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Abstract: Satellite observations of surface reflected solar radiation contain information 

about variability in the absorption of solar radiation by vegetation. Understanding the 

causes of variability is important for models that use these data to drive land surface fluxes 

or for benchmarking prognostic vegetation models. Here we evaluated the interannual 

variability in the new 30.5-year long global satellite-derived surface reflectance index data, 

Global Inventory Modeling and Mapping Studies normalized difference vegetation index 

(GIMMS NDVI3g). Pearson’s correlation and multiple linear stepwise regression analyses 

were applied to quantify the NDVI interannual variability driven by climate anomalies, and 

to evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVI 

signal. We found ecologically plausible strong controls on NDVI variability by antecedent 

precipitation and current monthly temperature with distinct spatial patterns. Precipitation 

correlations were strongest for temperate to tropical water limited herbaceous systems 

where in some regions and seasons > 40% of the NDVI variance could be explained by 

precipitation anomalies. Temperature correlations were strongest in northern mid- to  

high-latitudes in the spring and early summer where up to 70% of the NDVI variance was 
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explained by temperature anomalies. We find that, in western and central North America,  

winter-spring precipitation determines early summer growth while more recent 

precipitation controls NDVI variability in late summer. In contrast, current or prior wet 

season precipitation anomalies were correlated with all months of NDVI in sub-tropical 

herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still 

account for part of the NDVI variance despite corrections. Nevertheless, this study 

demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate 

variability that are useful for global models. 

Keywords: GIMMS NDVI3g; climate-driven interannual variability; interference 

 

1. Introduction 

Over the past 30 years atmospheric CO2 levels have been rising as a result of fossil fuel emissions. 

Superimposed on the atmospheric CO2 growing trend are large interannual excursions (nearly 100% of 

the trend), and evidence strongly suggests that this interannual variability in the atmospheric CO2 

growth rate is driven largely by the terrestrial biosphere [1,2]. Global carbon cycle models are 

challenged to reproduce this CO2 growth rate variability, and explanations largely involve independent 

responses of terrestrial net primary production (NPP), heterotrophic respiration (RH), and fire 

emissions to climate anomalies such as those associated with ENSO events [3–6]. Understanding the 

potential for the terrestrial biosphere to mitigate or perhaps aggravate CO2 accumulation in the 

atmosphere may be as important for predicting future climate change as projections of future fossil 

fuel emissions. Improved forecasts of future trends in atmospheric CO2 will be possible, through the 

development of models that can realistically represent the processes controlling current and past 

terrestrial carbon fluxes [7].  

Precise modeling of NPP is key in terrestrial carbon cycle models, because NPP not only represents 

the net uptake of carbon from the atmosphere by vegetation but also affects other carbon fluxes by 

providing the substrate for RH and fuel for combustion by fire. Terrestrial NPP has been showed to 

play a central role in determining the local and global CO2 content of the atmosphere at temporal 

scales spanning hours [8] to epochs [9].  

Long-term satellite observations of vegetation “greenness” provide a record of variability that 

greatly improves modeling NPP in terrestrial carbon cycle models. Satellite derived greenness refers to 

various surface reflectance indices that can be measured with satellite instruments. These indices 

express the amount of green vegetation absorbing solar radiation, a state that is often nearly 

proportional to photosynthetic productivity [10–12] and net ecosystem carbon exchange [13]. Global 

carbon cycle models often rely on satellite observations of vegetation greenness to either prescribe 

phenological variability [14] or to evaluate vegetation dynamics in prognostic models [15]. 

Polar orbiting satellites have provided global measurements of the greenness index Normalized 

Difference Vegetation Index (NDVI) at sub-monthly time steps and/or moderate spatial resolutions 

(≥30 m) for decades. NDVI is commonly used to derive canopy solar radiation absorptance for 

estimating NPP [3,16,17]. It has also been used in global climate models to prescribe vegetation 
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influences on the hydrological and surface energy cycle [18–21]. NDVI has been shown to indicate 

variability in vegetation productivity in response to climate variability [22] and human management [23]. 

NDVI may not capture all the climate driven variability in NPP, however, and includes noise and biases 

that interfere with diagnosing true vegetation responses to climate [24]. Even different processing of the 

same NDVI data set can result in large differences in modeled global carbon fluxes [25]. 

