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Abstract: Understanding the dynamics of mangroves at the species level is the key for 
securing sustainable conservation of mangrove forests around the globe. This study 
demonstrates the capability of the hyper-dimensional remote sensing data for 
discriminating diversely-populated tropical mangrove species. It was found that five 
different tropical mangrove species of Southern Thailand, including Avicennia alba, 
Avicennia marina, Bruguiera parviflora, Rhizophora apiculata, and Rhizophora 
mucronata, were correctly classified. The selected data treatment (a well-established 
spectral band selector) helped improve the overall accuracy from 86% to 92%, despite the 
remaining confusion between the two members of the Rhizophoraceae family and the 
pioneer species. It is therefore anticipated that the methodology presented in this study can 
be used as a practical guideline for detailed mangrove species mapping in other study 
areas. The next stage of this work will be to exploit the differences between the leaf textures 
of the two Rhizophoraceae mangroves in order to refine the classification outcome. 
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1. Introduction 

The ecological values of tropical mangroves are recognized in many ways, including: providing 
carbon sequestration [1–3]; reducing shoreline erosion caused by tidal waves, storm surges and 
tsunamis [1,3,4–10]; trapping sediments [3,8,9]; acting as biological filters in polluted coastal 
areas [3,6,8,11]; supporting estuarine food chains [1,3,5,7], and providing habitats for invertebrates 
and juvenile fish [5,6,8,9]. Unfortunately, mangrove forests around the globe are threatened by the 
emergence of urban development, the boom in commercial aquaculture and mining, the influence of 
tidal waves and storm surges, and the various forms of non-renewable exploitation [3,5–8,12–16]. The 
conservation of these threatened mangroves thus becomes a priority for the government and  
non-government organizations around the world [6,7,17–19]. 

Fast and accurate mapping is the key element for sustainable conservation of mangrove  
forests [20–24]. Earth Observation remote sensing has been recognized as a powerful tool for this 
purpose [23,25–30]. It is evident that conventional remote sensing instruments are now operationally 
used for mapping and monitoring mangroves at the broad level [31–41]. However, the spatial and 
spectral information provided by this conventional equipment may not be sufficient for studying 
mangrove ecosystems and their diversity in details [14,23,26,31,35,42–46]. As a result, new generation 
sensors that possess higher spatial and spectral resolutions are therefore needed for a finer level of 
mangrove studies [17,35,42,43,45–47]. 

The hyperspectral sensor is a new generation sensor that has the capability to collect images of 
hundreds or more contiguous spectral bands [48–51]. A number of related studies claim the advantage 
of exploiting such hyper-dimensional data [47,51–61]. Some of these reports try to use the 
hyperspectral data for discriminating mangroves at the species level [25,26,44,51,62]. However, it is 
unfortunate that the outcome of these studies are still inconclusive as their study sites are covered by 
only a few mangrove species, and a recent conclusion [46] is even in doubt as a result of a poor choice 
of the GPS measurement. 

Due to high dimensionality of hyperspectral data, the practitioner is faced with difficulties of 
covariance matrix inversion [60,63–66]. This is called the Hughes phenomenon or the curse of 
dimensionality [67,68]. Furthermore, the co-linearity (i.e., redundant spectral information) also 
imposes the risk of over fitting when the classification is performed [67,69]. To alleviate this problem, 
the dimensionality of hyperspectral data needs to be reduced while preserving the key spectral 
information [63]. In the remote sensing literature, a popular approach to reducing the spectral 
dimension is to use feature selection algorithms [60,65,67,68,70–73]. The genetic search algorithm 
(GA) is one of the most frequently used band selection found in the recent literature and was also 
proved to be effective for selecting spectral subsets for vegetation classification [60,72,74]. 

