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Abstract: Wetland mapping at the landscape scale using remotely sensed data requires 
both affordable data and an efficient accurate classification method. Random forest 
classification offers several advantages over traditional land cover classification 
techniques, including a bootstrapping technique to generate robust estimations of outliers 
in the training data, as well as the capability of measuring classification confidence. 
Though the random forest classifier can generate complex decision trees with a multitude 
of input data and still not run a high risk of over fitting, there is a great need to reduce 
computational and operational costs by including only key input data sets without 
sacrificing a significant level of accuracy. Our main questions for this study site in 
Northern Minnesota were: (1) how does classification accuracy and confidence of mapping 
wetlands compare using different remote sensing platforms and sets of input data; (2) what 
are the key input variables for accurate differentiation of upland, water, and wetlands, 
including wetland type; and (3) which datasets and seasonal imagery yield the best 
accuracy for wetland classification. Our results show the key input variables include terrain 
(elevation and curvature) and soils descriptors (hydric), along with an assortment of 
remotely sensed data collected in the spring (satellite visible, near infrared, and thermal 
bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and 
horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite 
radar). We undertook this exploratory analysis to inform decisions by natural resource 
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managers charged with monitoring wetland ecosystems and to aid in designing a system 
for consistent operational mapping of wetlands across landscapes similar to those found in 
Northern Minnesota.  
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1. Introduction 

Wetlands provide many ecosystem services such as filtering polluted water [1], mitigating flood 
damage [2–4], recharging groundwater storage [5,6], and providing habitat for diverse flora and 
fauna [7–9]. Wetland quality and quantity are particularly important in light of the increasing impacts of 
climate change, a growing human population, and changing land cover and land use practices [10,11]. It 
is therefore essential that wetlands are managed appropriately and monitored frequently. 

The US Army Corps of Engineers defines wetlands as: “areas that are inundated or saturated by 
surface or ground water at a frequency and duration sufficient to support, and that under normal 
circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil 
conditions” [12]. The Corps identifies potential wetland areas using three broad categories: soils, 
vegetation, and hydrology, where the classification is specifically based on geological substrate (soil 
type, drainage), the presence and type of hydrophytic vegetation, and topographic features that 
influence the hydrological movement and storage of water.  

Characteristics of wetland structure and position are not the only influential factors on the 
permanence and duration of a wetland’s capacity to store water. Regional and local climate conditions 
are the main driving forces behind a wetland’s hydroperiod. Hydroperiod can be defined as the 
seasonal pattern of water level, duration and frequency in a wetland, akin to a “hydrologic signature”. 
The hydroperiod of a wetland has been described by Wissinger [13] as the single most important 
aspect of the biodiversity within a wetland habitat, because the duration between dry and wet periods 
directly influences complex biological interactions and communities. The phenology of a wetland has 
a major influence on its classification and changes in the hydroperiod over time can thus alter a 
wetland’s classification. 

Accurate landscape-scale wetland maps are important for stakeholders that represent many different 
interests in wetland ecosystems. Accurate wetland maps are needed to: better respond to and prepare 
for natural disasters and invasive species mediation [14,15], conserve and restore wetland areas 
following policy and regulation changes [16,17], address water quality and quantity concerns [18,19], 
and better understand the linkages and seasonality of these ecosystems to biodiversity and other natural 
resources [20,21]. However, many existing wetland maps are out of date and efforts for updating them 
tend to happen over small geographic extents or at intervals too infrequent for appropriate 
environmental mitigation [22]. Furthermore, traditional wetland mapping methods often rely on optical 
imagery and manual photo interpretation or classification using single date imagery. These maps 
typically under-represent ephemeral and forested wetlands, due to their possible absence during time 
of data acquisition and because of obscuration by vegetative canopy [18]. Even if the temporal 



Remote Sens. 2013, 5 3214 
 
coverage is appropriate, optical imagery alone may not reveal wetlands obscured by clouds or haze, or 
a dense vegetated canopy. 

The integration of multi-source (multi-platform and multi-frequency) and multi-temporal remotely 
sensed data can provide information for mapping wetlands in addition to the use of single date optical 
imagery traditionally used for wetland classification. Surface features, such as extent of inundation, 
vegetation structure, and likelihood of wetlands can be better resolved with the addition of longer 
wavelength radiometric responses, topographic derivatives [23], and ancillary data about the 
geological substrate [24,25]. Long-wave radar signals, such as C-band (5.6 cm) or L-band (23 cm), 
have been found to improve land cover classification accuracy because these wavelengths have deeper 
canopy penetration and are sensitive to soil moisture and inundation [26–28]. These active sensors are 
not as sensitive to atmospheric effects, penetrate clouds, and are operational at night, thereby 
increasing the temporal coverage of wetland mapping. Research has shown that data from multiple 
sources and over multiple seasons capture greater variation in hydroperiod and vegetative condition 
and thus have the potential to increase both classification accuracy and confidence [29–31].  

Given the wealth of remotely sensed and ancillary data, a robust wetland classification method 
applied to large geographic areas needs to be computationally fast, require no assumptions about data 
distribution, handle nonlinearity in relations between input variables, and be capable of using numeric 
and categorical data. In addition, the assessment of results will be improved if the classification 
method identifies outliers in the training data, provides rankings of the importance of the input 
variables, and produces internal estimates of error and confidence of the output classification. Many 
decision tree classifiers fulfill all these requirements and have been used in land cover mapping for 
years [32–35], including several that use the meta-classifier random forest [36–38]. 

Our goal was to identify an optimal selection of input data from multiple sources and time periods 
of remotely sensed and ancillary data for accurate wetland mapping using random forest decision tree 
classification in a forested region of Northern Minnesota. We assessed ways of increasing 
classification accuracy, confidence, and practicality by assessing results from several combinations of 
input data. Our main questions for this study site in Northern Minnesota were: (1) how does 
classification accuracy and confidence of wetland mapping compare using different remote sensing 
platforms and ancillary data from different periods of the growing season; (2) what are the key input 
variables for accurate differentiation of upland, water, and wetlands, including wetland type; and 
(3) which datasets and seasonal imagery yield the best accuracy for wetland classification. 

2. Methods 

2.1. Study Area  

Much of northern Minnesota (MN) is forested. The hydrographic patterns of the landscape have 
been influenced heavily by glacial advances and retreats over the millennia [39]. Our study centered on 
Cloquet, MN (Figure 1), which lies in the sparsely populated “Arrowhead” region of northeastern 
Minnesota. This study area is dominated by managed and natural hardwood and conifer forests, woody 
and herbaceous wetlands [40], and low density residential housing with a small city center (population 
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12,000) [41]. The elevation across the study area is 330–450 m above sea level (mean of 392 m), with 
the slope of the landscape averaging less than 1.7 degrees. 

