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Abstract: To reduce the data size of metric map and map matching computational cost in 
unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological 
hybrid map navigation system is proposed in this paper. According to the different 
positioning accuracy requirements, urban areas are divided into strong constraint (SC) 
areas, such as roads with lanes, and loose constraint (LC) areas, such as intersections and 
open areas. As direction of the self-driving vehicle is provided by traffic lanes and global 
waypoints in the road network, a simple topological map is fit for the navigation in the SC 
areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the 
positioning information. Simultaneous localization and mapping technology is used to 
provide a detailed metric map in the LC areas, and a window constraint Markov 
localization algorithm is introduced to achieve accurate position using laser scanner. 
Furthermore, the real-time performance of the Markov algorithm is enhanced by using a 
constraint window to restrict the size of the state space. By registering the metric maps into 
the road network, a hybrid map of the urban scenario can be constructed. Real unmanned 
vehicle mapping and navigation tests demonstrated the capabilities of the  
proposed method. 
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1. Introduction 

Autonomous-driving technologies have attracted considerable academic and industrial interests in 
recent years. Navigating an unmanned ground vehicle (UGV) driving through urban areas is a difficult 
task. The UGV must know exactly where it is in dynamic traffic scenarios. The accuracy of the 
location information directly impacts the safety and control stability of the UGV.  

The localization methods of autonomous driving can be divided into satellite signal-based solutions 
and map matching solutions. In satellite signal-based solutions, GPS is the most common positioning 
way. However, because of the multipath effect and the occlusion of satellite signals caused by 
buildings, trees or clouds, the ordinary GPS equipment with normal accuracy cannot meet the 
requirement of the positioning system. Therefore, the differential GPS (DGPS) or GPS-inertial 
navigation system (INS) positioning system comes into use. In the 2007 Defense Advanced Research 
Projects Agency (DARPA) Urban Challenge, most of the unmanned vehicles were equipped with 
costly DGPS-based navigation systems [1,2]. The expensive equipment will increase the cost of the 
autonomous driving vehicle. When in a big city, DGPS positioning signals cannot cover everywhere. 
Moreover, when there are high buildings, big trees, bridges or tunnels, it is impossible for the 
positioning system to obtain even ordinary GPS satellite signals. 

For the map matching-based method, an unmanned vehicle gets its position by comparing the 
environment map with real-time perception data from mounted sensors, such as laser scanners or 
cameras [3–7]. If the map is large and accurate enough, map matching-based approaches show better 
stability than the GPS-based method in the urban scenario. Such an environment map can be obtained 
by various approaches [8–10]. However, the tremendous size and the huge cost of a detailed map of a 
whole city is a big problem. Storage and computational complexity, due to a massive amount of map 
data, will affect the efficiency of positioning system. In early 2013, the Google self-driving car was 
reported to be commercially available to customers in five to seven years [11]. However, how to obtain 
the accurate position of the self-driving car is still a challenge. In this kind of map matching approach, 
the determination of the autonomous vehicle relies on very detailed maps of the roads and terrain. 
Before sending the self-driving car on a road test, a human driver must drive along the route to gather 
data about the environment. Then, the autonomous vehicle can compare the data acquired from the 
perception sensors to the previously recorded map data [12]. Therefore, a very detailed, accurate and 
high-cost digital map along the driving routes is essential. The high cost refers to not only the map 
building, but the calculation load of the matching process during autonomous driving. 

From the experiences of participation in the Intelligent Vehicle Future Challenge competitions of 
China since 2009 [13], we found that a UGV could take advantage of a variety of positioning methods, 
rather than a particular one in the entire self-driving journey in urban areas. In most cases, the UGV 
drives on the structured roads with lanes and does not need precise position data. Lanes, road curbs and 
global path points ahead provide the direction for the UGV that drives itself like water flows in a pipe. 
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Other environment perception technologies, such as traffic sign detection, can offer enough 
information to constrain the vehicle’s movement. However, when the vehicle enters unstructured areas, 
such as intersections and other areas without guide lanes, accurate localization information becomes 
essential to its self-driving. If the detailed map of these unstructured areas is known, the vehicle could 
locate itself using the map matching method of positioning to follow a pre-planned path. Therefore, for 
urban self-driving, we only need to build environment maps for unstructured areas and regard 
structured roads with lanes as channels between the unstructured maps. This approach makes the urban 
map become a hybrid map integrated with the local environment map and topological map. Compared 
with an ordinary digital map, the hybrid map is able to provide enough information without 
substantially increasing data quantity. It will make the urban driving task for a UGV not rely on costly 
positioning equipment for navigation. 