Consequently, this study investigates further into the potential of remote sensing for mangrove 
mapping. The aim of this work is to prove for the first time whether the space-borne hyperspectral data 
can be used for discriminating and mapping diversely populated tropical mangrove species. Thus, the 
objective of this study was to test capability of the hyperspectral data and the feature selection 
algorithms for classifying mangroves at the species level. The study area was the Pak Phanang 
mangrove forest of Southern Thailand, which is densely covered by five different tropical mangrove 
species. The satellite-borne hyperspectral data used was the EO-1 Hyperion hyperspectral image. The 
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dimension of the hyperspectral data was reduced using a well-established genetic search 
algorithm [60,72]. The final classification results were statistically tested against the independent 
testing data set under a data rotation scheme. 

2. Materials and Methods 

2.1. Study Site 

The study site (Figure 1) is at the Talumpuk cape, Pak Phanang District, Nakorn Sri Thammarat 
Province, Thailand (8°31′N, 100°9′E). The eastern side of the cape is a long narrow sandy beach. The 
rest of the land is a large intertidal mudflat extensively covered by dense mangrove forests 
(approximately 57 km2). Seven mangrove species were reported to be found in this area, including 
Avicennia alba*, Avicennia marina*, Avicennia officinalis, Bruguiera parviflora*, Rhizophora 
apiculata*, Rhizophora mucronata*, and Sonneratia caseolaris [75], but now only five indicated with 
asterisks are dominant. The most prominent species is R. apiculata which covers approximately one 
third of the cape on the western section. The mangrove species of the study area barely  
intermingle—each species is found surrounded almost solely by other trees of the same species [60]. 
The climate of the study area is tropical. The dry period is between February and April, and the rest of 
the year is dominated by monsoons [75]. 

Figure 1. The location of the Talumpuk cape (a), Pak Phanang District, Nakorn Sri 
Thammarat Province, Thailand shown against an enlarged satellite image of the cape 
(b) captured by the EO-1 Hyperion sensor on 29 June 2010. 

 
(a)                                           (b) 
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2.2. Image Acquisition and Processing 

The EO-1 Hyperion image was captured on 29 June 2010, covering the western side of the 
Talumpuk cape (see a sample image in Figure 1). The Hyperion image has 242 wavebands ranging 
from 400 nm to 2,500 nm with 10 nm spectral resolution and 30 m spatial resolution [76]. The image 
was provided as Hyperion level 1R data and was radiometrically corrected and calibrated into  
196 wavebands. Only 155 stable bands [77] were selected for this study. A de-streaking algorithm [78] 
was required to minimize the effect of systematic noise. Then, the image was atmospherically 
corrected and transformed to reflectance using the MOD-TRAN-based FLAASH (Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes) algorithm under the environment of commercial 
software (ENVI version 4.7). It provides well-adjusted input for the atmospheric correction through 
derivation of atmospheric properties such as surface albedo, surface altitude, water vapor column and 
aerosol from the image [79]. The locations of easily recognizable landscape features (e.g., canals, 
roads and houses) were recorded and used for rectifying the image. The ground control points were 
recorded by hand-held GPS receivers (Garmin 60CSX), and the differential global positioning system 
(DGPS) technique [80] was used for post-processing the GPS data. The final positional accuracy of the 
image after resampling (i.e., using a nearest neighbor algorithm) is less than the size of one pixel (i.e., 
<0.33 pixels). 

2.3. Field Data Collection 

The field data collection was conducted during the dry season between February and March 2011. 
The field data were collected 8 months after the image acquisition. With 5 years of experience in the 
study area [11,21] the Pak Phanang mangroves are deemed to be unchanged over this period of  
8 months as the composition of mangrove forests is generally resilient to natural interference [81]. A 
stratified random sampling method was used for locating the sampling plots. The stratification was 
done by clustering the study area into 15 clusters using a K-Mean method. Mangrove species 
composition of the trees (i.e., ≥2.5 m high) was recorded from each 30 × 30 m2 sampling station. The 
recorded forest stand parameters were species names, tree heights, diameters at breast height, crown 
cover areas, and DGPS coordinates in the UTM system. Then, the floristic composition of each 
sampling station was classified into five dominant species (i.e., R. mucronata, R. apiculata, A. marina, 
A. alba, or B. parviflora) under the supervision of the Royal Thai Marine and Coastal Resource 
department. There were 402 sampling stations in total. The stations were randomly divided in to two 
groups for the purpose of image classification and validation (Table 1). The similarity of the spectral 
properties of these five mangrove species is displayed in Figure 2. The mean spectral profiles are 
stacked on one another for clarity. Thus, the vertical axis of Figure 2 has no physical meaning.  
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Figure 2. The stack plot of average reflectance curves of five tropical mangrove species 
under study.  