The purpose of this study is to quantify how much of the interannual variability in a new NDVI data 

set reflects real responses of vegetation to interannual climate variability, and to evaluate whether the 

responses of NDVI to climate variability are meaningful enough to be of value for modeling 

vegetation activity. This NDVI data set is the latest version of Global Inventory Modeling and 

Mapping Studies (GIMMS) NDVI3g. It is derived from NOAA’s Advanced Very High Resolution 

Radiometer (AVHRR) satellite record, and is the longest global sub-monthly time series of greenness 

index available (July 1981–present), more than twice as long as those available from newer sensors 

such as NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS, February 2000–present). 

Since this NDVI data set is used as input to or for benchmarking global carbon, water and energy cycle 

models, it is important that we understand how much variability in vegetation growth is captured by 

this NDVI data set and if the causes of variability are linked to climate (precipitation, temperature, and 

solar radiation), disturbance (fires and large area outbreaks of pests), human management (e.g., 

irrigation and fertilization), or residual errors. Other studies have been published that reveal 

correlations between climate and NDVI [26–30], but none have combined analyses on monthly 

anomalies, lead time dynamics, cumulative climate effects and non-climate signal interference at 

global scales [31,32], and none have used global NDVI time series longer than 20 years. 

We explored the sources of variability in the GIMMS NDVI3g, in particular the ability of the 

GIMMS NDVI3g to capture vegetation responses to climate variability by: (1) evaluating the performance 

of GIMMS NDVI3g anomalies in comparison to the NDVI anomalies from the more advanced MODIS 

instrument; (2) performing correlation analysis between the anomalies of GIMMS NDVI3g and climate 

variables (precipitation and temperature) and comparing our results to previous studies; and (3) applying 

multiple linear regression to estimate the amount of GIMMS NDVI3g variance that is driven by climate 

versus that caused by interference in surface reflectance signal (e.g., snow, aerosols, clouds, and residual 

effects). Our results corroborate and expand in detail previously reported responses of NDVI to climate 

variability. We argue that a significant part of the variability in GIMMS NDVI3g reflects a true response 

of vegetation to climate variability at monthly to interannual time scales. Our analyses identified unique 

regional and seasonally specific dynamics in the response of vegetation to antecedent precipitation. 

Identification and quantification of the climate responses of vegetation represented in the GIMMS 

NDVI3g data will lead to improved understanding and prediction of interannual variability of, among 

other things, terrestrial carbon fluxes and atmospheric CO2 growth rate. 

2. Data Sets and Methods 

2.1. Data Sets  

The GIMMS NDVI3g data set (here after GIMMS NDVI or NDVI unless specifically defined 

otherwise) was processed in a way consistent with and quantitatively comparable to NDVI derived 
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from improved sensors such as MODIS and SPOT-4 Vegetation, and was corrected for dropped scan 

lines, navigation errors, data drop outs, edge-of-orbit composite discontinuities, and other 

artifacts [33]. The data processing algorithm also minimized solar zenith angle effects introduced by 

orbital drift and effects of changes in the sun-target-sensor geometry, corrected for bias using  

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data, and corrected for volcanic stratospheric 

aerosol effects from the El Chichon (1982–1984) and Mt Pinatubo (1991–1993) volcanic 

eruptions [33,34]. Calibration and correction for orbital drift artifacts were accomplished by empirical 

mode decomposition (EMD); cloud contamination was filtered when the NDVI values drop beyond 

95% confidence interval; and maximum value compositing (MVC) was used to minimize atmospheric 

(e.g., aerosols) and radiative geometry effects [33,34]. For MODIS NDVI, in addition to MVC a more 

sophisticated approach was used for atmospheric corrections: NDVI was derived from surface 

reflectances corrected for atmospheric effects [35]. The atmospheric correction algorithm of MODIS 

surface reflectances used an atmospheric radiative transport model and accounted for the effects of 

gaseous (O3, O2, CO2, and water vapor) and aerosol scattering and absorption, adjacency effects 

caused by variation of land cover, surface/atmosphere Bidirectional Reflectance Distribution Function 

(BRDF), atmosphere coupling effects, and contamination by thin cirrus [36,37]. 

