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Abstract: Thermal remote sensing of soil moisture in vineyards is a challenge. The
grass-covered soil, in addition to a standing grape canopy, create complex patterns of
heating and cooling and increase the surface temperature variability between vine rows. In
this study, we evaluate the strength of relationships between soil moisture, mechanical
resistance and thermal inertia calculated from the drop of surface temperature during a clear
sky night over a vineyard in the Niagara region. We utilized data from two sensors, an airborne
thermal camera (height ~ 500 m a.g.l.) and a handheld thermal gun (height= 1 m a.g.l.), to
explore the effects of different field of views and the high inter-row temperature
variability. Spatial patterns of soil moisture correlated more with estimated thermal inertia
than with surface temperature recorded at sunrise or sunset. Despite the coarse resolution
of airborne thermal inertia images, it performed better than estimates from the handheld
thermal gun. Between-row variation was further analyzed using a linear mixed-effects
model. Despite the limited spatial variability of soil properties within a single vineyard, the
magnitudes of the model coefficients for soil moisture and mechanical resistance are
encouraging indicators of the utility of thermal inertia in vineyard management.
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1. Introduction

The quality and quantity of grapevine production is controlled by many factors, such as soil
characteristics, climate, management system and the frequency of exposure to pests and diseases.
Recent studies [1,2] show that productivity within a single vineyard could vary as much as eight-fold.
Precision viticulture takes advantage of remote sensing and geomatics to model this variation and
estimate yield quality and quantity at the vineyard level [3].

Soil particularly is an important factor in determining the productivity of vineyards. Observations
show that high and low production regions within a vineyard tend to be stable over a longer time [4],
and these patterns relate to soil spatial distribution, micro-climate patterns and topography variations [5].
Identifying zones with similar soil type helps in the planning of a vineyard, by selecting the suitable
grape varieties to soil type and allocating vineyards with homogenous soil to allow easy management [6].
In addition, soil information explains the interplay between year-to-year rainfall and production.
Therefore, “considerable effort in precision viticulture research aims at measuring and mapping spatial
variability in soils at the single vineyard scale” [7].

Remote sensing provides high quality spatial data for vineyard management. However, it is not
applied widely in viticulture [7]. Optical remote sensing is used to sense changes in properties of the
few millimeters of the soil surface [8]. Alternatively, researchers apply non-contact electromagnetic
survey to map soil variability within a vineyard [4,9]. Measured apparent electric conductivity is used
as a proxy for soil moisture content, soil texture and salinity of the soil solution [2,10].

The utility of thermal remote sensing in detecting energy and moisture fluxes at the land surface is
well documented [11-15]. For the purpose of monitoring soil moisture content, the common scheme is
to decouple the surface thermal properties from ambient temperature (daily temperature cycle) by
calculating the thermal inertia (TI), which is a physical property that characterizes the surface
resistance to ambient temperature change [16—19]. Various studies report a strong relation between soil
moisture content and TI [17,20,21]. However, the thermal inertia method is mostly conducted over
bare and dry ground, to avoid complexity added by variations in evapotranspiration patterns [22].
Nevertheless, recent studies [23,24] showed that soil moisture could be estimated over partially
vegetated soil if a linear relation between ground flux and surface temperature is maintained.

Verhoef [17] calculated TI using the surface temperature drop, during nights with clear sky and still
conditions, to avoid the complex surface energy exchange that occurs during the day. The author found
a significant relation between TI calculated over bare soil and volumetric soil moisture content.
However, remote thermal inertia techniques were not applied to vineyards. The previous method [17]
has a potential in vineyard application, because it avoids the complex heating and evapotranspiration
during the day time. However, a careful test of the method is needed to establish the validity of this
method over vegetated surfaces [25,26].

In this study, we evaluate a technique for estimating thermal inertia using airborne thermal images
acquired over a grass covered soil in a vineyard in the Niagara Region, Ontario, Canada. The technique
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is based on the drop of surface temperature during the night and has not been tested over grass covered
soil. We further explore the functional relationships between estimated thermal inertia in the presence
of grass sod (we will refer to it subsequently as TI.) and subsurface soil properties (moisture and
mechanical resistance). Finally, we provide suggestions for improving soil moisture retrieval using the
nocturnal thermal inertia method.

