricultural zone is 2 and the 
Stdev 1, the possible range is N = 1; 1.2; 1.4; 1.6; 1.8; 2.0; 2.2; 2.4; 2.6; 2.8; and 3.0, for a total of 11 
values for that zone. Similarly, possible values for S and D will also form 11 options in a range. This 
way, for each zone, (11 × 11 × 11=) 1,331 different combinations or groups of N, D, and S 
are determined. 
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Next, these 1,331 different groups for each agricultural zone are tested using the algorithm shown in 
Figure 5. Separate analyses are done for SOS and for EOS. For each group of values, first N, then D, 
and then S is used to determine the SOS (or EOS) for each pixel (with above 50% cropland) within the 
zone. This is done by identifying the SOS (or EOS) that corresponds with the particular N (or S or D) 
value being tested. The algorithm tests the values in the order of N→D→S and compares the resulting 
SOS or EOS date for the pixel with the acceptable range ([MinSOS, MaxSOS], [MinEOS, MaxEOS]) 
in the zone (or as determined by combining zones). If an SOS date for a pixel based on the N threshold 
falls outside the range of acceptable SOS values for that zone, the result is not accepted and the 
algorithm moves on to use the D threshold to calculate the SOS. If the result of the D value is not 
accepted, the S value is used. If the result is still not accepted, the pixel is marked as denied. For each 
zone, all groups of thresholds are analyzed and for each group the total percentage of accepted pixels 
(PA) is calculated. The PA is determined as the total number of pixels (with above 50% cropland) 
divided by the total number of accepted pixels in the zone. The group of threshold values with the 
highest PA is then considered the appropriate threshold for the zone.  

Figure 5. Algorithm for determining phenology detection thresholds. 

 

2.2.3. Comparison and Verification 

To assess its accuracy, the method in this study (the NDS threshold method) was compared with 
three other methods to detect SOS/EOS events based on remote sensing data. The first method used to 
compare results is a curvature-change rate method (CCR) described by Zhang et al. [13]. The second is 
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a maximum slope (MSL) method used by Yu et al. [27]. In this method the date corresponding to a 
maximum rate in the rise and decline of the NDVI curve is defined as SOS and EOS, respectively. 
Both methods were chosen for their common and global application. The third method, the threshold 
method (THR) by White and Nemani [22], is also very common and used widely. In this method, for 
each pixel the threshold is defined as the value halfway between the minimum and maximum of the 
annual NDVI curve.  

Verification is a key element of remote sensing-based studies of phenology that cover large areas [35]. 
In this study, results were also verified by comparing the findings of the proposed NDS method and 
the other three methods with observed SOS/EOS for 2000–2002 at 110 agro-meteorological stations.  

The 110 agro-meteorological stations selected for verification are again located in areas where the 
percentage of cropland exceeds 50% of the total area. The stations also have the same crop proportions 
as the corresponding zone. For each year and method, a scatterplot, analysis of linear regression  
(y = ax + b), the root mean square error (RMSE), bias, dispersion, and correlation coefficient between 
detection value and in situ data are presented. Formulations of RMSE, bias and dispersion are as 
follows [36]:  

2( )
N

i i
i

x y
RMSE

N

−
=
∑

 (3)

( )
N

i i
i

x y
Bias

N

−
=
∑

 (4)

21 ( )
1

N

i i
i

Dispersion x y Bias
N

= − −
− ∑  (5)

where xi is the value obtained by remote sensing, yi is the in situ data in a given year, and N is the total 
number of verification stations. 

In addition, to quantitatively describe by how much accuracy can be improved by using method A 
compared to method B, the following formula is used to describe the relative accuracy of method A:  

B A
A,B

B

100%RMSE RMSERIA
RMSE

−= ×  (6)

Where RIAA,B is the relative accuracy of method A compared to method B. RMSEA and RMSEB are the 
RMSE of the results of methods A and B, respectively. 

3. Results and Discussion 

3.1. Phenology Detection Thresholds for the Agricultural Zones 

Table 1 presents an overview of the group of values for N, D, and S for each zone that were 
determined to be the optimum set of thresholds for the detection of SOS in that zone. The table further 
shows the acceptable range for SOS (MinSOS and MaxSOS) in the zone, as well as the percentage of 
accepted pixels (PA). Table 2 shows similar results for EOS.  
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Table 1. Groups of detection thresholds for SOS, MinSOS (in Day of Year (DOY)), 
MaxSOS (DOY), and percentage of accepted pixels (PA) for each zone. N = NDVI;  
D = Difference; S = Slope. 