We acquired GIMMS NDVI at the native resolution of 0.083°, bi-monthly. Since long term 

observational global climate data sets are at much coarser spatial scales, we focused our analysis on 

spatial scales of 0.25° to 1°. We aggregated the data by averaging to 0.25°, 0.5°, and 1° spatial 

resolutions, and by averaging bi-monthly to produce monthly time steps, depending on the native 

resolutions of the comparison data sets. The temporal and spatial resolutions considered here reflect 

those typical to global carbon, water, and energy cycle models especially those coupled to atmospheric 

transport. Monthly MODIS Terra (MOD13C2 V5, 2001–2010) and Aqua (MYD13C2 V5, 2003–2010) 

NDVI were also acquired (http://reverb.echo.nasa.gov) and regridded by averaging from 0.05° to 0.25° 

for comparisons. 

We used the newly released monthly Global Precipitation Climatology Project (GPCP) V2.2 

(http://precip.gsfc.nasa.gov). This data set has complete global coverage from January 1979 to 

December 2010, and a native spatial resolution of 2.5° [38]. We disaggregated the 2.5° data to 0.5° 

with no interpolation, and then averaged 0.5° to obtain the 1° data. We assume that the scales of 

significant regional climate anomalies are on the order of or larger than 2.5° × 2.5°. For comparison 

we also obtained Tropical Rainfall Measuring Mission (TRMM, 1998–2010) 0.25° daily precipitation 

product (3B42 V6, http://mirador.gsfc.nasa.gov) with nominal spatial domain of 50°N–50°S, and 

aggregated it from daily to bi-monthly and monthly temporal resolutions.  

We constructed the temperature data set from the 0.5° Climate Research Unit (CRU CL 1.0, 

http://www.ipcc-data.org/obs/get_30yr_means.html) mean monthly climatology [39] and 2° Goddard 

Institute for Space Studies (GISS, 1200 km smoothing radius, http://www.giss.nasa.gov) monthly 

surface anomalies which extend for more than 130 years from 1880 to present [40]. The base period of 

the CRU climatology and GISS anomalies was 1961–1990 [39]. The derived temperature data set has 

a spatial resolution of 0.5° and a monthly temporal resolution. 

Monthly MODIS snow, aerosol and cloud data for 2000–2010 were obtained to evaluate how these 

variables interfere with estimates of vegetation variability derived from NDVI. The snow product is 

MOD10CM V5 (http://reverb.echo.nasa.gov) at 0.5° spatial resolution aggregated from 0.05° 
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resolution [41]. Aerosol and cloud data were regridded to 0.5° from the 1° MOD08_M3 V5.1 product 

(ftp://ladsweb.nascom.nasa.gov). All regridding from fine to coarser scales was accomplished by 

averaging finer data within the coarser grid cell. Regridding from coarse to finer scale was achieved by 

assigning the value of the coarser grid cell to the finer grid cells within. Interpolation was not used  

in regridding. 

2.2. Methods 

For all the time series of GIMMS and MODIS NDVI, climate variables and potential interfering 

elements, we generated their monthly anomalies by subtracting their respective 29-year (for GIMMS 

NDVI, GPCP precipitation and GISS temperature, 1982–2010), 13-year (for TRMM precipitation, 

1998–2010), 11-year (for snow, aerosols and clouds, 2000–2010), or 8-year (for MODIS Terra and 

Aqua NDVI, 2003–2010) averaged annual cycles following Equation (1) below: 

1
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monthly anomaly y m monthly value y m
N
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(1)

where y and m are the year and month of the monthly value, respectively, and N is the number of years 

of the data set. This procedure removes the seasonal cycles of the data sets and allows us to study the 

relationship between the interannual variabilities of NDVI and climate variables. The trends in the 

anomaly time series were not eliminated because they are considered part of the interannual 

variabilities, and they are strongly linked to climate change in some regions such as northern high 

latitudes [26]. The trends are generally very small (within ± 0.01 yr−1, [42–46]) compared to the 

interannual variabilities in NDVI, accounting for <10% of the anomalies. For temperature, the GISS 

anomalies were not directly used because their base period (1961–1990) is not consistent with that of 

the NDVI data (1982–2010). 

All the statistical analyses (correlations and regressions) were conducted on monthly anomalies 

unless specified (e.g., bi-monthly for GIMMS NDVI and TRMM precipitation anomaly correlations). 

NDVI and precipitation data used in the analyses were GIMMS NDVI3g and GPCP precipitation, 

respectively, unless specified. 