Given the variable nature of hydroperiod in space and over time, the weather during remotely 
sensed and field data acquisition is especially relevant when mapping wetlands. We collected field data 
in the summers of 2009 and 2010 and acquired remotely sensed data for several dates from 2008 to 
2010. The 30-year normal total annual precipitation for the nearest major NOAA weather station in 
Duluth, MN (about 35 km away from the study site) measures between 5 and 10 cm in the spring, 
about 10 cm in the summer, and between 5 and 10 cm in the fall, for a total of about 79 cm 
annually [42]. The 30-year normal minimum precipitation in the spring is between 0.6 and 1.25 cm, 
with a maximum between 18 and 20 cm. In the summer the minimum precipitation is between 1.75 
and 2 cm, with a maximum between 20 and 25 cm. The minimum precipitation in the fall is around 
0.25 cm, with a maximum between 18 and 23 cm. Hydrologists in the northern hemisphere use the 
term water year to describe the period of time between 1 October and 30 September of the next 
calendar year. The lowest level of precipitation is in general during the fall and the landscape is 
typically replenished during the winter and spring of that water year. Precipitation over the study site 
during the 2008 water year (October 2007–September 2008) was slightly above normal, whereas the 
rest of that summer and well into the 2009 water year the trend was slightly below normal. 
Precipitation during the first part of the 2010 water year was slightly above normal around the study 
site and trended more towards normal throughout the north east region, whereas in the latter part of 
that year the trend was slightly below average [43].  

Figure 1. Study area near Cloquet, Minnesota (MN). The aerial photo on the right is from 
the 2008 National Agricultural Imagery Program (NAIP).  
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2.2. Land Cover Classification Schemes  

Two levels of classification were performed. The land cover classification schemes we used 
differentiated between upland, water, and wetland areas (Level 1) and sub-classified wetlands into 
wetland type (Level 2). Upland areas included all non-wetland classes, for example: urban, forest, 
grassland, agriculture, and barren land cover classes. Areas classified as wetland were sub-classified 
into a modified version of the Cowardin classification scheme [44], including the three most common 
wetland classes in the study area according to the National Wetlands Inventory (NWI) [45]: emergent, 
forested, and scrub/shrub wetlands. We merged the palustrine unconsolidated bottom class with the 
emergent wetland class and the riverine unconsolidated bottom class with the water class, based on 
visual assessment of the landscape variability in the study area (Table 1).  

Table 1. Level 2 classification and our corresponding class modifications.  

Level 2 Class Modification of the Classes Used 
Upland Upland 
Water Water + Palustrine Unconsolidated Bottom 
Emergent Wetland Emergent + Riverine Unconsolidated Bottom 
Forested Wetland Forested Wetland 
Scrub/Shrub Wetland Scrub/Shrub Wetland 

Any errors present in the initial Level 1 classification result prior to sub-classifying the wetland 
class can be propagated to the Level 2 classification [46–49]. We tested whether classification 
accuracy could be improved by developing a Level 2 classification directly from the full set of input 
data without first producing a Level 1 classification, but the results were too poor for further 
consideration. Thus, all subsequent Level 2 classification results and discussion represent a 
hierarchical sub-classification of the wetland class from the results of the corresponding Level 1 land 
cover classification. 

2.3. Decision Tree Classification  

We used random forest as the decision tree classifier for our study [50]. Generating decision trees 
was an efficient means of using our point reference training data to establish relations between our 
independent (remotely sensed and ancillary data) and dependent (field determined land cover class) 
variables to produce a land cover classification [51,52]. Random forest is a meta-classifier that consists 
of a collection (forest) of decision trees using training data. The decision trees were constructed with a 
random sample of input variables selected to split at each node [53]. The default number of variables 
selected equals the square root of the total number of input variables, which we held as a constant 
during forest growing. The decision trees were fully grown without pruning using a sample (with 
replacement) of about one-third of the training data. The cross-validation accuracy was calculated 
using the remaining training data (out-of-bag) and was used to evaluate the relative accuracy of each 
model prior to a formal accuracy assessment. Each tree produced a 'vote' for the final classification, 
where the final result was the class which had the highest number of votes [53]. The classification 
confidence, or probability, equals the ratio of the number of votes for a given class out of the total 
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number of trees generated, with a resulting value range of 0–1. For each model tested we ran 500 
decision trees. 

We built several random forest models per classification level by integrating different combinations 
of remotely sensed and ancillary input data to determine: (1) the most important data sources 
(corresponding to platform and wavelength of optical or radar data, and ancillary topographic and soils 
data derivatives), (2) the most significant input variables for mapping wetlands and classifying wetland 
type, and (3) the most effective temporal period (all data or only spring, summer, or fall season).  
Pre-defined combinations of input data are shown in Figure 2. We reviewed the top three models with 
highest overall accuracy for each classification level. 

To determine if reducing the data load significantly changed the accuracy of the classification, we 
re-ran the top random forest models having the highest overall accuracy using only a selection of 
important variables-referred to as Reduced Data Load (RDL) models from this point forward. We used 
a combination of assessment measures from random forest (i.e., mean decrease in accuracy and Gini 
index for the overall model and per class, explained in the Accuracy Assessment section below) and 
expert knowledge to assess variable importance. In the selection of important variables for the RDL, 
we thought it was valuable to have fair representation from all data sources and seasons, to incorporate 
both remote sensing and wetland science knowledge, and to utilize the measures of variable 
importance produced by the random forest classifier. For example, if a radar data variable was within 
the top 20 variables for either the Gini index or the mean decrease in accuracy, that variable was 
included in the RDL model based on our knowledge of the sensitivity of the radar signal to saturated 
conditions. Selection for the Level 2 RDL was complex. We considered variable importance measures 
for the overall model and for each of the three wetland classes, and we incorporated expert knowledge 
of specific input data layers for our final selection of the RDL. We selected 10 important variables for 
the Level 1 classification. We increased our selection to 15 variables for the Level 2 classification to 
accommodate anticipated overlap in the input data distributions between different classes. 