Based on the above analysis, our aim is to build a low-cost hybrid map-based navigation system for 
a UGV self-driving in urban scenarios, as shown in Figure 1. The research is focused on the hybrid 
map building process and localization in the local map. In the following sections, we will describe the 
process of using OpenStreetMap [14] for extracting the topological structure of a city map and using a 
laser scanner to construct a local grid map in detail. Next, an improved Markov localization method is 
proposed to increase the real-time positioning. Then, we introduce the Beijing Institute of Technology 
(BIT) unmanned ground vehicle used in this work. Furthermore, the hybrid map mapping and map 
matching localization in the local map are proposed. At the end, we will discuss the advantages of the 
hybrid map-based navigation method and future work. 

Figure 1. Topological-metric hybrid map for navigation.  

 
2. Construction of the Hybrid Map 

In order to reduce the dependence on a high-precision positioning system and the amount of map 
data, we divide the whole urban space into two different areas. Because the traffic lanes can provide 
forward direction for a UGV, the district with visible lanes is defined as a strong constraint (SC) area. 
On the other hand, the district without lanes is defined as a loose constraint (LC) area. As shown in 
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Figure 2, the SC areas mainly consist of road regions, and the LC areas may include intersections, 
parking lots, and so on. Traffic lanes are the primary difference to distinguish an SC area from an LC 
area. Dividing urban scenarios into these two categories allows us to use a low accurate positioning 
method in SC areas and precise localization mapping in LC areas.  

Figure 2. Definitions of strong constraint area and loose constraint area.  

 

2.1. Topological Map of Urban Scenario 

The global path for a UGV self-driving navigation in either SC areas or LC areas is described in the 
topological map. Basic elements of the topological map include nodes and edges. Nodes represent 
significant places in the map, and edges show the relationship between two nodes. In this work, the 
nodes are defined as GPS positions of LC areas, and the edges represent certain roads between two 
adjacent nodes. 

The common way to get the GPS positions is to drive the vehicle with a GPS receiver and record 
key waypoints on the routes. In a small area, the GPS data collection work can be done manually. 
However, when building a whole city map of urban size, the work may be too tedious and  
time-consuming. Therefore, we extract the urban topological structure from OpenStreetMap 
(OSM) [14]. The OSM is a well-known project that provides user-generated street maps. The GPS data 
downloaded from the OSM website is in XML form, organized in a treelike structure. 

In the XML file structure shown in Figure 3, the root element OSM illustrates that this is a file 
downloaded from the OpenStreetMap website. There are four elements under this root, including 
bound, node, way and relation. Node elements are shown in orange. Attributes from a node provide 
latitude, longitude and the ID of the node. Some nodes may have sub-elements, which include more 
knowledge about this node, such as whether it is an intersection or whether it belongs to a building, 
bus stop, restaurant, etc. If a node does not have a sub-element, that means it belongs to a road or 
highway instead of an intersection. The attribute of way element indicates its identification, and the 
sub-elements of way include its category, traffic rules and member nodes information.  
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Figure 3. Treelike structure of OpenStreetMap data. 

 

Figure 4. Illustration of building topological map by OpenStreetMap (OSM). (a) Urban 
scenario. (b) Corresponding topological map extracted from the OSM. Nodes can provide 
GPS data, and highlighted green notes are intersections. White lines show roads between 
connected nodes. 

 
(a) 

 
(b) 

Figure 4a shows urban scenario while Figure 4b shows the topological map extracted from OSM in 
the scale of Figure 4a. We only extract the points from the highway. These points are the nodes of the 
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topological map. Furthermore, based on the sub-element information, the points with the description of 
“traffic light” are defined as the locations of intersections, as the green points in Figure 4b. 
Additionally, these points indicate the position of LC areas where the local metric map should be built 
for self-driving navigation. 