 

Table 1. The number of training and testing samples per species and their abbreviations. 

Mangroves Species Training Samples Testing Samples 
Rhizophora mucronata (RM) 38 38 
Rhizophora apiculata (RA) 51 51 

Avicennia marina (AM) 44 44 
Avicennia alba (AA) 30 30 

Bruguiera parviflora (BP) 38 38 
Total 201 201 

2.4. Genetic Search Algorithm (GA)-Based Band Selection and Classification 

A well-established band selection and classification algorithm was used in this study [60]. The 
concept of the algorithm is summarized in Figure 3. The algorithm was run with the following initial 
parameters: Population Size = 500; Crossover Rate = 80%; and Mutation Rate = 1%, and stopped 
when there was no improvement in the fitness function over 10 consecutive iterations. Following an 
unconstrained combinatorial optimization search [60,82], the algorithm had to be trialed with different 
chromosome sizes to find a wining chromosome length that indicated the appropriate number of 
spectral bands needed for the classification process. According to the guidelines for chromosome size 
selection [60], this study used the chromosome sizes varied from 2 to 9. Firstly, the 402 samples were 
randomly divided in half to create training and testing data for the classification. This process was 
repeated for 30 times in order to rotate the input data. This already-rotated input data (30 sets in total) 
were then fed into the algorithm one set at a time. Secondly, spectral subsets were randomly assigned 
to each chromosome, and the fitness value of each chromosome was determined at this stage. The 
overall accuracy of the spectral angle mapper (SAM) classifier was used as the fitness value. Then, the 
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cross-over and mutation modules were applied to the chromosomes one after another to reproduce the 
offspring (i.e., new generation chromosomes). Lastly, the whole process was started over again as the 
new generation chromosomes were tested for their fitness scores.  

Figure 3. A flowchart (after [60]) showing the concept of the band selection and 
classification algorithm (OA = Overall Accuracy; GA = Genetic Algorithm). 

 

The spectral angle mapper classifier (SAM) is one of the most popular classification techniques for 
hyperspectral data [83,84]. First, the reflectance of each pixel is coded as n-dimensional vectors. Next, 
the angular distance between each vector and the references are calculated and compared. Each 
unknown vector is then classified to the nearest class. However, if the angular distances of an unknown 
vector are found to be greater than a pre-defined threshold, the unknown vector is then assigned to the 
unclassified class [51,85–87]. In this study, SAM was used by the genetic algorithm for calculating the 
fitness value of the each chromosome.  

2.5. Sequential Forward Selection 

A typical sequential forward selection (SFS) algorithm [88] was used in this study for the purpose 
of comparison with the genetic search algorithm in order to see if there is any bias in the final 
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classification results. The SFS method is a suboptimal search algorithm that collects the spectral 
features that have highest objective values until the number of features reaches the pre-defined  
number [89,90]. 

2.6. Statistical Test 

At the final stage of this study, a two-tailed paired t-test statistic was used to test for bias in the final 
classification results when different feature selection algorithms were used. The classification results 
(i.e., the overall accuracies and κ statistics) were statistically compared given the null hypothesis H0: 
μ1 = μ2 and alternative H1: μ1 ≠ μ2. Then, the p-values of the test were to be reported.  

3. Experiments and Results 

3.1. The Genetic Algorithm (GA) Band Selector 

According to the guidelines for chromosome size selection [60], this study used the chromosome sizes 
varied from 2 to 9. The results of the chromosome size variations were displayed in Figure 4. It was 
found that the 7-channel chromosome gained the highest average class separability of 87% (i.e., 86.8% 
in Figure 4) with a standard deviation of ±2%. Note that each vertical bar in Figure 4 indicates the 
standard deviation after rotating the data 30 times. Additionally, the 8-channel and 6-channel 
chromosomes were the second and third best performers in terms of average class separability (85.6% 
and 85.1% in Figure 4, respectively).  