2.4. Training and Test Reference Point Data 

Reference training and test point data (Table 2) were compiled from randomly generated field sites 
visited in the summers of 2009 and 2010, from study sites of an existing wetland monitoring program 
(centroids from polygons of the 2006–2008 MN Department of Natural Resources Wetland Status and 
Trends Monitoring Program [19]), and from our expert knowledge in photo interpretation. The 
protocol for reference data collection in 2009 and 2010 involved several steps in the field: two 
different field crews were sent to locate random ground reference points with a GPS unit; crew 
members identified the dominant Cowardin wetland type [44] within a reasonable visual distance; 
crew members recorded basic observations about the site's characteristics; 2–5 photographs were taken 
per site; and crew members recorded the point ID, photo ID, Cowardin classification, and GPS 
coordinates in a back-up field book. Each field point represents a spatial area equal to the ground 
resolution of the input raster data used in the model (30 m). If the landscape surrounding the field point 
was not homogeneous within a reasonable visual distance, the field crew would use their discretion 
and move the GPS point to a new location which was more homogeneous. Empirical comparison of 
accuracies of results using different subdivisions of training and testing data [45] led us to use a 
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stratified random sample of 75% of the reference point data for training the random forest classifier 
and 25% of the reference point data for testing the accuracy of the results. Reference points were 
added to the training dataset via photo interpretation to maintain appropriate representation of land 
cover classes and to preserve a suitable spatial distribution of training points. Assessment of outliers in 
the training dataset integrated the proximity measure from random forest (described in more detail 
below), aerial and field photo interpretation, and expert knowledge to determine whether training sites 
were appropriate reference for their respective classes. We filtered only training sites; all testing sites 
were maintained in the reference set (Table 2). Spatial autocorrelation in either reference dataset was 
not formally addressed in this study. 

Table 2. Summary of reference point data before and after the filtering of training sites. 

Land Cover 
Classification 

Training Sites Prior 
to Filtering 

Final Sites for  
Model Training 

Sites Used for  
Accuracy Testing 

Final Total  

Upland 464 305 136 441 
Water 69 46 19 65 

Wetland 421 402 149 551 
Total 954 753 304 1057 

Emergent Wetland 97 109 43 152 
Forested Wetland 156 140 49 189 

Scrub/Shrub Wetland 168 153 57 210 
Total 421 402 149 551 

The set of reference training data were evaluated for outliers using the proximity measure from the 
random forest classifier. Proximity was calculated by running the training dataset down each tree in the 
forest a second time, increasing the proximity value by one each time the training site occupied the 
same terminal node of the decision tree in the first and second run. The proximity measure was 
normalized by dividing by the total number of trees generated by random forest. Training sites with a 
low proximity measure may be outliers in the training data. For this study, the proximity measure was 
used to guide the selection and evaluation of training sites that were considered outliers. Each of the 
identified sites was evaluated and, subsequently, some of the sites were removed.  

2.5. Input Datasets and Process Flow 

The implementation used to run random forest required that all raster data have the same spatial 
resolution and geographic extent. We chose to resample all raster data to match the layer with the 
coarsest resolution: Landsat 5 Thematic Mapper (TM) at 30 m spatial resolution. Resampling an image 
can introduce errors prior to classification [48], so we used the nearest neighbor sampling approach to 
minimize alteration of the original data values for our optical imagery. All input data were used in 
raster format and coregistered using ERDAS Imagine (v. 2010) with a root mean square error (RMSE) 
of less than 15 m.  

In all of the tables and figures to follow, if a data source/platform is mentioned (e.g., “Landsat TM” 
or “radar”), all data layers from that source/platform are included in the tested combination. For 
example, the “All Season, All Data” model which uses Landsat TM, PALSAR, and Soils data includes 
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all Landsat TM bands and derivatives from all dates (Table 2), all PALSAR polarizations from all 
dates, and all Soils data layers. 

Following preparation of input datasets and training point data, we ran random forest to generate 
classification and confidence layers based on predefined combinations of datasets, including 
combinations of different platforms and seasons described earlier. We used our test point data to assess 
accuracy of each of the output classifications (Figure 2).  

Figure 2. Data process flow. Preprocessing of input datasets and reference point data 
(shown in blue) are in the left-hand column. Combinations of datasets used to perform 
random forest (shown in red), along with generation of the output classification, confidence 
maps, and accuracy assessment are referenced by boxes in the right-hand column. 

 

2.5.1. Topographic Input Data 

We used the US Geological Survey (USGS) National Elevation Dataset (NED) [54] (10 m 
resolution resampled to 30 m) to determine elevation and derive slope gradient, aspect, curvature, and 
flow accumulation across the study area. The accuracy of this dataset varied spatially, but the overall 
vertical root mean square error was 2.44 m. We applied the flow accumulation function provided by 
the Environmental Systems Research Institute (ESRI) ArcGIS (v. 10.0) to calculate the direction(s) of 
water flow across the landscape and accumulate flow for all downslope cells. Cells with high flow 
accumulation imply areas of concentrated flow, such as stream channels, and cells with low flow 
accumulation likely are ridges or plateaus [55]. The curvature metric is a second derivative of slope 
and influences the convergence and divergence of water flow [23]. The topography of this study area 
does not vary significantly (330–450 m elevation, 392 m mean elevation, 20 m standard deviation;  
0–37 degree slope with an average of 1.7 degrees). Compared to the height distribution of the study 
area, the vertical accuracy of the dataset has a negligible RMSE. 
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2.5.2. Soils Input Data 

Soil attributes are defining variables in all working definitions of wetland areas [44]. Though soils 
data are not available everywhere and the quality of the maps that are available may be questionable, 
we tested the effectiveness of including or not including soils data in this study. We extracted soils 
tabular and vector data from the US Department of Agriculture (USDA) Soil Survey Geographic Data 
Base (SSURGO) [56]. The following data layers were used based on their likelihood to be associated 
with wetland areas: soil type (e.g., mucky peat, loam), dominant and wettest drainage class (e.g., 
moderately well drained, poorly drained, and somewhat poorly drained), and hydric class (e.g., hydric, 
or partially hydric) [25,57]. We joined the tabular and vector data for these four soils data layers and 
then converted the layers to raster format with 30 m spatial resolution. 