2.2. Metric Map of Loose Constraint Area  

For LC areas, there are no lanes to guide the UGV. When the vehicle enters into these areas, either 
the sparse GPS waypoints in the topological map or the positioning error could cause unstable driving 
behavior. Therefore, the primary task is to add more environmental constraints to restrict the vehicle 
movement. The constraints are added in the form of metric map. Additionally, the local metric map 
can be used for localization, which will be discussed in Section 3. 

For environment mapping, there have been many impressive results shown in recent years [15–19]. 
In this work, the occupancy grid mapping method is applied in local metric map building. To build an 
occupancy grid map, the environment is discretized into grids, and the value of each cell is allocated in 
accordance with the probability that the cell is occupied by obstacles. The grid map is built according 
to measurements collected by a laser scanner mounted on the vehicle. Additionally, the simultaneous 
localization and mapping algorithm is employed in real-time dynamic outdoor environment 
mapping [20]. The mapping algorithm includes three basic components: map update, pose estimation 
and moving object elimination. 

2.2.1. Map Update 

Given that the observation, , is the measurement of the laser scanner at time t, and  is the 
vehicle’s corresponding pose, the posterior probability of the occupancy grid map is governed by: 
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Assume the environment is static. When the map, m, is known, the measurement, , is independent 
from the vehicle’s historical state, : , and measurements, : , Equation (1) can be rewritten as: 
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Based on reference [21], Equation (2) can be further simplified into the form as: 
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The inverse sensor model, | , , is determined based on the laser measurements as:  
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Equation (5) determines the measured occupied probability of each grid. The cell is occupied if it is hit 
by a laser point. The cell is free if it lies between the endpoint and the vehicle on the laser beam. If the 
cell is on a laser beam and behind the endpoint, its state is unknown. As the final occupancy 
probability of a cell is determined by a sequence of measurements, the value of a free cell in the sensor 
model has a remarkable impact on the generated grid map. Large value for a free cell can make the 
probability of a previously occupied cell decrease at a lower ratio when it becomes free. This is 
necessary if we need to preserve small obstacles, such as traffic guardrails, in the generated grid map. 
Such obstacles are likely to be invisible in sequential frames of detections, as a result of the vehicle 
motion and the angle resolution of the laser scanner. 

2.2.2. Pose Estimation 

Calculating a vehicle’s pose is a maximum likelihood estimation problem in the local mapping 
method, which is finding the most likely pose of the vehicle in the configuration space. Given the 
posterior likelihood of the vehicle’s pose at the last time step, , the a priori likelihood of the pose 
is predicted based on the vehicle’s control inputs using | , . After the vehicle makes a new 
measurement of the environment, its pose can be determined by maximizing the posterior likelihood:  
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where m is the grid map and u is the control inputs of the vehicle. 
The pose estimation is resolved using a particle filter. Initially, particles are uniformly distributed in 

the area without any prior knowledge of the vehicle’s position. A simplified velocity model is 
employed to predict the particle’s motion:  
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 (7) 

where the motion of the vehicle between two measurements is assumed to be straight and  is the 
heading angle of the vehicle. The measurement model used in the update procedure of the particle 
filter is [20]: 

N
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where   is the cell hit by the end-point of laser beam, k. N is the total number of laser scanner’s data.  
The local map method simplifies the map generation by decoupling pose estimation from a map 

update. This may introduce errors in the generated map, but the errors are acceptable. 

2.2.3. Moving Obstacle Elimination 

In the map update step, cells occupied with moving obstacles have to be removed in Equation (4), 
otherwise the dynamic elements can make the Markov assumption invalid. By comparing the posterior 
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likelihood, | , of an occupied cell, i, at the direction of a laser beam, k, with the likelihood of 
occupied cells in the sensor model, the cell could be classified into static or dynamic [19]. If the |  is smaller than the occupied threshold, the cell will be treated as dynamic and not counted in 
Equation (3) for the map update. As only static cells are included in the map update, Equation (4) can 
be written as: 
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2.3. Metric Map Registration 

To integrate the local metric map with the urban topological map, we collect some GPS positioning 
data in the area during a local metric map mapping process. After the local map is established, only 
one GPS location in each local map is selected as a registration point, which can be used to register the 
local metric map to a nearest node in the topological map. The registration point’s position is also 
stored in the corresponding node.  