We conducted Pearson’s correlation analyses at the grid cell level between GIMMS NDVI and 

MODIS Aqua NDVI anomalies at 0.25° spatial resolution for 2003–2010, between GIMMS NDVI and 

GPCP precipitation anomalies at 1° spatial resolution for 1982–2010, and between GIMMS NDVI and 

GISS temperature anomalies at 0.5° spatial resolution for 1982–2010. Selected spatial resolutions 

reflect the compromise between fine spatial scale NDVI signal and the coarser scale climate data. 

Correlation between GIMMS and MODIS Aqua NDVI was conducted on anomalies of all months 

(N = 96 months of 8 years), and the results were compared with the correlation between MODIS Aqua 

and Terra NDVI anomalies (N = 96 months of 8 years). Aqua NDVI, instead of Terra NDVI, was used 

to correlate with GIMMS NDVI because of the sensor degradation issue detected on the Terra 

platform [47]. For GIMMS NDVI–GPCP precipitation and GIMMS NDVI–GISS temperature, 

correlation analyses were performed on the anomalies of both all months (N = 348 months of 29 years) 

and individual months (N = 29 years), each with varying climate lead times to examine how fast 
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vegetation reacts to climate anomalies. Only the correlation coefficients that were significant at 95% 

confidence level (p < 0.05, two-tailed) are reported. 

We recognized that precipitation can only approximate soil moisture limitations on vegetation. 

Actual soil moisture depends not only on precipitation but also on interception, evaporation, lateral 

and vertical runoff, and soil characteristic such as depth and water holding capacity. To account for an 

energy constraint on soil moisture we analyzed correlation patterns for individual months between the 

anomalies of GIMMS NDVI and a water availability index defined as GPCP precipitation minus 

potential evaporation derived from net radiation data (2000–2009, from CERES instruments, 

Wielicki et al. [48], http://ceres.larc.nasa.gov/) and GISS temperature following the Priestley-Taylor 

method [49]. The NDVI–water availability anomaly correlation patterns (not shown) were generally 

the same as those for GPCP precipitation alone though the NDVI–water availability anomaly 

correlations were degraded by the shorter time length of the data. 

We tested the assumption of Gaussian distribution of variance and possible bias caused by outliers 

using a non-parametric approach (Spearman’s rank correlation) on the NDVI–precipitation and  

NDVI–temperature correlations. We found good agreement between the results obtained from 

Pearson’s correlation and Spearman’s rank correlation (see Figure S1). All other results presented are 

based on the Pearson's correlation. 

Stepwise regression analysis was applied per grid cell to estimate the amount of NDVI variance that 

could be attributed to climate (antecedent precipitation and current monthly temperature), known 

interference for which data were available (current monthly precipitation, snow, aerosols and clouds), 

and a residual term that combined other unidentified sources of NDVI variability that might include 

disturbance, human management and underestimated errors. This analysis was done for each month to 

reveal the seasonality of the relationship of the variables. Only the coefficients of determination that 

were significant at 95% confidence level (p < 0.05) were reported. 

2.2.1. Correlation Analyses on the NDVI–Climate Anomalies of All Months 

The NDVI and climate anomalies were aggregated to a time series each (N = 348 months of 

29 years), and correlation was carried out for climate lead times up to 6 months for precipitation and 

up to 4 months for temperature. For the lead 0 case, correlation analysis was conducted on the full time 

series of NDVI and precipitation or temperature anomalies. For lead k (precipitation or temperature 

leading NDVI by k months), we dropped the first k values from the NDVI anomaly array and the last k 

values from the precipitation or temperature anomaly array and conducted the correlation analysis.  

We evaluated whether finer temporal and spatial resolutions influenced the strength or spatial 

distribution of correlations between NDVI and precipitation anomalies by comparing results from the 

1°, monthly NDVI and GPCP precipitation data which we used for the remainder of our analyses with 

results from 0.25°, bi-monthly NDVI and TRMM precipitation. The spatial distributions of 

correlations were largely unaffected by the temporal and spatial scale changes though NDVI–TRMM 

precipitation correlations were weaker due to the shorter time span of the TRMM data. 