2. Background
2.1. Thermal Inertia: Theoretical Background

TI [J'm >K "s"?] of a bare soil is a physical property that describes the response of soil to an
ambient temperature change:

TI = \[pck (1)

where p is the soil density [kg'm ], ¢ is soil specific heat capacity [J-kg K '] and k is soil thermal
conductivity [W-m “K™']. TI can be calculated from the night cooling of land surface assuming a
constant rate of surface cooling [17,27,28]:

_ 2[R, IVAt
 ATVT

where |R,,| [Wm 7] is the average net radiation during the night, AT [K] is the night temperature drop

TI (2)

and At [s] is the cooling period in seconds. The common method for calculating thermal inertia
depends on the periodic daily heating [29]; in contrast, Equation (2) depends on the non-periodic
cooling of the surface under still and clear sky conditions. Theoretically, if one estimated thermal
inertia over the same area using both methods, the results should be similar. However, the absence of
turbulent heat fluxes (i.e., sensible heat flux and latent heat) during the night simplify the relation
between surface temperature and ground heat flux, which cannot be guaranteed during the day [30].
Murray and Verhoef [25] proposed that increasing soil saturation will result in a logistic increase of
TI. The authors based their theoretical relation on a model of thermal conductivity as a function of soil

saturation by Johansen [31]:

TI = Ke(TI, — Tl,) + T, (3)

where the subscripts, s and d, denote the saturated and air-dry conditions, respectively, and Ke is a
modified Kersten number, given by:

Ke = exp {y [1 _ [Hﬁ]ysl} 0

where y is a soil texture-dependent parameter, § is a shape parameter and 0/6; [-] is the soil saturation
ratio. Estimating soil moisture content can be done by inverting Equation (3) with the Kersten number,
approximated by [21]:

TI—-Tl,

Ke=—— "2
T

()
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2.2. Thermal Inertia Modification by a Vegetation Cover

The brightness temperature, measured using a thermal infrared sensor over a grass-covered soil, is
modeled as the summation of (a) the energy of the soil surface emission, which passes through the
plant canopy, (b) the energy of the plant canopy emission and (c) the reflected energy of plant canopy
emission by the soil surface below it, which passes through the canopy [32]:

T,=e{T,+(1-w).A-0.T,.+(1—-¢).(1 —w).(1 -27).T, (6)

where 7bh [k] is the brightness temperature measured by the thermal infrared (TIR) sensor, T [K] is
soil surface temperature, T, [K] is the plant canopy temperature, ¢ [-] is soil surface emissivity, o [-] is
the single scattering albedo and ( [-] is the transmissivity of the vegetation canopy. The grass canopy
(leaves) temperature differs from ambient air temperature by the net radiation at both the surface of the
leaf and by the temperature diffusive resistance, which is a function of leaf size and wind speed [33].
The amount of heat storage, due to photosynthesis, is negligible over a day period.

If remote sensing measurements are taken on a still clear night over a grass-covered soil, it can be
assumed that the grass temperature is coupled to the ambient temperature. This will result in a linear
reduction of the soil surface temperature, as determined by the transmissivity of the grass canopy and
the sensor viewing angle (Equation (6)). Therefore, we postulate that using Equation (2) and surface
temperature measured over a grass covered soil will result in an estimated TI;, which is proportional to
the true TT of the soil below the grass. Although Equation (2) has not been applied to a grass-covered
surface before, a previous field study by Kim and England [34] reports a significant relation between
TI calculated using passive microwave and soil moisture content over a grass covered area.

3. Methods

3.1. Study Area

An aerial survey was conducted over a block of grapes (Vitis vinifera var. Merlot) in a commercial
vineyard near Niagara-on-the-Lake, Ontario, Canada. The block was located near the shoreline of Lake
Ontario, between latitudes 43°14'50.18"N and 43°14'43.34"N and longitudes 79°8'42.54"W and
79°8'35.07" W. The vineyard was established on the Winona soil series, which is characterized by fine
sandy loam texture originating from deltaic sand deposits over clay [35]. The spacing between
vineyard rows was 2.44 m, and the rows were oriented in a north-south direction. The vineyard floor
(inter-row) between rows was vegetated with a mixed grass sod, and the vines within the rows were
spaced at 1.22 m intervals.