Zone N D S 
Min 
SOS 

Max
SOS 

PA Zone N D S 
Min 
SOS 

Max 
SOS 

PA 

1-1 0.183 0.183 0.02 114 136 95% 3-8 0.43 0.124 0.006 96 126 93% 
1-2 0.183 0.031 0.02 114 136 91% 3-9 0.222 0.081 0.007 85 110 93% 
1-3 0.284 0.016 0.005 85 110 88% 3-10 0.343 0.009 0.003 92 122 25% 
1-4 0.198 0.031 0.02 114 136 89% 3-11 0.413 0.152 0.003 117 139 66% 
1-5 0.47 0.191 0.007 138 163 87% 3-12 0.469 0.067 0.004 88 118 72% 
1-6 0.144 0.102 0.007 103 133 95% 3-13 0.512 0.288 0.008 117 139 73% 
1-7 0.158 0.005 0.005 58 88 50% 4-1 0.108 0.053 0.003 93 123 76% 
1-8 0.117 0.122 0.011 84 114 84% 4-2 0.238 0.003 0.008 37 55 96% 
1-9 0.12 0.138 0.007 93 123 80% 4-3 0.46 0.059 0.015 94 124 28% 

1-10 0.233 0.024 0.007 49 67 91% 4-4 0.316 0.008 0.01 37 67 92% 
1-11 0.36 0.013 0.009 37 55 98% 4-5 0.432 0.098 0.007 72 102 57% 
2-1 0.135 0.232 0.01 121 151 80% 4-6 0.416 0.034 0.002 77 107 80% 
2-2 0.48 0.171 0.022 124 151 85% 4-7 0.222 0.259 0.003 120 148 92% 
2-3 0.367 0.013 0.011 45 61 89% 4-8 0.248 0.061 0.001 72 102 25% 
2-4 0.383 0.009 0.004 45 61 38% 4-9 0.144 0.117 0.007 103 133 94% 
3-1 0.461 0.134 0.015 109 139 65% 4-10 0.162 0.056 0.004 100 130 89% 
3-2 0.416 0.097 0.005 90 120 91% 4-11 0.512 0.278 0.009 123 137 85% 
3-3 0.429 0.048 0.003 85 110 86% 4-12 0.273 0.272 0.01 126 156 69% 
3-4 0.54 0.167 0.009 123 153 42% 4-13 0.159 0.01 0.004 86 116 82% 
3-5 0.113 0.001 0.008 54 84 97% 4-14 0.488 0.116 0.003 94 124 27% 
3-6 0.297 0.22 0.001 119 149 97% 5-1 0.3 0.031 0.024 114 136 58% 
3-7 0.484 0.172 0.007 111 146 86% Total      77% 

Table 2. Groups of detection thresholds for EOS, MinEOS (DOY), MaxEOS (DOY), and 
percentage of accepted pixels (PA) for each zone. N = NDVI; D = difference; S = Slope.  

Zone N D S 
Min 
EOS 

Max
EOS 

PA Zone N D S 
Min 
EOS 

Max 
EOS 

PA 

1-1 0.464 0.18 −0.02 234 253 92% 3-8 0.592 0.208 −0.005 293 303 66%
1-2 0.464 0.113 −0.02 234 253 45% 3-9 0.377 0.183 −0.001 295 325 86%
1-3 0.222 0.126 −0.006 295 325 68% 3-10 0.535 0.252 −0.004 237 267 64%
1-4 0.464 0.113 −0.02 234 253 58% 3-11 0.488 0.213 −0.004 222 252 88%
1-5 0.297 0.156 −0.026 271 281 97% 3-12 0.507 0.136 −0.016 277 307 88%
1-6 0.411 0.168 −0.003 218 240 93% 3-13 0.55 0.332 −0.006 222 252 78%
1-7 0.326 0.143 −0.002 264 280 75% 4-1 0.501 0.16 −0.015 240 269 95%
1-8 0.486 0.262 −0.004 251 281 77% 4-2 0.441 0.137 −0.016 263 281 98%
1-9 0.352 0.155 −0.037 247 267 76% 4-3 0.373 0.182 −0.008 272 296 86%

1-10 0.533 0.198 −0.006 252 267 73% 4-4 0.419 0.179 −0.023 255 285 97%
1-11 0.414 0.175 −0.005 263 281 93% 4-5 0.426 0.191 −0.013 251 281 66%
2-1 0.462 0.192 −0.006 251 271 97% 4-6 0.571 0.197 −0.004 267 297 76%
2-2 0.456 0.221 −0.021 259 281 99% 4-7 0.356 0.245 −0.03 265 273 100%
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Table 2. Cont. 