3. Hybrid Map-Based Navigation 

In Section 2, we have constructed the topological map of the urban scenario and the local metric 
maps of the LC areas. In the SC area, our previous works can get enough information, including 
detections of lane markings [22], traffic lights [23] and signs [24], to provide the direction and the 
speed limit for the UGV. Because the GPS signal only provides global path information, the GPS 
receiver used in our UGV can be just an ordinary one with low positioning accuracy. 

There are lots of map-matching-based localization methods. In reference [25], light, humidity and 
other data are used for radio frequency (RF)-based localization. Furthermore, Markov localization [26] 
is widely used. Based on the discretization of a vehicle’s state space, the position is recursively 
determined by calculating the posterior probability. The original Markov localization method needs to 
maintain a likelihood matrix of the state space with the same size of the entire metric map. Although 
the probabilities of most elements in the matrix are negligible, they have to be updated every time 
when a new measurement is made. In this research, assuming that the vehicle’s true position is close to 
its GPS indications, we can adopt a small likelihood matrix instead of the whole state space to reduce 
the computational cost. The likelihood matrix is displayed as a constraint window with its center fixed 
on the vehicle’s GPS position. Therefore, the window will scroll forward with the vehicle’s movement 
through the map. 

3.1. Navigation in the Hybrid Map 

3.1.1. Switch from Strong Constraint (SC) Area to Loose Constraint (LC) Area 

The corresponding metric map will be loaded into memory when the vehicle is approaching a node in 
the digital map. Map matching-based localization will be launched when the vehicle approaches the 
scope of the metric map and registers the vehicle with the local environment, as location A in Figure 5. 
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Since the localization in the metric map is independent with the global position of the vehicle and the 
metric map, the position of the metric map in the global topological map is not required to be very accurate. 

Figure 5. Navigation methods switching.  

 

3.1.2. Switch from Loose Constraint (LC) Area to Strong Constraint (SC) Area 

Following the global path in the topological map, the autonomous vehicle will drive into the 
expected edge path of the digital map when it leaves the local metric map. The local metric map 
contains not only the static structure of an area, which is used for localization and obstacle avoidance, 
but also the connections with edges in the digital map. This information is recorded when the map is 
generated. The connection with the edge on the global path can be used as the target state in the 
vehicle’s configuration space for local path planning. Once strong constrained elements are detected, 
when the vehicle is driving along the local path, the driving mode will be switched to strong 
constrained mode, for example, as shown in Figure 5; when the vehicle arrives at location B, the 
vehicle will detect the road lanes. 

3.2. Localization in Loose Constraint (LC) Area 

The original Markov localization method needs to maintain a likelihood matrix with the same size 
of the entire metric map. Except for elements closed to the true position, the probabilities of most 
elements in the matrix are negligible, but they have to be updated every time after a new measurement 
is made. This updated probability can be expressed as Bel(Lt = l|s1,…,st,a1,…,at − 1), where Lt denotes 
the vehicle state, l denotes one of the discrete states and t denotes the time. In this work, s and a 
indicate the data from the odometer and laser scanner, respectively. Based on the Bayesian theorem, 
this expression can be transformed into: 
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For the simplification of real-time computation, with the Markov assumption of the vehicle’s 
movement and the independence of environment perception on the vehicle’s previous position, the 
expression can be further simplified as: 

1 1 1 1 1( | ,..., , ,..., ) ( | ) ( | , )t t t t t t t tBel L l s s a a P s L l P L l L aη− − −= = = =  (11) 

where P(Lt = l|Lt − 1,at − 1) and P(st|Lt = l) represent the influence of movement model and perception 
model on the posterior probability of the discrete state, respectively. η is a normalized coefficient.  

The Markov localization method is generally used for indoor robotics. When it is applied in a large 
space, the main problem is low positioning frequency caused by increased state space for computation. 
With the assumption that the vehicle’s true position is close to its GPS indications, we propose a 
window constraint Markov localization (WCML) method, using a small likelihood matrix to reduce 
the computational cost in the Markov localization process.  

3.2.1. Constraint Window 

As shown in Figure 6, the size of the constraint window (the blue square) is 15 m × 15 m, and its 
center is fixed on the vehicle’s GPS position. The scope of the constraint window is set to be much 
larger than normal GPS positioning error. As a result, the true state of the UGV can be covered by the 
window. Once the corresponding metric map is loaded, the vehicle pose will be transformed into the 
local coordinate of the map. The relative position of the UGV, which is also the center of the constraint 
window, can be expressed in the local coordinate in the metric map as: 

gv glw

gv glw 0

1

t

x xx
y yy r=

−⎡ ⎤⎡ ⎤
= ⋅ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

 (12) 

Figure 6. Constraint window in the grid map of the loose constraint (LC) area. 