3.2. Fieldwork and Data Collection

Twenty-five plots (4 m” each) were selected, based on the variations seen in the grape canopy
during the previous growing season (Figure 1). The inter-row grass cover was cut to less than 1 cm
above the ground, using a commercial grass trimmer, to measure soil moisture using the theta probe
and soil electrical conductivity using an electromagnetic probe (EM-38); refer to Table 1 for a
summary of the field sampling scheme. The average apparent electrical conductivity at the center of
each trimmed plot was measured using an EM-38 probe (Geonics Ltd.). Four EM-38 measurements
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were taken at the vertical and horizontal orientations of the probe coils, as well as parallel and
perpendicular to the vineyard rows around sunset. The measurements were corrected to 25 °C [36].
Volumetric soil moisture content of the upper 15 cm was measured using a handheld Theta probe
ML2x (Delta-T Devices, Ltd.). The measurements were taken after the sunset of 17 September 2007,
with three replicates for each plot, as indicated in Figure 1. Soil mechanical resistance was measured
using a Rimik CP20 cone penetrometer (Rimik Agricultural Electronics, Ltd.). The penetrometer
measurements were taken after acquiring the sunrise aerial images following the same three replicates
per plot scheme. Soil surface temperature was measured using a Raytek Raynger ST2 thermal infrared
gun (Fluke, Inc.) with £1% accuracy. The IR instrument was pointed with a 45° angle at the trimmed
surface at a distance of one meter, which results in a ground footprint of approximately 0.25 m”. Three
replicates were measured at the far left, the right side and middle portion of the each plot (Figure 1).
Soil emissivity was set at a value of 1 (perfect blackbody); subsequently, an emissivity correction was
applied; refer to Section 3.3. Surface radiation balance were measured using a CNR1 four-component
net-radiometer (Kipp & Zonen Ltd.), which was connected to a 21x data logger (Campbell
Scientific Ltd.).

Figure 1. Study area, locations of sampling plots and an example of a sampling plot. The
red arrow indicates the north direction, while the circles mark the three replicate locations.
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Table 1. Field measurements.

Measurement Replicates Proxy for
Bulk electrical conductivity Horizontal mode perpendicular to vine rows Clay mineralogy and
(by EM38) Horizontal mode parallel to vine rows soil solution salinity
Vertical mode perpendicular to vine rows given dry conditions

Vertical mode parallel to vine rows
Mechanical resistance Right slice of the vine row Soil bulk density,
(by soil penetrometer) Middle of vine row soil compaction

Left slice of the vine row and stoniness
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Table 1. Cont.

Measurement Replicates Proxy for
Soil dielectric constant Same as mechanical resistance sampling Soil volumetric moisture
(by Theta Probe) content
TIR emissions Same as mechanical resistance sampling Surface temperature

(by thermal infrared gun)

A plastic mast was fixed between row seven and eight from the eastern edge of the plot, to mount
the net-radiometer (Figure 1). The surface grass around the mast was trimmed to obtain similar
conditions to sampling plots. Hourly measurements of air temperature and relative humidity were
obtained from the National Climate Data Center (NCDC) archive for the Niagara district weather
station (Figure 2, WMO ID USAF:712625).

Figure 2. Meteorological variables during the study period, Niagara district weather
station. Vertical lines indicate the time of flights and field measurements. The
meteorological variables are an approximation of the weather conditions at the study area.
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3.3. Aerial Mapping of Thermal Inertia

Thermal images were recorded using a thermal camera FLIR model ThermaCAM SC2000
(FLIR Ltd.). The thermal camera was pointed by one of the aircraft crew to the nadir view, and images
were recorded through an opening in a modified aircraft door. The image recording was set to the
automatic collection mode with a 1-s interval. Two flight passes were conducted over the same merlot
plot around sunset and sunrise, to measure the drop in temperature during the clear sky night of
17 September 2007 (Figure 2). Organizing a flight around sunset was less limited than the dawn flight,
because of Canadian regulations restricting night flights of light aircrafts. Therefore, the sunrise flight
was delayed, for half an hour, to benefit from the increased visibility during the civil twilight period.
We assumed that this delay did not influence our results, because sun rays at extremely low angles
were restricted by the vertical vine canopy ([37,38]; refer to Table 2 for details of the flights).
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Table 2. Flight schedules and weather conditions.

Flight Time Estimated Surface Sky Relative Air Flight Height
Emissivity Temperature Humidity = Temperature [m AGL]
[°C] [o] [°C]

6:50 p.m.—7:03 p.m.
17 September 2007
7:11 am.—7:33 am.
September 18, 2007

0.94 -1.4 40.5 20.6 =490

0.94 —34 78.8 13.1 =490

3.4. Calculating Thermal Inertia

Thermal infrared gun measurements were corrected for land surface emissivity and reflection of sky
temperature. The initial emissivity value for TIR gun measurements was one. After, we corrected the
measurements by assigning an emissivity value of 0.94 [39] to represent a mix of soil and vegetation
tissues. Sky temperature was derived from the incoming long-wave radiation (5 to 50 pum) measured
by the net-radiometer, which had a wider wavelength window than the TIR sensors (8 to 14 um). We
assumed that the incoming long wave radiation was homogeneous over the entire field. Atmospheric
correction was not considered for the TIR gun, because of the lack of climatic variables at the site.
Using variables from another station could generate a significant bias, because of the different surface
cover type. An atmospheric correction was applied to the thermal infrared images using the built-in
radio-transfer model in the FLIR analysis software, Quick Report v2.1 (FLIR, Ltd.); details of the
atmospheric model were given in [40]. The relative humidity and temperature of an air column with a
height of 493 m a.g.l. (flight height) were approximated from the weather station data (Table 2). The
approximation was based on the relative stability of the air column during still nights in contrary to a
thick daytime mixing layer. However, one should notice that these conditions could create an inversion,
which will offset the weather station measurements (colder) from the atmospheric profile average.