2.5.3. Optical Input Data 

Northern Minnesota is frequently cloudy, particularly in the summer, making it a challenge to find 
cloud-free conditions over our study area. The only Landsat TM imagery available with adequate 
cloud-free conditions was from early spring and fall (Table 3). We used blue (TM Band 1, B), green 
(TM Band 2, G), red (TM Band 3, R), near-infrared (TM Band 4, NIR), two mid-infrared (TM Band 5, 
MIR1; and TM Band 7, MIR2), and thermal infrared (TM Band 6, TIR) bands from all image dates. 
We included NIR, MIR1, MIR2, and TIR because of their suitability for land cover mapping and 
detecting water content in plants and soil [58,59]. Though multi-temporal and multi-platform data were 
used, the acquired satellite data were not atmospherically corrected and the data remained in digital 
number format. All of the input data were integrated into a single dataset, from which the training data 
were derived to classify land cover as a single snapshot [60]. 

Table 3. Input optical data for decision tree classification. 

Season Date Band Combinations Platform-Source 

Spring 
17 April 2010 B, G, R, NIR, MIR1, MIR2, TIR  Satellite-Landsat 5 TM 
19 May 2010 B, G, R, NIR, MIR1, MIR2, TIR Satellite-Landsat 5 TM 

June 2009 B, G, R, NIR Aerial Orthophoto-NAIP 

Summer 
August 2008 B, G, R, NIR Aerial Orthophoto-NAIP  
August 2010 B, G, R Aerial Orthophoto-NAIP  

Fall 
21 September 2009 B, G, R, NIR, MIR1, MIR2, TIR Satellite-Landsat 5 TM 

4 October 2008 B, G, R, NIR, MIR1, MIR2, TIR Satellite-Landsat 5 TM 

We calculated both the normalized difference vegetation index (NDVI) and Tasseled Cap 
transformations for each TM image date. NDVI has been useful for separating vegetated versus  
non-vegetated areas and wet versus dry areas [61]. The brightness, greenness, and wetness axes of the 
Tasseled Cap transformation [62,63] have a long record of use in improving classification results, 
assessing land cover change, and aiding in estimates of forest structure and disturbance [64–66].  

Due to the aforementioned challenge to find cloud-free imagery during the summer season over our 
study area, we also acquired aerial orthophotos from the US Department of Agriculture (USDA) Farm 
Service Administration (FSA) National Agricultural Imagery Program (NAIP) for August 2008 and 
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2010 and an additional orthophoto from June 2009 (early leaf onset) to increase our temporal coverage 
of optical data during the summer season. The 2008 and 2009 images were acquired with visible and 
near infrared bands (blue, green, red, NIR), whereas the 2010 image was collected only in visible 
bands (blue, green, red). We used the red and near infrared bands to calculate NDVI for both 2008 and 
2009. All aerial orthophotos were resampled to 30 m spatial resolution. 

2.5.4. Radar Input Data 

We used synthetic aperture radar (SAR) from RADARSAT-2 (C-band, 5.6 cm wavelength) and 
Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar 
(PALSAR) (L-band, 23.6 cm wavelength) satellite systems (Table 4). We obtained two fully polarized 
RADARSAT-2 images (15 June 2009 and 19 September 2009) through the Canadian Space Agency’s 
Science and Operational Applications Research (SOAR) Program. Two additional dates (9 July 2009 
and 26 August 2009) were made available by the Canada Center for Remote Sensing (CCRS). Though 
proprietary data and licensing restrictions prohibited us from incorporating the backscatter data from 
the dates provided by CCRS, we were able to generate polarimetric decompositions for use in our 
analysis (all preprocessing steps were performed in the same manner, described below). All of the 
RADARSAT-2 imagery was provided by the vendor with the constant beta application look up table 
(LUT) applied to avoid over saturation of the data [67]. Table 4 outlines which dates included the 
backscatter plus polarimetric decompositions (“Full dataset”) and which dates did not include 
backscatter (“Decomp only”). 

We used the software package PCI Geomatica (v. 9.1) to preprocess the RADARSAT-2 imagery 
and generate polarimetric decompositions. Prior to resampling the imagery, we applied a boxcar filter 
(7 × 7 moving window) to reduce speckle and increase the number of effective looks for polarimetric 
decomposition [68]. The data were then resampled to 30 m using a mean window after terrain 
correcting the imagery. We then radiometrically corrected the data, performed antennae pattern 
correction, converted the amplitude values to sigma naught (σ0; output scaling LUT), and scaled the 
backscatter values in decibels for quantitative analysis [69]. After preprocessing the imagery as 
described above, we generated polarimetric decompositions.  

We used three types of polarimetric decompositions on the RADARSAT-2 imagery to assess the 
benefits of radar polarimetry for mapping wetlands: van Zyl, Freeman-Durden, and Cloude-Pottier [70]. 
The premise behind a polarimetric decomposition is that the received signals contain important 
information regarding the structure of the landscape target, the scattering mechanism of the return 
signal, and the apparent shift in the phase of the signal from the target [71–74]. The van Zyl 
decomposition is a classification [70] based on the backscatter and number of phase shifts that occur in 
the returned signal, where each pixel is discreetly classified as having a single, odd, or diffuse 
dominant backscatter. The Freeman-Durden decomposition [75] models the target scattering 
mechanisms as a continuous variable where each pixel represents relative proportions of surface 
scattering, double bounce, and volume scattering. The Cloude-Pottier decomposition [76] uses 
parameters of entropy, alpha angle, and anisotropy calculated from the eigenvalues and eigenvectors of 
a coherency matrix. Entropy is the randomness of scattering mechanisms, alpha angle represents the 
dominant scattering mechanism, and anisotropy characterizes directional dependence and importance 
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of the secondary scattering mechanism. Among these three polarimetric decompositions, many 
authors have found the Freeman-Durden decomposition in particular to be useful for wetland 
mapping [77–79]. These polarimetric decompositions represent the advanced analysis possible with 
radar polarimetry and thus were included in the random forest models which evaluated the 
effectiveness of RADARSAT-2 imagery for mapping wetlands. 

We also acquired three dual-polarized (horizontal-horizontal (HH) and horizontal-vertical (HV)) 
ALOS PALSAR images (29 July and 11 September 2009 and 14 June 2010) for the study area from 
the Alaska Satellite Facility (ASF) archive (Table 4). We used the software package MapReady 
(v. 2.3), available through the ASF, for preprocessing the PALSAR data. The imagery was geocoded 
and resampled to 30 m spatial resolution using the default method, bilinear interpolation, which 
considers four neighboring pixel values. MapReady was used to perform antenna pattern correction 
using the beta coefficient, scale the data to decibel backscatter, and perform radiometric and geometric 
terrain correction using the 10 m NED elevation dataset. The RADARSAT-2 and PALSAR imagery 
were preprocessed using different LUTs and it is assumed that any resulting differences are negligible.  