 

3.2.2. Window Constraint Markov Localization 

In the window constraint Markov localization process, the states needed to be updated in the state 
space are limited inside the window. Therefore, the movement model of Markov localization can be 
rewritten as: 
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where Wt denotes the state space in the window scale at time t. We use Bel(Lt − 1 = l’) instead of  
Bel(Lt − 1 = l’|s1,…,st − 1,a1,…,at − 2) for the expression. Equation (13) describes the state transferring 
probability matrix. In this work, the matrix is designed as a Gaussian distribution, and its parameters 
are determined by the error of the odometer mounted on the UGV.  

Another part of Equation (11) is the perception model, P(st|Lt = l), which determines the similarity 
between the laser data and the occupancy grid map (OGM) at state l. It is defined as: 
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where St is the distances from the laser scanner and St’ is the desired value measured from the map 
with the assumption Lt = l using the ray tracing method. K is the number of scanning directions of the 
laser scanner. For computational consideration, the scanning directions are previously chosen, and all 
the values used in the nonlinear computation, such as sine and cosine, are stored for real-time 
calculation. As shown in Figure 7, there are eight total directions in the local coordinates of the metric 
map. Only four or five directions of them are selected to be used in each localization process.  

Figure 7. Selection of spare directions for ray tracing. The directions in the scanning scale 
of the laser sensor are chosen for the ray tracing operation. 

 

4. Experimental Platform and Results 

4.1. The Beijing Institute of Technology Unmanned Ground Vehicle 

The Beijing Institute of Technology unmanned ground vehicle (BITUGV) as shown in Figure 8a is 
set up based on the concept of low-cost design for urban driving [13,27]. The sensors equipped for 
environment detection include one horizontal laser scanner and one camera. In this research, the laser 
scanner is used for static and moving obstacle range detection in the map mapping and localization 
process. The laser scanner used in the experiment is LMS291. It has a detection range of 80 m in 0°–
180°. Camera 1 is used for lane detection, and camera 2 is only for data recording. 
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Figure 8. The Beijing Institute of Technology Unmanned Ground Vehicle. (a) BITUGV 
and its environment sensors, including one laser sensor and two cameras. (b) Side view of 
the BITUGV and its localization equipment, including a global positioning system (GPS) 
receiver, an odometer and an inertial navigation system (INS). 

 
(a) 

 
(b) 

Other equipment for UGV positioning consists of one GPS receiver, one inertial navigation system 
(INS) and one odometer. The GPS receiver provides the position to locate the UGV in the road 
network. The INS mainly provides the heading direction of the UGV. The odometer records the 
distance the UGV traveled. It should be noted that the GPS receiver’s accuracy we used is relatively 
low. The positioning error is about 3 m at least.  

4.2. Results of Hybrid Map Construction 

Figure 9a shows our experiment environment. The red rectangles in it describe the SC regions, and 
the blue circles indicate the 4 LC areas’ positions. Figure 9b demonstrates the hybrid map of the 
experiment environment. The picture in the middle of Figure 9b is the topological structure of this 
scenario, and other pictures display the metric maps of 4 intersections in the environment. The red 
point in each metric map shows the registration point of each local map. In this 350 m × 240 m 
scenario, there could be 2,100,000 grids in a traditional metric map, with the grid size of 0.2 m × 0.2 m. 
However, using our hybrid map, only 4 local metric maps with 1,000,000 total grids are needed. 
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Figure 9. Metric-topological-based hybrid map of experiment environment. (a) Experiment 
scenario. The loose constraint areas include 4 intersections in blue circles, and the strong 
constraint areas include the roads in the red rectangles. (b) Hybrid map for unmanned 
ground vehicle navigation. The topological map constructed by GPS data is shown in the 
middle, with green points for intersections and white points on the road.  