A value of 0.94 was assigned to surface emissivity similar to that used to correct the TIR
measurements. The vineyard plot was captured by two thermal images at both flight times (sunset and
sunrise). A linear regression model was used to match the temperature of one scene to the other. The
model was based on 100 randomly sampled clusters with 5 replicates (total of 500) in the overlap
region between the two scenes. The two images were then merged into a single mosaic. Subsequently,
geographic coordinates were assigned to the mosaic image using the coordinates of the plot corners.

The locations of the 25 plots were identified on the sunset and sunrise thermal image mosaics using
the center geographic coordinates of each plot. The average temperatures of matched pixels to field
plots locations and the four connected neighbors for each pixel were recorded (i.e., upper, lower, right
and left neighbor pixels). We decided to consider the average of five pixels (=2 m” on ground) instead
of using the center value, only because of the susceptibility of single pixels (0.6 X 0.6 m) to errors in
image registration and plot coordinates. In addition, averaging land surface temperature over a number
of pixels limited the variability of surface temperature caused by local changes in the structure of grass
canopy. In a few cases, the center of the plot was found to be located on top of the grape canopy, as
indicated by the low temperature associated with the dense plant leaves. In these cases, the sample was
relocated to the nearest between-row pixel.
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TI, was calculated from both the TIR gun measurements (field TI.) and homogenized aerial thermal
images (remotely-sensed TI.) using Equation (2) at each of the 25 plot locations. AT was calculated as
the difference between land surface temperature (LST) at sunset and sunrise, while At was calculated
as the time difference (in s) between sunset and sunrise. The net radiation during night (constant
cooling in Wm ?) was calculated as the average of net radiation at sunset and sunrise. The net radiation
at sunrise or sunset was given by an arithmetic sum of incoming and outgoing shortwave and incoming
and outgoing longwave radiation. In order to account for local variation in net radiation, radiation
balance components, except outgoing long wave, were estimated from the net radiometer
measurements. The outgoing longwave radiation was estimated locally from the measured LST using
the thermal gun or thermal images.

3.5. Statistical Analysis

The aim of the statistical analyses was to explore empirical relationships between TI, variables as
our response and soil properties (i.e., moisture content, mechanical resistance and -electrical
conductivity) as predictors. Theta Probe measurements were used as a proxy for soil moisture content,
while the horizontal parallel mode of EM38 measurements were interpreted as proxies of soil salinity
and clay content, given the dry conditions. We selected the horizontal mode of the EM38
measurements to increase the sensitivity to the uppermost layer of the soil and limited our analysis to
the parallel mode to minimize interference with the vines’ metal wires [41]. The averages of vertical
profiles of soil mechanical resistance were calculated at each field plot location. In addition, a binary
variable was calculated to indicate the existence of missing mechanical resistance measurements at
each profile. The lack of such measurements at a location was interpreted as the presence of
consolidated substrate or the abundance of rock fragments.

Pearson’s correlation coefficients were calculated between all available quantitative variables, to
assess the strength of linear associations between soil characteristics and TIL.. In the case of the
mechanical resistance, the area under the receiver operating characteristics curve (AUROC) was used
instead, which was a value between 0.5 (no separation) and 1 (perfect separation), which measured a
quantitative variable’s ability to discriminate the two classes represented by a binary variable [42]. In
addition, we tested the statistical significance of correlations between TI, calculated from the thermal
gun and from aerial imagery at the a = 0.10 level of significance. This elevated significance level was
chosen to reduce the Type II error rate in this exploratory analysis with a small sample size [43].

Multiple linear regression models were used to analyze the relationship between the response and
Theta Probe, EM38, mechanical resistance (average) and mechanical-resistance (binary) as TI
candidate predictor variables. We developed separate models for TI, estimated over grass canopy from
aerial imagery and for T using thermal infrared gun over trimmed field plots. We started with all the
explanatory variables and, then, performed a backward elimination based on the Akaike Information
Criterion (AIC). The AIC was based on a model’s log-likelihood. It penalized larger models in order to
give preference to smaller models that fit the data almost as well [44].

A linear mixed-effects model was built to reproduce the regression analysis of field measurements
at the level of the individual observations, which were grouped at the plot level. Compared to ordinary
linear regression models, linear mixed-effects models account for grouping (e.g., repeated measurements



Remote Sens. 2013, 5 3737

or spatial clustering) by introducing a so-called random-effect term that captures group-specific
random variation (e.g., [44]). Tl (field) calculated from TIR gun measurements was selected as the
response variable, and Theta Probe and binary mechanical resistance were chosen as the fixed effects,
while the grouping based on the replicates’ locations between vine rows (east, middle, west) was
included as a random-effect term. Fixed-effects variables were selected manually based on the AIC.
All statistical analyses were performed using the statistical software, R [45], and its package ‘nlme’ for
the mixed-effects model [46].