Table 4. Input radar data for decision tree classification. 

Season Date Source Acquisition Mode * Incidence Angle Product 

Spring 
15 June 2009 RADARSAT-2 FBQ 26.9 near, 28.7 far Full dataset 
14 June 2010 PALSAR FBD 34.3 center Full dataset 

Summer 
09 July 2009 RADARSAT-2 FBQ 26.9 near, 28.7 far Decomp only 
29 July 2009 PALSAR FBD 34.3 center Full dataset 

26 August 2009 RADARSAT-2 FBQ 26.9 near, 28.7 far Decomp only 

Fall 
11 September 2009 PALSAR  FBD 34.3 center Full dataset 
19 September 2009 RADARSAT-2 FBQ 26.9 near, 28.7 far Full dataset 

* FBQ: Fine Beam Quad-polarization; FBD: Fine Beam Dual-polarization. 

2.6. Accuracy Assessment 

We reserved a stratified random subset of 25% of the reference point data and implemented traditional 
methods to assess accuracy and evaluate results. We constructed error matrices with overall accuracy, 
95% confidence intervals (CI), User’s and Producer’s accuracies, kappa statistic (k-hat), and ran 
significance tests of error matrix k-hat values [80] for all random forest classification models. We 
performed two error matrix significance tests for each of the land cover classification levels: (1) between 
the most accurate random forest model with the full data suite to the same model with only a selection 
of the most important variables (RDL), and (2) between the most accurate random forest model with 
the full data suite to the most accurate random forest model using only data from a seasonal snapshot. 
Asterisks were used next to table values that were significant at an alpha of 0.05. We also conducted 
an accuracy assessment of the original NWI for comparison to our accuracy results. 

Outputs from random forest provide unique complements to traditional accuracy assessment, 
including: (1) cross-validation, using the out-of-bag sample of training data to evaluate relative 
accuracy of each model prior to a formal accuracy assessment; (2) classification confidence, or 
probability, calculated by the number of times a given class was designated as the final class out of the 
total number of trees, with a resulting value range of 0–1; (3) mean decrease in accuracy, calculated 
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per input data layer, giving insight to how influential a layer was on the overall accuracy; and (4) Gini 
index, which aids in evaluating the influence of input layers on the structure of the decision trees.  

To calculate mean decrease in accuracy, the sample of reference data that was retained during the 
growth of each decision tree (out-of-bag) was used to determine the relative change in accuracy by 
including or excluding a particular variable. The normalized change in cross-validation accuracy was 
totaled after all decision trees were run and represents the relative importance of that variable [53]. The 
Gini index is calculated by, starting with an index value of 1, reducing the index value per variable 
every time that variable was used to make a dichotomous split in each decision tree. This index value 
was totaled per variable and represents the relative influence of that variable on the structure of each 
decision tree [53]. The most important variables in the random forest model can be inferred by 
evaluating both the mean decrease in accuracy and Gini index.  

3. Results 

3.1. Upland, Water, and Wetland Land Cover Classification (Level 1) 

The most accurate full season random forest model for the Level 1 classification (85% accurate) 
integrated all available Landsat 5 TM, topographic, PALSAR, and soils data. The error matrix (Table 5) 
shows this model confused upland areas with wetland areas about 29% of the time (commission error 
calculated from the User's accuracy), but wetland areas were confused with upland areas only 4% of 
the time. In terms of Producer’s accuracy (omission error), reference upland areas were more often 
correctly classified as uplands (94%) compared to the wetland class (78%). The water class was highly 
accurate in terms of both Producer’s and User’s accuracies (100% and 95%, respectively). 

Table 5. Classification error matrix for the most accurate full season random forest model 
for the Level 1 classification which incorporated all available Landsat 5 TM, topographic, 
PALSAR, and soils data. 

  Reference Data 

 Class Upland Water Wetland 
Row 
Total 

User Accuracy 
(%) 

C
la

ss
ifi

ed
 D

at
a Upland 97 0 39 136 71 

Water 0 18 1 19 95 
Wetland 6 0 144 150 96 

Column Total 103 18 184 305  
Producer 

Accuracy (%) 
94 100 78 

Overall = 85% 
k-hat = 0.73, 95% CI ± 4% 

The second and third most accurate full season random forest models for the Level 1 classification 
had overall accuracies of 84% and 83%, respectively (Table 7). The second most accurate model 
incorporated all available Landsat 5 TM, aerial orthophoto, topographic, PALSAR, and soils data. This 
result shows that adding aerial orthophotos changes the accuracy by a very small amount (<1%). The 
third most accurate model incorporated all available Landsat 5 TM, topographic, RADARSAT-2, 
PALSAR, and soils data. This result shows that adding RADARSAT-2 data changes the accuracy by 
about 2%. 
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The classification map for the best Level 1 model illustrates how wetlands dominate the study 
landscape (Figure 3). The confidence for the resulting land cover classification (see representative area 
subset in Figure 3) was relatively high for most of the area classified as wetland, particularly around 
the shoreline of water bodies and in larger wetland complexes. Areas of lower confidence may be 
prone to misclassification from high variability or data redundancy in the input variables. We also 
tested a full season reduced data load (RDL) model to evaluate if using only the top 10 important 
variables significantly changed the accuracy of the classification.  

Figure 3. Output classification of the most accurate full season random forest model for 
the Level 1 land cover classification using all available Landsat 5 TM, topographic, 
PALSAR, and soils data. 

 

We identified the top 10 variables using expert knowledge and the mean decrease in accuracy and 
Gini index values for each variable in the Landsat 5 TM, topographic, PALSAR, and soils model 
(Table 6). The overall accuracy of classification results from the RDL model (Table 7) was  
81% (±4%) with generally lower values of Producer’s and User’s accuracies. However, a significance 
test of the difference between the full data suite and RDL models was not significant at an alpha level 
of 0.05. There was a small difference in the resulting wetland area between the two models: the full 
season model had a slightly lower total wetland area (18,969 ha) than the RDL model (19,010 ha). 
Though the difference in wetland area was negligible, a difference map of the results from the two 
models revealed widespread spatial differences, without pattern, due to more isolated pixels 
throughout the RDL model.  
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When ancillary datasets were used without the addition of remotely sensed data, the accuracy was 
significantly reduced. Classifying upland, water, and wetlands using topographic and soils data 
produced a higher accuracy (74%) than a model with soils data alone (73%) or topographic data alone 
(62%). Conversely, the best classification result without ancillary data, using only Landsat TM and 
PALSAR imagery, was still less accurate (80%) than models which used both remotely sensed and 
ancillary data (85%). All comparisons made here were statistically significant at an alpha level of 0.05. 
These findings show that integrating ancillary datasets with remotely sensed data can statistically 
improve accuracy of mapping wetlands.  