Since we observed significant positive NDVI–precipitation correlations for multiple lead times, we 

further examined the correlations between NDVI anomaly and precipitation anomaly cumulated for 

varying lead time durations. We applied correlation analysis to NDVI anomaly of the current month 
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and precipitation anomaly summed over a duration ranging from 1 to 10 months (cumulative 

precipitation anomaly hereafter, N = 348 – duration + 1). Details about correlation analysis for varying 

durations can be found in Wang et al. [50]. Briefly, for duration of k months, the cumulative 

precipitation anomaly was the sum of precipitation anomalies over a k-month period corresponding to 

lead = 0 to k–1 months. The results of these analyses were presented in detail later but they showed 

negative correlations between NDVI anomalies and precipitation anomalies at 1-month duration 

(i.e., lead 0) which were not ecologically meaningful and were likely the result of cloud interference 

and were thus not used in further analyses. The highest correlations were found between anomalies in 

prior 6 months cumulative precipitation and NDVI. From these results we identified 6-month duration 

from lead 1 to 6 months (lead 1 + 2 + , … , + 6) to be the optimum duration to represent the total 

effects of precipitation on vegetation growth, and this 6-month duration was applied to correlation 

analyses on NDVI–cumulative precipitation correlations for individual months in Section 2.2.2. 

When dealing with correlations between two time series (e.g., the NDVI and precipitation 

anomalies of all months) we have to account for the effect of temporal autocorrelation (also called 

serial correlation), otherwise the significance of correlation would appear to be higher than it actually 

is (i.e., giving a smaller p value). Ordinary correlation assumes that the observations of a variable are 

independent of each other. However, this assumption is generally invalid for time series. In a time 

series, very often the observation at time i is closely associated with the observations at time  

i − 1, i − 2, … , meaning that temporal autocorrelation exists in the time series. For example, NDVI 

anomaly in June generally does not deviate much from NDVI anomaly in May. For a time series with 

N observations Xi (i = 1, 2, … , N), if there is a significant correlation between the subsets 

Xi (i = 1, 2, … , N−k) and Xi+k (i + k = 1+k, 2+k, … , N), this correlation is called the kth-order 

temporal autocorrelation and the associated correlation coefficient is the kth-order temporal 

autocorrelation coefficient of this time series [51]. Few previous studies have corrected their 

correlation results for temporal autocorrelation. Without such correction, the strength of the 

correlations would be overestimated and the interpretation of the results would be misleading [51]. 

For our correlation analyses between NDVI and climate variable anomalies of all months, we 

accounted for the effect of the 1st-order temporal autocorrelation following the procedure by Dawdy 

and Matalas [51]. Ideally higher orders of temporal autocorrelation should also be accounted for until 

the temporal autocorrelation of at least one of the two time series becomes insignificant. However, this 

process is very laborious given the large number of land grid cells. Practically only the 1st-order 

temporal autocorrelation is considered [52]. This is reasonable because for NDVI and climate 

variables the correlation between values of current month and last month is likely the strongest [53]. 

Briefly, 3 steps [51] were applied to each land grid cell to estimate the correlation coefficient 

(r value) and significance of the correlation coefficient (p* value) that is corrected for the 1st-order 

temporal autocorrelation. Take the GIMMS NDVI–GPCP precipitation anomaly correlation at lead 0 

as an example, so here the two time series are 1982–2010 monthly NDVI and precipitation anomalies 

(N = 348). First, the correlation coefficient (rNDVI–precipitation) and the associated p value were calculated. 

Second, the 1st-order temporal autocorrelation coefficients rNDVI(1) and rprecipitation(1) of the NDVI 

anomaly time series and the precipitation anomaly time series, respectively, were computed. Finally, if 

both rNDVI(1) and rprecipitation(1) are significant at 95% confidence level, we derived the effective 
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number of degrees of freedom (n*) and the adjusted p value (p*) from the sample size N and the 

correlation coefficients above using Equations (2)–(4): 

n* = n ×
1− rNDVI (1)× rprecipitation(1)

1+ rNDVI (1)× rprecipitation (1)
 (2)

t = rNDVI−precipitation × n *

1− rNDVI−precipitation
2

 (3)

p* = 2 × [1− f (t)
−∞

t dt] (4)

here n = N − 2, and f(t) is the probability density function of Student’s t-distribution. If either rNDVI(1) 

or rprecipitation(1) is insignificant at 95% confidence level, no correction is needed and p* is the same as 

p. The NDVI–precipitation anomaly correlation is considered significant if the p* value is below 0.05. 

In summary, the correlation coefficient rNDVI–precipitation remains the same but the significance of the 

correlation coefficient is degraded (i.e., p* > p) during this process. 

2.2.2. Correlation Analyses on the NDVI–Climate Anomalies of Individual Months 

Correlation analysis was also conducted for each month of the year (January to December) for 

climate lead times up to 7 months for precipitation and up to 4 months for temperature (N = 29). 