4. Results
4.1. Aerial Thermal Imagery

In the radiometrically corrected and mosaicked thermal images root-mean-square-error (RMSE of
georeferencing: 0.9 pixel, 0.4 m), the difference in surface temperature patterns between low
temperature grape rows and grass covered ground is clearly distinct as vertical strips (Figure 3). In
addition, thermal anomalies, related to soil and vegetation, are observed across the two scenes. For
example, an anomaly is visible in the lower half of both scenes; this anomaly is characterized by being
warmer (colder) during sunset (sunrise), which indicates a region with lower TI..

Figure 3. Thermal image mosaics at local sunset and sunrise. Images are scaled differently
to enhance the visualization.

Sunrise around 7:00 am

Sunset around 7:00 pm

43°14'50"

T(C)

79°08'45"

Projection:UTM Zone:17
Datum NAD27 40m

Remarkably, there is a tonal difference at the edges of the individual images, particularly at sunrise.
The residuals of a linear regression model that relates the two images in each mosaic (Figure 4) are
small in absolute terms (standard deviation of 0.137 K at sunset, 0.142 K at sunrise), but relatively
large compared to the small variation in surface temperatures. The difference between the two images
is partly attributed to geo-referencing uncertainties and to the difference in LST, based on the viewing
angle. Nevertheless, the two mosaics capture the drop of surface temperature compared to the in situ
net radiometer measurements (Figure 5).
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Figure 4. Scatterplots and linear regression lines of 100 random samples in the overlap
region of the thermal image pairs, which were used to produce the sunset and sunrise
thermal image mosaics.
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Figure 5. The drop of surface temperature as it is captured using aerial thermal images, the
thermal infrared (TIR) gun measurements and continuous land surface temperature (LST)
measurements from the net radiometer. Triangles and square represent the surface
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4.2. Soil Physical Properties

Remote sensing and field measurements are summarized in Table 3. We applied a linear correction
term to the TIR gun measurements at sunset to account for a cooling drift observed during data
collection. The correction term was estimated by repeating the measurement of the first plot at the end
of the data collection session and assuming a linear cooling of the soil during the measurement period.
There was no observed trend in TIR gun measurements at sunrise, and therefore, no correction was
applied. Field measurements shows a narrow range of surface temperatures at sunrise and sunset with
an approximate 4 °C thermal offset between the two.

The average remotely-sensed Tl is 3,361 Jm >K s and 3,410 J'm *K 's™'? for field TL,
which is relatively high compared to bare soil values (700-1,200 J-m 2K '-s™"?) [17]. Theta Probe
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measurements of soil moisture indicate a dry soil with volumetric moisture content ranging from
10-19%. The mechanical penetration resistance is highly variable, likely due to the abundance of
subsurface rock fragments and compacted soil layers in the studied field.

Table 3. Descriptive summary of remotely-sensed and in situ measurements (T1, thermal inertia.)

Variable Minimum Lower Median Mean Upper Maximum
Quartile Quartile
Apparent Electrical Conductivity
18.6 30.7 37.2 40.7 47.8 68.6
Horizontal-Parallel Mode [mS/m]
Volumetric soil moisture
9.7 12.7 15 14.5 16.3 19.4
(Theta Probe) [%]
Mechanical Resistance (average)
1,480 2,056 2,368 2,399 2,655 3,306
[kPa]
LST-sunset (field) [°C] 14.2 14.5 14.6 14.6 14.8 15
LST-sunrise (field) [°C] 9.6 10.1 10.2 10.2 10.4 10.7
Lst-sunset (remote) [°C] 15.2 15.5 15.5 15.5 15.6 15.9
Lst-sunrise (remote) [°C] 10.9 11.1 11.2 11.2 11.3 11.5
TI, (field)
2 o1 12 2,894 3,262 3,357 3,410 3,609 3,872
[Jom “K s ]
TI. (remote)
2 1 12 3,068 3,287 3,348 3,361 3,430 3,581
[Jom “K s ]

4.3. Relationships between Field Measurements and Remote Sensing Imagery

We will first explore the correlations between field/remotely-sensed surface temperature and
thermal inertia before we present empirical models of TI, as explained by measured soil properties. In
this context, we expect that the effect of grass cover is more pronounced in the estimates of
remotely-sensed LST and TI, compared to field LST and TI.. Consequently, remotely-sensed variables
are based on an average of five pixels between the rows (at each plot location), and the grass covered
pixels are dominant. Field and remotely-sensed TI. have a moderate positive correlation of 0.37
(p-value of 0.065; Table 4), similar to the correlation between field and remotely-sensed LST at sunset
(0.39, p-value of 0.053). At sunrise, there is no correlation of remote and field LST (0.08, p-value of
0.721). The low correlation indicates non-proportional variations between remotely-sensed and field
measurements over the 25 locations, which is likely due to collecting the measurements over a longer
time (not in an instantaneous fashion), the limited field of view for ground measurements and the
nonstandard view angle of the non-contact thermometer.