Table 6. Top 10 important variables, in order of importance, selected from the most 
accurate full season random forest model used in a Reduced Data Load (RDL) model for 
the Level 1 classification. 

Data Type Date Source 
NIR Band 19 May 2010 Landsat 5 TM 

Hydric Soils NA USDA SSURGO 
MIR1 Band  21 September 2009 Landsat 5 TM 
Elevation NA USGS NED 
Curvature NA USGS NED 

Green Band 4 October 2008 Landsat 5 TM 
Red Band 4 October 2008 Landsat 5 TM 
Blue Band 17 April 2010 Landsat 5 TM 

NDVI 17 April 2010 Landsat 5 TM 
HV Polarization 14 June 2010 PALSAR 

Table 7. Error matrix summary of the three best full season random forest models for the 
Level 1 land cover classification, as compared to the NWI. 

Model Overall Accuracy (%) Kappa Statistic Z Statistic 
Best: TM, topo, PALSAR, soils (Table 5) 85 0.73 19.4* 

RDL: top variables in best model (Table 6) 81 0.67 16.3* 
2nd Best: TM, aerial, topo, PALSAR soils 84 0.71 18.3* 

3rd Best TM, topo, RSAT-2, PALSAR soils 83 0.68 17.2* 
National Wetlands Inventory 70 0.46 9.6* 

* Values were significant at an alpha of 0.05. 

We also evaluated results of different models from a temporal perspective to determine the 
influence of season for data acquisition on classification results (Table 8). Input data from different 
platforms were available for different periods of the growing season (Tables 3 and 4), a situation 
typical of multi-platform analyses and worth investigating. The seasonal model with the best accuracy 
(85%) was constructed from spring season data and had an overall accuracy comparable with the full 
season model. When we compared the full season and spring season models, the full season model had 
a lower total wetland area (18,969 ha) than the spring season model (19,679 ha). A difference map of 
the results from the two models did not reveal significant widespread spatial differences, but there was 
an observed pattern of differences occurring along roads and land cover transition zones; meaning, the 
two models have slight differences in feature boundaries. The most accurate model using fall data had 
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an overall accuracy of 82% and the best model constructed from summer data had the least accurate 
results at 79%.  

Table 8. Summary of results for the best seasonal random forest models for the Level 1 
land cover classification. 

Season Model Overall Accuracy (%) Kappa Statistic Z Statistic 
Spring TM, topo, PALSAR, soils 85 0.72 19.1* 

Summer Aerial, topo, PALSAR, soils 79 0.63 14.5* 
Fall TM, topo, RSAT-2, PALSAR, soils 82 0.67 16.3* 

Full Season TM, topo, PALSAR, soils 85 0.73 19.4* 

* Values were significant at an alpha of 0.05. 

3.2. Cowardin Wetland Classification (Level 2) 

The most accurate full season random forest model for the Level 2 classification integrated all 
available Landsat 5 TM, aerial orthophoto, topographic, RADARSAT-2, PALSAR, and soils data to 
yield an overall accuracy of 69% (±%5) (Figure 4). The overall accuracy for this model prior to  
sub-classifying the wetland class was 84% (±5%), with the Producer’s and User’s accuracies for the 
wetland class at 79% and 93%, respectively (±6% and 4%, respectively).  

Figure 4. Output classification of the most accurate full season random forest model for the 
Level 2 land cover classification using all available Landsat 5 TM, aerial orthophoto, 
topographic, RADARSAT-2, PALSAR, and soils data. 
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The error matrix for results from the best Level 2 classification model (Table 9) shows that upland 
areas were confused with wetland areas about 28% of the time (User’s accuracy was 72% ± 8%). The 
forested wetland class had the highest User’s accuracy (71% ± 13%) and the emergent wetland class 
had the highest Producer’s accuracy (65% ± 5%). Reference upland sites were classified correctly as 
uplands 92% of the time (±5%). Reference emergent wetlands were classified correctly 65% of the 
time (±5%), but forested and scrub/shrub wetlands were classified correctly only about half of the time 
(49% and 48%, respectively, ±12% for each). Both forested and emergent wetlands tended to be 
confused with scrub/shrub wetlands. The water class was highly accurate for both Producer’s and 
User’s accuracies (95% for each, ±11% for each). 

Table 9. Classification error matrix for the most accurate full season random forest model 
for the Level 2 classification which incorporated all available Landsat 5 TM, aerial 
orthophoto, topographic, RADARSAT-2, PALSAR, and soils data. 

  Reference Data 

 Class Upland Water 
Emergent  

Wetland 

Forested 

Wetland 

Scrub/ 

Shrub Wetland 

Row  

Total 

User  

Accuracy 

C
la

ss
ifi

ed
 D

at
a 

Upland 98 0 4 21 14 137 72 

Water 0 18 1 0 0 19 95 

Emergent Wetland 5 1 24 1 12 43 56 

Forested Wetland 3 0 0 35 11 49 71 

Scrub/Shrub Wetland 1 0 8 14 34 57 60 

Column Total 107 19 37 71 71 305  

Producer Accuracy 92 94 65 49 48  

Overall = 69% 

k-hat = 0.58 

95% CI ± 5% 

The second and third most accurate full season random forest models for the Level 2 classification 
had overall accuracies of 66% and 65%, respectively (Table 10). The second most accurate model 
incorporated all available Landsat 5 TM, topographic, RADARSAT-2, PALSAR, and soils data. This 
result shows that when we do not include aerial orthophotos, the overall accuracy in sub-classifying 
wetlands changes by about 3%. The third most accurate model incorporated all available Landsat 5 
TM, aerial orthophoto, topographic, RADARSAT-2, and soils data. This result shows that when we do 
not include PALSAR data, the overall accuracy in sub-classifying wetlands decreases by about 4%. 

Table 10. Error matrix summary of the three best full season random forest models for the 
Level 2 classification. 