Figure 4. A comparison between the averaged overall accuracies plus the standard 
deviation bars of eight different chromosome sizes varied from 2 to 9 spectral channels 
selected by the genetic search algorithm.  

 

After rotating the input data 30 times, the performance of the winning chromosome that possessed 7 
spectral channels was displayed in Table 2a. The best classification results belonged to the 9th rotation 
(see the bold area in Table 2a). It was found that the spectral channels of this winning chromosome 
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were 549 nm, 712 nm, 732 nm, 1,034 nm, 1,235 nm, 2,073 nm, and 2,083 nm. This specific band 
combination gained the training accuracy of 94% and the testing accuracy of 92%.  

Table 2. (a) The performance of the 7-channel chromosome (the winning chromosome) 
after rotating the input data for 30 times with the best band combination highlighted in bold 
typeface; (b) The performance of the 7-channel features selected by the SFS method with 
the best band feature highlighted in bold typeface under a data rotation scheme.  
OA = Overall Accuracy. 

(a) Bands (nm) 
OA-Train OA-Test Stop Generation 

Runs 1 2 3 4 5 6 7 

1 488 569 732 983 1,034 1,245 1,790 93 91 41 

2 478 579 732 773 1,064 1,094 1,679 94 86 41 

3 478 579 722 732 1,094 1,558 2,063 93 88 41 

4 569 732 742 824 1,023 1,760 2,063 93 85 41 

5 468 590 732 824 1,064 1,235 1,336 93 88 41 

6 478 569 732 1,034 1,084 1,094 1,518 92 89 57 

7 478 579 732 773 1,034 1,094 1,790 92 86 41 

8 468 579 742 824 1,064 1,235 1,760 94 86 51 

9 549 712 732 1,034 1,235 2,073 2,083 94 92 41 

10 478 529 539 732 1,094 1,528 2,093 92 88 41 

11 478 579 732 1,034 1,094 1,770 2,093 95 88 41 

12 579 732 1,034 1,235 1,518 1,548 2,032 94 89 38 

13 468 518 579 732 1,094 1,710 1,790 91 90 40 

14 468 488 559 732 1,034 1,094 2,083 93 87 41 

15 478 732 1,044 1,165 1,225 1,548 1,588 96 84 41 

16 478 488 712 732 1,034 1,094 2,184 96 87 53 

17 478 569 732 1,044 1,094 2,093 2,234 95 88 56 

18 518 569 732 1,034 1,054 1,276 1,296 93 86 41 

19 579 712 732 834 1,044 2,184 2,214 92 86 43 

20 529 579 712 732 824 1,054 1,760 92 86 41 

21 478 579 712 773 915 1,064 1,094 92 83 41 

22 539 569 712 732 1,044 1,235 1,548 94 90 41 

23 457 478 712 732 773 854 1,094 95 86 41 

24 478 518 732 824 1,225 1,336 2,073 93 84 41 

25 478 712 732 793 1,266 1,498 1,528 93 83 41 

26 559 732 824 1,044 1,165 1,760 2,093 91 88 41 

27 457 569 722 732 742 773 1,034 92 87 41 

28 488 529 712 773 824 844 1,235 94 82 48 

29 498 518 712 732 1,034 1,094 2,305 93 86 41 

30 579 742 983 1,034 1,054 1,195 2,083 93 88 54 
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Table 2. Cont. 