Zone N D S 
Min 
EOS 

Max
EOS 

PA Zone N D S 
Min 
EOS 

Max
EOS 

PA 

2-3 0.343 0.185 −0.02 255 285 95% 4-8 0.483 0.219 −0.004 251 281 77%
2-4 0.483 0.236 −0.011 255 285 74% 4-9 0.411 0.141 −0.013 251 271 94%
3-1 0.386 0.201 −0.003 277 306 93% 4-10 0.305 0.152 −0.006 259 289 99%
3-2 0.365 0.188 −0.002 280 310 82% 4-11 0.446 0.351 −0.006 232 240 83%
3-3 0.415 0.14 −0.002 295 325 68% 4-12 0.355 0.195 −0.027 255 281 100%
3-4 0.447 0.146 −0.007 263 293 88% 4-13 0.223 0.048 −0.018 261 279 91%
3-5 0.354 0.137 −0.016 261 291 100% 4-14 0.415 0.115 −0.012 272 296 87%
3-6 0.426 0.191 −0.004 252 279 48% 5-1 0.464 0.18 −0.02 234 253 63%
3-7 0.471 0.136 −0.006 283 299 79% Total      88%

Both for SOS and EOS, the PA exceeds 80% in most of the zones. The PA of the whole study area 
is also about 80%. This means that denied pixels form only a small fraction of the total number of 
pixels. The tables also show rather large variations in detection thresholds among zones, with the 
exception of some zones that are more similar and adjacent to each other. This variation in threshold 
values among zones reflects the wide distribution of cropland, diverse climatic conditions, and variety 
of crop proportions in China, as a result of which, the characteristics of the NDVI curves vary among 
zones. The detection thresholds determined for each zone follow those characteristics. 

3.2. Accuracy Evaluation of Detection Results 

Comparisons between the estimated SOS/EOS date based on remote sensing data and the in situ 
observation data from 110 stations for 2000–2002 are presented in Figures 6 and 7. SOS (Figure 6) and 
EOS (Figure 7) dates were estimated using the four different methods for threshold detection: (1) this 
study’s proposed NDS threshold method, (2) the curvature-change rate (CCR) method by Zhang et al. [13], 
(3) the maximum slope (MSL) method by Yu et al. [27], and the (4) threshold (THR) method by 
White and Nemani [22]. 

For SOS, the proposed NDS threshold method has the highest coefficient of determination (R2), 
smallest RMSE, and smallest dispersion among all four methods. Although the accuracy is not very 
high, the results still suggest that the proposed method can achieve a higher accuracy than the other 
methods on a national scale. Among the other three methods, the CCR method has the ability to treat 
each pixel individually without setting thresholds or empirical constants, allowing the method to be 
applied globally [13]. However, the CCR results, and in particular its high RMSE, suggest that 
although the method may work fine for vegetation, it is less applicable for crops in China. The MSL 
method also is a method that can be applied globally. The large positive bias of the MSL method, 
however, indicates that its estimated SOS tends to be much later than the observed dates for SOS. One 
reason for this is that the SOS from the in situ data represents the date of onset of photosynthetic 
activity, while the SOS derived by the MSL method corresponds to the time when the crop-growing 
rate is at a maximum, which is later than the onset of photosynthetic activity. The last method, the 
threshold method used by White and Nemani, is an empirical method that uses the halfway value 
between the minimum and maximum of annual NDVI curve as the threshold to detect phenology. The 
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results (high RMSE), however, indicate that this method is not an accurate approach for phenology 
detection when used for crops across China.  

Figure 6. Comparisons of in situ SOS date (DOY) with SOS date (DOY) derived from 
four methods based on remote sensing data: (a–c) This study’s NDS method;  
(d–f) Curvature-change rate method; (g–i) Maximum slope method; (j–l) Threshold method. 
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Figure 7. Comparisons of in situ EOS date (DOY) with EOS date (DOY) derived from 
four methods based on remote sensing data: (a–c) This study’s NDS method;  
(d–f) Curvature-change rate method; (g–i) Maximum slope method; (j–l) Threshold method. 