Table 4. Pearson’s correlation between field and remote measurements of land surface
temperature and thermal inertia (TL).

Variables Correlation Coefficient (p-value)
LST (remote), LST (field) at local sunrise 0.075 (p =0.721)
LST (remote) vs. LST (field) at local sunset 0.392 (p = 0.053)

TI. (remote) vs. TI, (field) 0.374 (p = 0.065)
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The correlation analyses show a weak to near-zero correlation of TI. and surface temperature
variables with the soil-related predictor variables (Table 5). Correlation is strongest between soil
moisture and remotely-sensed TI., as well as field Tl (0.50 and 0.39, respectively). Soil moisture
content also correlates positively (negatively) and non-significantly with surface temperature at sunrise
(sunset). These relations clearly indicate the sensitivity of TI; to moisture content, even under a grass
canopy, compared to LST at sunset or sunrise. There is also some evidence of a negative correlation
of T, with EM38 and possibly a positive, but weak and non-significant, correlation with

mechanical resistance.

Table 5. Pearson’s correlations of thermal inertia and surface temperatures with the
predictor variables. The area under the receiver operating characteristics curve (AUROC)
is reported for the binary mechanical resistance.

EM38 Horizontal Theta Mechanical Mechanical Resistance
Parallel Probe Resistance Average (0/1)
Tlc (field) —0.057 0.392 0.108 0.699
TIc (remote) —0.351 0.500 0.167 0.706
LST-sunset (field) 0.199 -0.274 —-0.326 0.688
LST-sunrise (field) 0.085 0.316 —0.066 0.614
Lst-sunset (remote) 0.128 —0.331 —-0.195 0.772
Lst-sunrise (remote) —0.267 0.249 —0.001 0.522

4.4. Regression Relationships between Thermal Inertia and Soil Properties

All three linear models relating TI, measurements to soil properties show remarkably similar
structure and comparable coefficient estimates (Table 6). Locations with five percentage point higher
soil moisture have an about 100 unit higher remotely-sensed TI. or a 150 unit higher field TI. (all
p-values < 0.10) when accounting for the effects of the other variables included in the models. The
mechanical resistance indicator variable is also included in all models; locations with the presence of
consolidated or rock substrate are associated with an estimated ~80 unit higher remotely-sensed TI, or
~140 unit higher field TI, subject to substantial uncertainty (p-value < 0.10, only for the former).
EM38 measurements are only selected into the model for remotely-sensed TIl., suggesting that
locations with 20 m-S/m higher apparent electrical conductivity had an estimated ~40 unit lower TI,,
although this effect is not significant.

The models account for less than half of the variation in the response variables (R* between 17%
and 42% of total TI. variation). The largest coefficient of determination is achieved for
remotely-sensed T, which can be attributed to the variance reduction by spatial aggregation (Table 3).
This variance reduction may also explain the consistently smaller coefficient estimates in the model for
remotely-sensed TI.. The results of the mixed-effects models (where the inter-row sampling position is
selected as a random effect) suggest that there is a significant inter-row variability, as indicated by the
pseudo R? values.
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Table 6. Summary of statistical models, including the coefficient estimates and their
standard errors in square brackets; in parentheses, p-values for two-sided tests. Average
mechanical resistance is not included in any of the models.

Response  Intercept Theta EM38 Mechanical R? Residual Standard
Variable Probe Resistance (0/1) (adjusted R?) Deviation
TI, (field) 2,863.72 34.57 - 138.17 0.224 227.2
[17.59] [97.73] (0.153)
(0.062) (0.171)
TI, 3,118.101 21.365 -2.313 81.965 0416 105.6
(remote) [8.265]* [1.589] [45.721] (0.333)
(0.01)) (0.160) (0.087)
TI, (field)  2,950.321 31.0470 - 139.143 0.167* 287.9%**
In the mixed- [11.385] [86.944] 0.624**
effects model (0.009) (0.116)

* Pseudo-R? without random effects; ##*Pgeudo-R? with random effects; *** without random effects.
5. Discussion
5.1. Thermal Inertia and Soil Properties