(b) Bands (nm) 
OA Kappa 

Runs 1 2 3 4 5 6 7 

1 468 539 641 834 1,094 1,972 2,103 67 0.58 

2 559 590 641 773 1,094 2,032 2,163 78 0.72 

3 447 529 539 579 824 834 2,163 74 0.68 

4 498 529 569 641 702 773 1,094 84 0.80 

5 569 579 702 732 834 844 1,094 85 0.81 

6 498 529 539 579 641 773 2,204 80 0.74 

7 447 539 569 732 834 1,094 2,204 83 0.79 

8 498 529 569 732 834 1,094 2,163 86 0.82 

9 498 539 569 732 773 1,034 1,094 87 0.83 

10 447 498 569 732 773 1,094 2,163 85 0.81 

11 498 529 569 732 773 1,094 2,032 86 0.82 

12 498 529 569 732 773 1,094 2,163 86 0.82 

13 447 498 539 569 773 1,094 2,163 83 0.79 

14 498 529 569 732 773 963 1,034 81 0.76 

15 498 529 569 641 773 1,094 2,204 83 0.78 

16 498 539 569 702 732 834 1,094 84 0.80 

17 529 569 641 702 732 773 2,204 81 0.76 

18 539 569 641 732 773 1,094 2,204 83 0.79 

19 447 529 539 569 641 773 2,163 76 0.69 

20 447 529 569 641 732 773 2,204 82 0.77 

21 447 498 529 569 732 834 1,094 84 0.79 

22 529 590 641 732 773 1,094 2,204 86 0.82 

23 498 569 702 732 773 1,094 2,204 86 0.82 

24 447 539 569 641 732 773 1,023 81 0.76 

25 447 529 539 569 641 773 1,094 84 0.79 

26 498 529 569 732 773 1,094 2,163 87 0.84 

27 447 498 539 641 732 834 1,094 84 0.80 

28 447 539 569 641 773 834 2,163 71 0.64 

29 498 529 569 641 773 1,094 2,032 84 0.79 

30 498 559 579 641 773 1,094 2,204 85 0.81 

For the purpose of visualization, the spectral bands selected by the genetic algorithms were grouped 
by minimizing their variances. Only the principal spectral locations and the standard deviation bars of 
the 6-channel, 7-channel, and 8-channel chromosomes were displayed in Figure 5 for visual clarity. 
The 8 principal locations of the 7-chanal chromosome (i.e., the winning chromosome) were plotted in 
black. Two of the 8 locations were in the visible area (477 ± 9 nm and 560 ± 23 nm) and the rest were 
in the infrared areas (751 ± 40 nm, 1,054 ± 38 nm, 1,244 ± 48 nm, 1,538 ± 26 nm, 1,757 ± 36 nm and 
2,122 ± 77 nm). The errors given are one standard deviation. The principal spectral locations of the  
8-channel and 6-channel chromosomes (i.e., the second and third best performers, respectively) are 
plotted with different colors in Figure 5. 
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Figure 5. The principal spectral locations and the standard deviation bars of the 6-channel 
(blue), 7-channel (black), and 8-channel (green) chromosomes selected by the genetic 
algorithm against the locations selected by the traditional SFS method (red). 

  

3.2. The Sequential forward Selection 

The 7-channel selection of the SFS method is illustrated in Table 2b. In general, the spectral 
combinations selected by the SFS algorithm were different from the results of the GA method. 
However, when grouping all of the selected bands by minimizing their variances (see red areas in 
Figure 5), the principal locations of the SFS method were rather similar to the principal locations of the 
genetic algorithms. Three of the 7 locations were in the visible spectral region (476 ± 25 nm,  
553 ± 20 nm and 641 ± 0 nm) and the rest were in the infrared regions (749 ± 26 nm, 834 ± 5 nm, 
1,082 ± 32 nm, and 2,151 ± 68 nm). Two of these principal locations, at 476 nm and 834 nm, even 
coincided with the results of the 8-channel chromosome. Additionally, the best spectral combination in 
terms of classification accuracy belonged to the 26th rotation (see the bold highlight in Table 2b). This 
specific band combination gained the overall testing accuracy of 87%.  