For the detection of EOS dates, none of the four methods gives very good results, with low 
coefficients of determination and high RMSE for all four methods. One explanation can be that lower 
sun angles in autumn aggravate atmospheric effects [33]. Among the four methods, however, the NDS 
method still achieved the best results. The difference in results between the CCR and MSL methods 
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might be explained by their different definitions of EOS. The EOS derived from the CCR method 
corresponds to the period when crop photosynthetic activity reaches zero [13]. For MSL, it 
corresponds to the onset of leaf coloring [33], which happens before photosynthetic activity reaches 
zero. Overall, on a national scale, the results of the CCR and MSL approaches and in particular the 
large bias for CCR results compared to MSL indicate that the EOS (as determined by the field 
observations) is closer to the date of onset of leaf coloring (used by the MSL method) than the end of 
photosynthetic activity (used by the CCR method).  

The root mean square error (RMSE) of the various methods and the relative accuracies (RIA) of the 
NDS threshold method compared to the other three methods are presented in Table 3. The results show 
that for both SOS and EOS detection using remote sensing, use of the NDS threshold method can 
improve accuracy significantly. The average RMSE for the three years for the NDS method is smaller 
than 20 days for both SOS and EOS determination, while the RMSEs for the other three methods all 
exceed 20 days except for EOS of MSL in 2000. The average RIA of the NDS approach compared to 
the other methods also is above 30%, except for the relative accuracy of the NDS method compared to 
the MSL and THR methods when determining EOS. 

Table 3. RMSE for all four methods and the relative accuracies (RIA) of NDS to the three 
other methods, for SOS and EOS. 

   2000 2001 2002 Average 

SOS 

RMSE 

NDS 18.95 16.79 15.67 17.14 
CCR 27.99 24.74 26.34 26.36 
MSL 33.27 29.03 34.21 32.17 
THR 27.1 24.66 26.3 26.02 

RIA 
RIANDS,CCR 32.30% 32.13% 40.51% 34.98% 
RIANDS,MSL 43.04% 42.16% 54.19% 46.47% 
RIANDS,THR 30.07% 31.91% 40.42% 34.14% 

EOS 

RMSE 

NDS 17.15 16.41 18.76 17.44 
CCR 46.17 44.6 42.84 44.54 
MSL 19.92 22.81 24.12 22.28 
THR 23.44 22.59 24.1 23.38 

RIA 
RIANDS,CCR 62.85% 63.21% 56.21% 60.76% 
RIANDS,MSL 13.91% 28.06% 22.22% 21.40% 
RIANDS,THR 26.83% 27.36% 22.16% 25.45% 

In summary, in the case of China, the detection of both SOS and EOS based on remote sensing data 
can be improved by using the NDS threshold method proposed in this paper. Unlike the other methods, 
the new NDS method takes into consideration the variety in crop proportions and climate conditions 
across China by not using the same threshold for all zones. Both the CCR and MSL method detect 
phenological stages using geometric features of the NDVI curve, which is not reasonable for crop 
phenology detection across China because those features that will respond to SOS or EOS are not the 
same for different crops. Some crops even do not show any obvious geometric features in their NDVI 
curve when they reach SOS or EOS because of human activities. Unlike the CCR and MSL 
approaches, the NDS method does not consider the geometric features of the NDVI curve. Its 
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thresholds are decided by the observed phenological stages, so it can bring the detected SOS/EOS 
dates closer to the real crop phenology. As a result, its findings are more accurate. 

3.3. Maps of the Phenological Events 

Figure 8 shows the start, end, and length (SOS, EOS, and LOS) of the growing season in 2002 as 
detected by the NDS method. In the case of denied pixels using the NDS method (pixels for which the 
value of N, S, and D did not yield acceptable results), the threshold method by White and Nemani [22] 
was used to determine the SOS and EOS.  

Figure 8. Maps of the (a) SOS; (b) EOS; and (c) LOS (DOY) in China, 2002. 
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Figure 8. Cont. 

 

Results shown in Figure 8 correspond with the fact that in China double cropping is predominantly 
located in the North China Plain, the middle and lower reaches of the Yangtze River, and the south of 
China [23], as double cropping leads to earlier SOS, later EOS, and longer LOS in those regions. 
Because of the physical environment and different crop types, regions with double cropping also do 
not show the same phenology. For example, in most regions of the North China Plain, the planting 
pattern is “winter wheat-summer corn”, while in most parts in the south of China the planting pattern is 
“early rice-late rice”. Usually, winter wheat’s SOS (its period of returning green) is earlier than the 
SOS of early rice (transplanting time). This can be seen in Figure 8(a) with earlier SOS in in the North 
China Plain compared with SOS in the South of China. Single cropping occurs throughout all 
cultivated areas in China, but is most common in the Northeast Plain, regions along the Great Wall of 
Inner Mongolia, the Loess Plateau, and Southwest China [23]. In these region relatively later SOS, 
earlier EOS, and shorter LOS have been observed. 