Model Overall Accuracy (%) Kappa Statistic Z Statistic 
Best: TM, aerial, topo, RSAT-2, PALSAR, soils (Table 9) 69 0.58 16.4* 

RDL: top variables in best model (Table 11) 63 0.50 13.7* 
2nd Best: TM, topo, RSAT-2, PALSAR soils 66 0.55 15.3* 

3rd Best: TM, aerial, topo, RSAT-2, soils 65 0.53 14.6* 
National Wetlands Inventory 55 0.38 11.0* 

* Values were significant at an alpha of 0.05. 
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We assessed a full season RDL model to evaluate whether using the most important variables 
significantly changed the accuracy of the results for the Level 2 classification. We used expert 
knowledge and the mean decrease in accuracy and Gini index values for each variable in the full model 
to identify the top 15 variables for a RDL model (Table 11). The accuracy of the RDL model  
(Table 10) was 63% (± 5%), which did not differ significantly from the accuracy of the full model at 
an alpha level of 0.05. There was a difference in the resulting wetland area between the two models: 
the full season model had a lower total wetland area (18,351 ha) than the RDL model (20,376 ha). 
Most of the difference in area between the two models was from forested and scrub/shrub wetland 
classes erroneously classified as upland areas in the full season model. A difference map of the results 
from the two models revealed widespread spatial differences with an observed pattern of classification 
differences occurring along roads and land cover transition zones. 

Table 11. Top 15 important variables, in order of importance, selected from the most 
accurate full season random forest model used in a RDL model for Level 2 classification. 

Data Type Date Source 
TC Greenness 19 May 2010 Landsat 5 TM 

NDVI 19 May 2010 Landsat 5 TM 
TIR Band  17 April 2010 Landsat 5 TM 

MIR1 Band 21 September 2009 Landsat 5 TM 
TC Wetness 21 September 2009 Landsat 5 TM 
MIR1 Band 4 October 2008 Landsat 5 TM 

HH Polarization 21 September 2009 PALSAR 
HV Polarization 21 September 2009 PALSAR 

NDVI 17 April 2010 Landsat 5 TM 
NDVI Summer 2008 NAIP 

TC Wetness 19 May 2010 Landsat 5 TM 
TC Wetness 4 October 2008 Landsat 5 TM 

HH Polarization 14 June 2010 PALSAR 
HV Polarization 14 June 2010 PALSAR 
HV Polarization 29 July 2009 PALSAR 

We evaluated several models to determine the extent to which season and corresponding data 
platforms could influence results for the most accurate Level 2 classification (Table 12). Satellite data 
from the spring yielded the most accurate results (71%), exceeding the level of accuracy produced by 
the full season model (69%). When we compared the full season and spring season models, the full 
season model had a higher total wetland area (18,351 ha) than the spring season model (17,162 ha). 
Most of the difference in area between these two models was from forested and scrub/shrub wetland 
areas erroneously classified as the upland class in the spring season model. A difference map of the 
results from the two models revealed less significant widespread spatial differences and no apparent 
pattern. The most accurate model using summer data had an overall accuracy of 65%. The best model 
constructed from fall data had the least accurate results at 62%.  
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Table 12. Error matrix summaries of the best seasonal random forest models for the 
Level 2 classification. 

Season Model Overall Accuracy (%) Kappa Statistic Z Statistic 
Spring TM, topo, PALSAR, soils 71 0.60 17.3* 

Summer Aerial, topo, soils 65 0.51 13.8* 
Fall TM, topo, RSAT-2, PALSAR, soils 62 0.48 13.0* 

Full Season TM, aerial, topo, RSAT-2, PALSAR soils 69 0.58 16.4* 
* Values were significant at an alpha of 0.05. 

4. Discussion 

A key challenge in mapping and monitoring the landscape with remotely sensed data is that 
temporal coverage can be limited because of cloud contamination of imagery and because overpass 
schedules and return frequencies vary from platform to platform. Conditions for our research were no 
exception. This motivated us to examine the importance of type and seasonal timing of source data for 
classifying wetland-dominated landscapes in a forested region of the Upper Midwest.  

4.1. Upland, Water, and Wetland Land Cover Classification (Level 1) 

Our best Level 1 classification (85%) relied on ancillary soils, topographic, and remotely sensed 
data from satellite optical (Landsat 5 TM) and radar (PALSAR) platforms. This most accurate model 
used remotely sensed variables from fewer data sources than did the second (84%) and third best 
(83%) models, and did not require full temporal coverage (Table 7). A possible reason the best model 
did not place importance on summer data (aerial orthophotos), according to the Gini index and mean 
decrease in accuracy values, was that the fully developed tree canopy obscures underlying landscape 
features (i.e., inundation, wetland plant species, etc) that could otherwise reduce confusion in 
classifying vegetated upland and wetland areas [81]. The third most accurate model included 
RADARSAT-2 imagery and polarimetric decompositions, along with ancillary soils and topographic 
data. The fact that these particular radar datasets were not incorporated in the most accurate model 
implies that the C-band imagery was not as appropriate as L-band imagery for mapping wetlands in a 
forested region, primarily due to better propagation of the longer wavelength radar signal through the 
tree canopy. These results echo findings elsewhere that, though filtering techniques may vary, the high 
variability from radar backscatter in C-band imagery can confuse the model and cause a reduction in 
accuracy [34]. Though none of the three best models or the RDL model were significantly different 
from each other (at an alpha level of 0.05), all four models were significantly more accurate than the 
original NWI.  

Reducing the number of variables in the Level 1 model to only the 10 most important variables 
produced results that were 4% less accurate than obtained with the full data suite model. However, this 
accuracy still was relatively high (81%) and enabled us to remove nearly 50 variables from the full 
model, thereby increasing classification efficiency and reducing cost without sacrificing a significant 
level of accuracy. Furthermore, our assessment of seasonal data sources suggests that imagery from 
spring alone can provide comparable results with imagery distributed throughout the entire growing 
season (Table 8). Most of the spring input data used in the model corresponded with above-normal 
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precipitation conditions, confirming findings from other research that precipitation conditions are 
highly relevant to differentiating upland, water, and wetland classes [61,82]. Our results show the 
effectiveness of targeting input variables acquired during the spring season in this geographic region to 
improve land cover classification accuracy and confidence.  