3.3. The Image Classification 

For brevity, this report only presents the classification result of the best spectral combination 
selected by the two feature selection algorithms and compars it to the situation without the intervention 
of the two algorithms (i.e., using all 155 spectral bands) (Table 3a–c). The total testing accuracy was 
improved from 86% to 87% and 92% after applying the genetic band selector and the traditional SFS 
algorithm, respectively. It was clear that there was a bias in the final classification results when 
different feature selection algorithms were used. Most values of the producer’s and user’s accuracies 
were increased after changing the feature selection methods from the SFS algorithm to the genetic 
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band selector. In particular, the confusion between the RA and RM classes was significantly improved 
(please compare the highlighted area in Table 3a–c. However, the two outliers were noticeable, 
including the decrease of the RA producer’s accuracy and the AA user’s accuracy. The classification 
results of the two methods were statistically compared using a pair t-test. The statistic results 
confirmed that the overall accuracies and the κ values of the winning chromosome selected by  
the genetic algorithm were superior to the classification results of the SFS algorithm (i.e.,  
p-value < 0.001). Finally, the classified images were demonstrated in Figure 6. For brevity, only the 
classified images of the two feature selection algorithms are displayed. The non-mangrove areas and 
the clouds in Figure 6 are masked in black and white tones.  

Table 3. (a) The confusion matrix, producer’s and user’s accuracy of the winning 
chromosome selected by the genetic search algorithm (Overall Accuracy = 92%), (b) The 
confusion matrix, producer’s and user’s accuracy of the band combination selected by the 
SFS feature selector (Overall Accuracy = 87%), and (c) The confusion matrix, producer’s 
and user’s accuracy of the all-spectral-band combination (Overall Accuracy = 86%).  

(a) 
Class RM RA AM AA BP Total Producer’s Accuracy User’s Accuracy 

RM 34 3 0 1 0 38 89 89 
RA 3 43 0 0 1 47 84 91 
AM 0 0 43 0 0 43 98 100 
AA 1 3 1 29 1 35 97 83 
BP 0 2 0 0 36 38 95 95 

Total 38 51 44 30 38 201   

(b) 
Class RM RA AM AA BP Total Producer’s Accuracy User’s Accuracy 

RM 26 8 0 0 0 34 68 76 

RA 8 42 0 1 1 52 82 80 

AM 0 0 44 0 1 45 100 97 

AA 4 0 0 27 0 31 90 87 

BP 0 1 0 2 36 39 94 92 

Total 38 51 44 30 38 201   

(c)  

Class RM RA AM AA BP Total Producer’s Accuracy User’s Accuracy 

RM 23 4 2 0 1 30 61 77 

RA 13 44 0 0 0 57 86 77 

AM 0 0 42 0 2 44 95 95 

AA 2 2 0 29 0 33 97 88 

BP 0 1 0 1 35 37 92 95 

Total 38 51 44 30 38 201   

RM =Rhizophora mucronata, RA=Rhizophora apiculata, AM =Avicennia marina, AA =Avicennia alba, 
BP=Bruguiera parviflora. 
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Figure 6. (a) The classified image of the winning chromosome selected by the genetic 
search algorithm (Overall Accuracy = 92%) and (b) the classified image of the 7  
spectral-band combination selected by the SFS feature selector (Overall Accuracy = 87%).  

 

4. Discussion 

In light of the existing literature, it is found that many scientists in the field of remote sensing have 
already tried to discriminate and map mangroves at the species level [25,26,44,46,51,62], but their 
efforts have been inconclusive in application to tropical mangrove species discrimination. The authors 
of [26] should have been the first to conclude this problem, if their hyperspectral image had not been 
obscured by cloud. Other authors [25,44,51,62] could not make any strong conclusion as their study 
sites were unfortunately covered with only a few mangrove species. For some [46] it is doubtful as to 
whether the accuracy of the low-resolution GPS measurement was adequate for their high-resolution 
image analysis. 

This study has demonstrated for the first time that the space-borne hyperspectral data with the help 
of the well-established genetic search algorithm [60,72] is capable of discriminating and mapping 
diversely populated tropical mangrove species of Southern Thailand. This claim is supported by the 
classification results of five different tropical mangrove species, illustrated in Table 3a. This accuracy 
level is acceptable for the purpose of species-level classification by the USGS standard [91]. 
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Moreover, the selected data rotation method (i.e., rotating the independent testing data for 30 times) 
helped ensure the classification results. 