 
(a) 

 
(b) 

4.3. Results of Window Constraint Markov Localization (WCML) in the Loose Constraint Areas 

Figure 10 is an experiment of the window constraint Markov localization (WCML) process in an 
intersection. During this process, the odometer provided the rough positioning data every 0.1 s and the 
GPS receiver provided the localization at 10 Hz frequency. The WCML method was launched if the 
vehicle moved more than 1 m. Figure 10a shows the metric map of this LC area, in which blue lines 
stand for lane markings and yellow arrows present the rough route of the vehicle. Figure 10b compares 
localization results from the odometer with the WCML method. Green points are localization 
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information provided by odometer. The start point is decided by the relative position between the GPS 
position at that time and the registration point of the map. GPS positioning noise will cause a deviation 
from the actual vehicle position on the start point. Although the cumulative error of the odometer is 
small in such a short distance, it may result in dangerous consequences. Red dots represent the 
positioning results from the WCML method.  

Figure 10. (a) Original scenario. Road regions are between each pair of adjacent traffic 
lanes shown as blue lines, and the vehicle rough route is shown as yellow arrows.  
(b) Localization results of odometer (green points) and the window constraint Markov 
localization (WCML) method (red points).  

 
(a)                                             (b) 

The quantitative analysis of the WCML process is summarized in Figure 11. The time consumption 
of each WCML localization process is lower than 0.1s, as shown in Figure 11a. Figure 11b shows the 
slowdown process of UGV velocity while driving through the intersection. Figure 11c,d illustrates the 
deviations of localization results between odometer and WCML method along the east (dx) and north 
(dy) direction separately. The differences gradually become constant, which means the WCML method 
provides a stable localization result after a period of time. 

Figure 11. (a) Time consumptions of window constraint Markov localization process.  
(b) Vehicle velocities during experiment. (c) Localization deviations (dx) between the 
odometer and WCML along the east direction. (d) Localization deviations (dy) between the 
odometer and WCML along the north direction. 

 
(a)                                                     (b) 
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Figure 11. Cont. 

 
(c)                                                         (d) 

Figure 12 describes the changing process of probability distribution in the constraint window during 
the localization process. Probability values in the same window are normalized. Brighter color in the 
figure shows higher probability. Parameter t denotes the time. With UGV moving and scanning, these 
figures show the recursive update process of probability distribution in the constraint window. The 
probability distribution has changed from a relatively decentralized state to a centralized state. This 
process indicates that the vehicle can gradually find its relative position in a metric map. 

Figure 12. Probability distribution in constraint window scale during the WCML process. 
Brighter color shows higher probability. The distribution is changed from a decentralized 
state to a centralized state. The centralized state in t = 9 s shows that the vehicle finally 
finds its position. 

 

The experiment results and analysis show that the WCML method has the ability for UGV to 
localize in the loose constraint area. When entering the LC area, the positioning system adapts itself 
and corrects the initial positioning error before getting into the intersection area. It also can provide 
about a 10 Hz localization frequency for UGV, which is enough for relatively low speed driving in 
intersections. Results in Figure 13 illustrate other WCML processes with different initial positioning 
error. The time consumptions prove the real-time performance. 
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Figure 13. Window constraint Markov localization in loose constraint areas.  

 

5. Conclusion 

This paper proposes a hybrid map-based navigation method for unmanned ground vehicles in the 
urban scenario, without using accurate positioning equipment. We divide the urban scenario into 
strong constraint areas, where the traffic lanes exist, and loose constraint areas, where no lanes can 
guide the vehicle. In the loose constraint area, the Markov localization method is involved to achieve 
high positioning accuracy. By combing the local metric maps for loose constraint areas and the global 
topological map, a hybrid map is established. In our experiment, we have successfully reduced 50% of 
the map data. If the scale of the scenario is enlarged, the reduction effect could be more obvious. 

In order to improve the real-time performance of grid-based Markov localization, we introduce a 
window constraint Markov localization method for accurate positioning. A constraint window moving 
with the vehicle can restrict the size of the state space and, thus, reduce the computational cost. 
According to our experiments, most positioning results can be achieved within 0.1 s. The update 
frequency and positioning accuracy can meet the navigation requirements for relatively low speed 
driving in loose constraint areas. 

For future research, we will try to involve vision features to improve the performance of the Markov 
localization process in the environment map building. Furthermore, the vehicle-to-infrastructure and 
vehicle-to-vehicle [28,29] communications should be adopted for the driving safety of unmanned 
ground vehicles.  
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