TI. values were found to be higher than the bare soil TI range. In Equation (2), small changes in
surface temperature or net radiation resulted in substantial changes in calculated TI values. It is
suggested that the observed TI. values were due to reduction in AT, which are more susceptible to
error than net radiometer measurements. Lamb et al. [2] had shown that unless the pixel size was much
smaller than the inter-row distance pixel, digital number values would always be a mix of grape
canopy and the inter-row surface. In our study, the inter-row (2.4 m) was captured in four pixels,
thanks to the sub-meter resolution (0.6 m). Hall et al. [7] indicated three categories of pixels, when
pixel length was smaller than the inter-row distance: (a) vine only; (b) non-vine and (c) mixed pixels.
Given that we selected the corresponding pixels to the sampling plots and their four neighbors, which
translates to three pixels-wide (center pixel and the two neighbors), it is likely that the averaged
remotely-sensed LST contained both non-vines and mixed pixels. The mixed pixels were influenced
by sticking out branches of the vine rows. Unlike the grass leaves, grape canopy temperature was
significantly decoupled from the soil surface temperature and could cause further reduction of
estimated AT. Adding to that, the grass sod also modified the surface temperature, increased its buffer
capacity and resisted change in surface temperature.

Nevertheless, soil properties explained a substantial proportion of the variation of thermal inertia
within a vineyard, both in the remotely-sensed and the field analysis (Figure 6). While the limited
overall spatial variability of surface and substrate properties within a single vineyard had to be taken
into consideration when interpreting coefficients of determination and hypothesis tests in this context,
the estimated effect sizes for soil moisture content and mechanical resistance were encouraging
indicators of the influence of these two variables on thermal inertia. Apparent electrical conductivity
possibly showed too little variation in this study to provide results of practical relevance.
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A significant linear relationship was found between TI (field and remotely-sensed) and averaged
soil moisture content and mechanical resistance. The narrow range of soil moisture content allowed us
to approximate the relation using a linear relation, even though the theoretical model (Equations (3)
and (4)) was characterized by a logarithmic increase over a wider soil moisture range [25].
Furthermore, the theoretical model was sensitive to soil texture (variable y in Equation (4)). The sandy
texture of the vineyard had increased the sensitivity of TI. at lower moisture content, which was
consistent with the steep thermal inertia response to low soil moisture increase for coarse textured
soils; Figure 1b in [25].

5.2. Advantages of Remotely-Sensed Thermal Inertia

While remotely-sensed data evidently had a reduced spatial resolution compared to field
measurements, this spatial aggregation also reduced the effects of small-scale variation on statistical
results, while still providing data at a level of detail that was relevant to viticulture practice.
Remotely-sensed TI. was more indicative of a spatial average of soil moisture and less susceptible to
local variation, as indicated by the high statistical significance of Theta Probe regression coefficients
compared to the case of field TIL. Similar observation of enhancing the soil moisture estimation by
using aggregated thermal remote sensing data was noticed in a recent study by Minacapilli et al. [20].

Although the grass cover had been trimmed at each sampling spot, the average Theta Probe
measurements at the trimmed plots were representative of the spatial average of soil moisture content
over a larger radius than the trimmed plot area, because removing the grass was done on the day of
aerial imaging. The short-term exposure was unlikely to influence the soil moisture content of the
subsurface (=15 cm) under a dry condition. The observation that remote measurements (500 m) were
more correlated to soil moisture measurements than on ground electromagnetic probe (» values) was
remarkable. A positive relation was also found with the binary indicator of soil mechanical resistance,
although it was not significant.

The vegetative canopy was found to have strong effects on remotely-sensed land surface
temperature, as found by Kim and England [34]. For example, there was a noticeable difference
between the two scenes in each image mosaic, as indicated by the random sample from the overlap
region (Figure 4). This systematic difference in LST was likely induced by coregistration errors and
LST variability based on the structure of grass canopy and the instantaneous view angle (Equation (6)).
Adding to that, our estimated values of field TI. were approximately double the thermal inertia values
reported for bare soil surface. This increase was attributed to a partial plant cover, which is
characterized by a high TI. compared to the TI. of a bare soil surface.

5.3. Limitations of Field Estimated Thermal Inertia

The use of TIR guns to measure surface temperature and estimate thermal inertia was found to
impose several practical challenges. For example, there was a time lag between measuring the surface
temperature from one plot to another. This time lag resulted in further cooling of the plots at the end of
the measuring route. Adding to this, it was difficult to maintain a constant view angle of the unit under
manual operation.
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Remote and field estimates of TI, and LST were poorly correlated, especially LST around sunrise.
We speculated that the accuracy and representativeness of field measurements given a limited field of
view and a high inter-row variability might have caused this discrepancy. There was no clear
explanation as to why low correlations were obtained around sunrise, but the isothermal conditions and
lack of temperature contrast made it susceptible to noise.