Despite the fact that testing accuracy was as high as 92%, the difficulties in discriminating between 
the Rhizophora apiculata (RA) class and the Rhizophora mucronata (RM) class are still noticeable 
(i.e., the highlighted area in Table 3a). This spectral confusion agrees with the previous work [21,47]. 
The authors reported that the two species could not be clearly separated, even with the help of high 
signal-to-noise laboratory data and post-classification treatment. A new study is now under way to 
solve this problem. As both mangroves have quite different leaf shapes [92], it is hypothesized that the 
difference between their leaf textures could be exploited for this purpose.  

The other observable outlier is the user’s accuracy of the A. alba class (please see Table 3a). Unlike 
the other classes, the user’s accuracy of the A. alba class is lower than its producer’s accuracy. This 
discrepancy reflects the actual situation of the A. alba class in the field. The A. alba mangrove is a 
pioneer mangrove species of the study site (i.e., the leading mangrove to colonize the study area) [75]. 
Therefore, the A. alba mangrove is typically mixed with the other classes throughout the study area. 

The genetic algorithm band selector helped reduce the spectral confusion of the original spectra and 
improve the average class separability from 86% to 92%. This may be because the spectral locations 
selected by the genetic algorithm, illustrated in black in Figure 5, have strong links to plant 
biochemical properties including leaf pigments [93–96], chlorophylls and carotenes [85,94,95,97–99] 
internal leaf structures [85,94,96], volumes of intercellular air spaces [85,93,94,96], foliar biochemical 
contents [85,94,96], and leaf water contents [100,101]. The same spectral regions were also found to 
be crucial for separating species compositions of the other wetland plants [102–104] and agricultural 
crops [79]. 

Unlike the selection results of the genetic algorithm (Table 2a), band combinations selected by the 
SFS method (Table 2b) were found to be less meaningful. For each search, the sequential forward 
selection algorithm repeatedly selected spectral locations from the same spectral regions, and was not 
spread over the significant locations listed in the previous paragraph. For example, it was found in the 
26th iteration in Table 2b (i.e., the sequential forward selection winning combination) that there were 
three very close spectral bands (i.e., 498 nm, 529 nm, and 569 nm). It was evident that the sequential 
forward selection search could not overcome the local minima problem, and it explained the lower 
classification accuracy gained by the sequential forward selection method when compared to the ones 
gained by the Genetic Algorithm-based search. However, when lumping the results of all iterations 
together by minimizing the variances (see red areas in Figure 5), the principal locations of the 
sequential forward selection method were very similar to the principal locations of the genetic 
algorithms. This may be explained by the use of the data rotation scheme, as it helped the search 
algorithm to overcome the local minima (i.e., starting each search from a different region of the  
feature space). 

The genetic search algorithm is flexible in terms of computational variations [60,82,105–108]. It is 
possible to vary the initial parameters, including the encoding scheme, population size, crossover rate, 
selection method, and mutation probability. Furthermore, any other popular classifier (e.g., the 
maximum likelihood classifier) can be used instead of the spectral angle mapper classifier. 
Additionally, the fitness scoring system could be changed from tracking the overall accuracy to other 
optimizing criteria (e.g., monitoring the κ statistic). These modifications may have some influence on 
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the evolution, but it is expected that the robustness of the evolutionary search can still provide similar 
results [105]. However, the study on the effects of these variations is beyond the scope of this work. 

5. Conclusions 

This study is the first to confirm the capability of the hyper-dimensional remote sensing data for 
discriminating diversely-populated tropical mangrove species. It is found that five different tropical 
mangrove species of Southern Thailand can be correctly classified. With the help of the band selection 
method, the classification accuracy is improved to 92% despite the remaining confusion between the 
two members of the Rhizophoraceae family and the mix-up between the pioneer species and the other 
mangroves. Since the methodology proposed in this study can accurately classify the five tropical 
mangrove species that possess very similar spectral properties, it is anticipated that this methodology 
can be used as a guideline for detailed mangrove species mapping in other study areas. Additionally, a 
follow-up study is now being conducted to solve the problem of differentiating between the leaf 
textures of the two Rhizophoraceae mangroves and thus refine the classification outcome.  
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