Results of the RDL model for this classification level showed that in addition to elevation, 
curvature, and hydric soils data, the most important spring season data included: satellite blue and NIR 
bands, satellite NDVI, and HV polarization using L-band radar. The satellite blue band, which had a 
high importance based on the mean decrease in accuracy for the upland class, was acquired on an 
especially clear day (17 April 2010) and thus had very little atmospheric interference, which typically 
makes this band noisy and not as useful. Others have found the blue band to be useful in classifying 
upland classes such as bare soil and in masking out shadowed areas [83,84]. Other studies have 
confirmed these remotely sensed variables, particularly near infrared and NDVI, are important for land 
cover classification and land cover change mapping. Such variables are particularly important when 
discriminating between forest structural condition (i.e., open or closed canopy), monitoring stand age 
and regrowth, and estimating species composition and richness [85–87]. Studies have also established 
that the multiple scattering and subsequent depolarization of the radar signal explains the importance 
of HV polarization for classifying land cover and estimating biomass, particularly in forested 
regions [72,78,87]. It is important to note that even though our best results included ancillary soils and 
topographic input data, without the inclusion of ancillary data, the selected remotely sensed layers in 
the RDL model retain their level of importance. 

4.2. Cowardin Wetland Classification (Level 2) 

The second and third most accurate models (66% and 65%, respectively) developed for the Level 2 
classification relied on fewer data sources than used by the best model and performed better than the 
RDL model. None of the three best models or the RDL model were significantly different from each 
other (at an alpha level of 0.05), but all four were a statistical improvement over the NWI (Table 10). 
Sub-classifying wetlands accurately required ancillary soils and topographic data, as well as increasing 
the temporal and spectral coverage of remotely sensed data with optical and L-band radar, the latter 
undoubtedly because of deeper canopy penetration and increased interaction of the signal which has 
been known to be useful for distinguishing differences in vegetative land cover [26–28,88].  

Our attempts to produce a RDL model using the top 15 variables from the full data suite indicated 
too great a reduction in classification accuracy for distinguishing between wetland types, even with the 
inclusion of ancillary soils and topographic data. The top 15 variables used in the model, though 
important, do not sufficiently represent the variation in characteristics needed to sub-classify wetlands. 
However, results from our seasonal analysis suggest output from a RDL model might be improved if 
we selected for spring data, as the spring model produced the highest accuracy for the Level 2 
classification (Table 12). 

We observed fewer differences from a visual comparison of results between the full season and 
spring models than between the full season and RDL models, but wetland class confidence was 
somewhat higher with full data suite (118 input data layers) than with the spring season model (33 
input data layers). Though in some cases classification accuracy can be improved by increasing the 
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number of input data layers [89], research has also shown that increasing the number of discrete 
classes requires comparable increases in training data to improve the sensitivity of classifiers to more 
refined class differences [90,91]. Results from our efforts to model Cowardin wetland classes indicate 
that our model might benefit from additional reference training sites, particularly for the forested and 
scrub/shrub wetland classes which had very low accuracy compared to the emergent wetland class. 

The most important variables selected for a RDL model of the Level 2 classification incorporated a 
rather different set of data sources and seasons (Table 11) than were selected for the Level 1 
classification (Table 6). The most important variables for sub-classifying wetlands included remotely 
sensed data from a broader temporal range than for simply differentiation between upland, water, and 
wetland areas. Many studies have found multi-temporal data to aid in land cover classification, 
particularly for wetland mapping [69,73,88,92]. The Level 2 model made use of thermal data and 
Tasseled Cap transformation derivatives, as well as a much greater use of radar data. Other studies 
have confirmed that thermal data is important for land cover classification, particularly in separating 
vegetated and impervious areas and different moisture levels throughout the landscape [58,93]. The 
Tasseled Cap transformation also has been used by others to improve wetland mapping [81,94]. We 
found that using radar backscatter was more useful than using the polarimetric decompositions; in 
particular, our findings further confirm those of others documenting the importance of co- and  
cross-polarization radar backscatter (HH and HV, respectively) in classifying land cover [95–97].  

5. Conclusions 

One of our main goals was to identify an optimal selection of input data from various sources of 
remotely sensed and ancillary data to accurately map wetland areas in Northern Minnesota. We 
accomplished this goal by rigorously testing the results from several combinations of data at two 
classification levels. We found that the key input variables for accurately differentiating between 
upland, water, and wetland areas include satellite red, near infrared (NIR), and middle infrared (MIR1) 
bands and normalized vegetation index (NDVI), elevation and curvature, hydric soils ancillary data, 
and L-band horizontal-vertical (HV) polarization. We conclude that, in addition to the variables used 
for the Level 1 classification, the key input variables for a Level 2 classification of wetlands include 
Tasseled Cap Greenness and Wetness, satellite thermal band, and L-band horizontal-horizontal (HH) 
polarization. Our sound methods have generated an important set of results for the remote sensing 
community, describing in detail the differences in accuracy of wetland mapping in a forested region 
using specific data sources and combinations. 

Weather conditions over the study site during the water years October 2007-September 2010 were 
relevant to conclusions made regarding seasonal data importance. This is because precipitation, and 
any subsequent deviation from the 30 year normal, influences the site’s hydrologic characteristics prior 
to data acquisition. The important spring datasets identified in Tables 5 and 9 all correspond to above 
normal precipitation conditions. With the exception of the summer of 2008, the rest of the important 
summer and fall datasets were acquired during below normal precipitation conditions. Though it is 
possible to plan spring data acquisition knowing the water year trends from the fall and winter before, 
it is difficult to fully anticipate precipitation events that will obscure optical data acquisition.  
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To accurately identify wetland areas in a forested region, such as Northern Minnesota, we found 
accuracy is improved when incorporating only spring season data for both Level 1 and Level 2 
classifications. We conclude that, provided multi-temporal satellite optical, L-band radar (PALSAR), 
topographic, and soils data are included, identifying wetland areas in this region is more accurate when 
quad-polarization C-band radar (RADARSAT-2) and higher resolution aerial orthophotos are left out 
of the random forest model. However, we found that once wetland areas are identified, classifying 
wetland type is more accurate when C-band radar and broader temporal coverage of optical data are 
included. These findings are unique because through rigorous testing of different sources of remotely 
sensed data, a task that has not been done before in this region, we found that different wavelengths of 
radar data are beneficial for different levels of land cover classification.  

The results of this study suggest that wetland mapping in a forested region such as Northern 
Minnesota can be improved by targeting the selection of important input variables from essential data 
platforms (such as L-band PALSAR) and by allocating more complete spectral coverage during the 
spring season. The way forward for further improvements to wetland classification in a forested region 
may include: analysis and utilization of classification confidence to target areas for future field 
reference data collection, using additional topographic information derived from light detection and 
ranging (lidar) such as canopy height and other parameters that relate to vegetation structure (e.g., 
standard deviation of height and number of returns within a grid cell, intensity), and incorporating 
spatial context and geometry of features through use of image segmentation and object based 
image analysis.  
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