Field TI, values were found to be higher than the bare soil TI range and in the same range of
remotely-sensed TI.. Although the grass was trimmed a few hours prior to taking the observations, the
root mass and remaining tissues still constituted a large portion of the exposed soil surface, which
could account for the elevated range of field TI.. Adding to that, it was difficult to calculate the exact
time difference (A7) between sunset and sunrise. We used the net-radiometer incoming shortwave
radiation as a guide. However, one should consider that vineyards were designed intentionally to
increase the sunlight on grapes’ canopy rather than on the vineyard floor. Previous studies [34,35]
showed a delay of the heating cycle at the ground surface for a few hours.

5.4. Improving Moisture Retrieval Using Thermal Inertia

The empirical results indicated that TI, had a potential for monitoring variation in soil moisture
content within a uniformly compacted field (i.e., equal mechanical resistance). Moreover, we showed
the possibility to extend TI. application to moderately vegetated vineyard soils. Despite the challenges
encountered in this study (i.e., limited range of soil moisture content, limited sample size, difficulties
in scheduling flights), our findings supported the promise of the TI technique.

Several issues need to be considered for future development of remotely-sensed TI; from nocturnal
cooling. For example, the complete characterization of atmospheric temperature and water vapor
content is a challenge. Measuring atmospheric variables simultaneously at the land surface and on the
aircraft could provide data to interpolate profiles of air temperature and water vapor and estimate
representative values for atmospheric correction. In our study, we have used incoming long wave
radiation to estimate reflected sky temperature. This method could yield a positive bias, because of the
different sensitivity range of each instrument. We suggest measuring the sky temperature using the
TIR thermometer directed at a low emissivity surface (i.e., aluminum surface). Moreover, plant canopy
is a major source of uncertainty. Therefore, including remote sensing products, such as the Normalized
Difference Vegetation Index (NDVI) [18,47], full waveform analysis of LIDAR data [48] and leaf area
index [49] to characterize the canopy density and leaf area index will succeed in reducing uncertainty.
In addition, NDVI can be used to estimate a spatially distributed surface emissivity map, rather than
using a constant emissivity value.

Soil moisture content contributed less to the variation in field TI., compared to remotely-sensed TI..
The results of the mixed effect models suggested that field measurements were susceptible to inter-row
variability. Therefore, a spatially distributed infrared sensor network could be used, to obtain a
temporally consistent measurement of surface temperature, at a specific time. Adding to that, surface
temperature had a significant inter-row variability, as indicated by the mixed-effects model (Figure 6).
Therefore, for vineyard applications, the height of the sensor should be increased in order to expand
the field of view and to avoid between row variability.
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Figure 6. Regression prediction of remotely-sensed and field Tlc models.
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Furthermore, the presented technique could be used for continuous monitoring of vineyards by
conducting regular flights during the growing season. A thermal inertia image, at a certain time in the
growing season, could be normalized using the minimum and maximum TI; of this season, assuming
that these points corresponded to the wilting point and field capacity. Further research must be
conducted to establish the use of Tl to approximate the Kersten function (Equation (5)) in order to
retrieve soil moisture content.

6. Conclusions

In the present study, we evaluated the relationships between soil moisture content, mechanical
resistance and thermal inertia (TI;) over a grass covered vineyard in the Niagara region, Canada. TI,
was calculated using surface temperature from two sensors; an airborne thermal camera (height = 500
meters AGL) and a handheld thermal gun (height =~ 1 meter AGL). Applying an expression to calculate
thermal inertia from cooling during the night revealed elevated TI. values as a consequence of the
influence of grape canopy (average TI. of 3,361 and 3,410 J-m >K 's™""* for remotely-sensed and field
TI, respectively). However, we found a significant relationship between TI, and soil moisture and
mechanical resistance, despite the limited range of soil moisture. For example, soil with five
percentage points higher soil moisture has an approximately 100 unit higher remotely-sensed TI, or a
150 unit higher field TI; (p-values < 0.10), considering that the mechanical resistance of that field does
not change. On the other hand, elevated mechanical resistance (due to the presence of consolidated
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rock or substrate) was found to have ~80 unit higher remotely-sensed TI. or ~140 unit higher field TI,
with higher uncertainty (p-value < 0.10, only for the former). In general, both soil variables explained
less than half of the TI, variability given the complex heating and cooling patterns associated with
vineyards. Furthermore, remotely-sensed TI. was more sensitive to in situ moisture variability
compared to handheld TI., due to the strong small-scale variability of surface temperature between
vine rows. Our results were encouraging for future research on extending thermal remote sensing of
soil moisture in heterogeneous land cover regions.
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