3.4. Discussion of the Methodology 

Although the method proposed in this study has shown to be an appropriate method for crop 
phenology detection in China, some problems remain.  

First, to determine the detection thresholds for each zone, observation data must be available in that 
zone or in a nearby zone. This means that the method cannot be used in areas where observation data is 
not available. Moreover, the detection thresholds must be re-established after a certain period of time. 
Although it might be reasonable to assume that crop phenology is similar for three to five successive 
years, so that the same detection thresholds can be used, this consistency will certainly not apply to 
long-term monitoring. Global climate change in particular has shown in recent years to detrimentally 
affect many biological and environmental factors [37].  

Second, the observed measurements of SOS/EOS and the estimated SOS/EOS based on remote 
sensing are in fact not very compatible because the observations are species-specific while the remote 
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sensing data is not. In an eight-kilometer resolution image, each pixel reflects the integrated response 
across landscapes with diverse species and phenologic behavior, and it will affect the verification in 
this paper. The use of higher resolution data, such as MODIS data, would improve this situation as the 
smaller pixels would include fewer kinds of crop.  

A third area that requires more attention is that the method proposed in this study assumes that 
within a zone planting patterns and environment do not vary significantly. This cannot always be the 
case and it is possible that results could be improved by increasing the total number of zones.  

Finally, one aspect of the NDS method is the fact that the NDVI curve for some pixels does not lead 
to an acceptable SOS/EOS when the date falls outside the range of minimum to maximum SOS/EOS. 
Figure 9 shows the example of a pixel in zone 2-2 with N, S, D threshold values of 0.48, 0.022, and 
0.171, respectively. For each threshold, the corresponding day of SOS falls outside the acceptable 
range for the zone, causing the pixel to not have an associated SOS. In this paper, the threshold method 
by White and Nemani [22] has been used to determine the SOS for those pixels to make the phenology 
maps in Figure 8, but more work needs to be done to find a better way to solve this situation. 

Figure 9. NDVI, slope, and difference curves for a pixel with no detectable SOS value.  
N = NDVI; S = Slope; D = Difference. The horizontal lines represent the detection 
thresholds for N, S, and D. The dotted vertical lines show the minimum (left) and 
maximum (right) days for the SOS. For all three thresholds, the day of the SOS 
corresponding to the threshold falls outside the range of SOS dates. The pixel does not 
provide an acceptable result and is denied.  

 

4. Conclusions  

This paper presents an improved threshold method for crop phenology detection in China based on 
remote sensing. Our method used field observed phenology data (SOS/EOS) in 2003 to derive the 
corresponding normalized difference vegetation index (NDVI or N) value, slope of the NDVI curve 
(S) value, and difference (D) between the NDVI value and a base NDVI value for every  
agro-meteorological station. For each of 43 agricultural zones with different crop proportions, we 
designed an algorithm to establish an optimal set of detection thresholds (N, S and D), which can 
achieve the highest percentage of accepted pixels (PA) for SOS and EOS of each zone. 
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Verification results showed a relative good agreement between in situ SOS dates and the SOS dates 
based on remote sensing data using the proposed method. The average root mean square error (2000–2002) 
of SOS and EOS is 17.14 days and 17.44 days, respectively. The comparisons demonstrated that our 
method showed higher accuracy than three other methods based on remote sensing data. Compared 
with curvature-change rate method (CCR) described by Zhang et al. [13], maximum slope (MSL) 
method used by Yu et al. [27], and threshold method (THR) by White and Nemani [22], the method 
proposed in this study can improve the average accuracy (2000–2002) by about 35%, 46%, and 34% 
for SOS, about 61%, 21%, and 25% for EOS, respectively. In addition, maps of the phenological 
events showed a good agreement with the previous study.  

The primary innovations of our method are twofold. First, we proposed a method for crop 
phenology detection. As crop is often affected by human activities, it is difficult to detect its phenology 
using ordinary method. Using field observed data to derive the thresholds and then establishing the set 
of detection thresholds can eliminate some human activities’ influence. Second, we set different 
phenology detection thresholds for different agricultural zones, which is more reasonable for complex 
planting condition in China. 

A limitation of the proposed method is that observation data needs to be available for study area and 
the thresholds will periodically need to be determined. In addition, our method will result in some 
pixels with no detectable phenological events. In future, further research is necessary to address these 
limitations. Verification method and agricultural zones dividing method also need to be further 
improved. After that, the method will be used to detect the crop phenology variation across China over 
the last 30 years for the study of the impact of climate change on crops.  
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