Correlations generally deteriorated after ~4 months, but in some places NDVI–precipitation 

correlations remained significant positive for lead times up to 6 months. Therefore, similar to the 

correlation of all-month data, for each month we accounted for the long-lasting effect of precipitation 

on NDVI by further analyzing the correlations between NDVI anomalies and precipitation anomalies 

cumulated over a 6-month duration from lead 1 to 6 months (N = 29), and the correlation results will 

be used in Section 2.2.3 to estimate the fraction of NDVI variance driven by climate. 

The NDVI–temperature correlations of northern high latitudes need to be interpreted with caution 

for the winter and spring months due to the interference of snow. In warmer winters and springs, there 

is less snow cover and the land surface produces a higher NDVI signal. However, this does not 

necessary mean a higher rate of vegetation growth. We detected potential snow interference in the  

NDVI–temperature correlations when NDVI–snow correlations were significantly negative (p < 0.05, 

N = 132 for all months and N = 11 for individual months). For both all months and individual months 

we corrected snow interference by setting the NDVI–temperature correlation of a grid cell to zero if 

significant negative NDVI–snow correlation was observed for this grid cell. 

2.2.3. NDVI Variance Explained by Climate 

The fraction of the NDVI variance explained by climate (R2) can be approximately computed from 

the correlation coefficients (calculated in Section 2.2.2) of NDVI–cumulative precipitation (lead 1–6) 

and NDVI–temperature at lead 0 corrected for snow interference. NDVI–cumulative precipitation 

correlation was used to account for the long-lasting effect of precipitation on vegetation, and  

NDVI–temperature correlation at lead 0 was selected because it’s the strongest among all the lead 

times we tested (from 0 to 4 months).  
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For each land grid cell in each month, if only one of the two correlation coefficients (cumulative 

precipitation or temperature) was significant positive, R2 was the square of the significant positive 

correlation coefficient; if both were significant positive, R2 was essentially the coefficient of 

determination of the multiple linear regression of NDVI on cumulative precipitation and temperature 

and could be calculated using the following equation [54]: 
2 2

2
2

2

1
NDVI precipitation NDVI temperature NDVI precipitation NDVI temperature precipitation temperature

precipitation temperature

r r r r r
R

r
− − − − −

−

+ − × ×
=

−
 (5)

where r is the correlation coefficient. For all other cases, R2 was zero. Only significant positive correlations 

were considered here because they were ecologically meaningful: increased vegetation activity with 

warmer temperatures in mid- and high- latitudes and with higher rainfall in water limited regions. 

2.2.4. NDVI Variance Explained by Accounting for Atmospheric Interference 

After estimating the variance in NDVI caused by climate variability we briefly addressed the 

variance not caused by climate. Snow, aerosols and clouds among others can interfere with detection 

of vegetation greenness by satellites. The GIMMS NDVI has been adjusted to account for many of 

these effects, but such effects have not been fully eliminated. The need for snow correction in the 

interpretation of the temperature correlations is one example of interfering elements that might 

contribute to NDVI variance. Precipitation of current month was considered as another potential 

interfering element because it was negatively correlated with NDVI in many regions (details will be 

presented in Section 3.2) which is not ecologically meaningful. 

To examine how much of the NDVI variance was explained by the effects of snow, aerosols, clouds 

and precipitation of the current month, forward stepwise multiple linear regression analysis [55] was 

applied to each grid cell and each of the 12 months. NDVI anomaly was the dependent variable, and 

anomalies of snow, aerosols, clouds and precipitation of the current month were independent variables 

(N = 11, 2000–2010). All of the independent variables included in the regression models were 

negatively correlated with NDVI anomalies. More than 85% of the final regression models (p < 0.05) 

were found to have only one independent variable, so the multicollinearity problem was negligible and 

no correction was needed. 

2.2.5. NDVI Variance Unexplained 

Even after taking into account climate and the interference identified above, there was still some of 

the NDVI variance that was not explained. To determine the extent of this fraction, forward stepwise 

multiple linear regression analysis was employed to the anomalies of NDVI, cumulative precipitation 

(lead 1–6), temperature, snow, aerosols, clouds and precipitation of the current month (lead 0) on all 

land grid cells where data were available, with NDVI anomaly as the dependent variable and the rest 

as independent variables (N = 11, 2000–2010). The coefficient of determination (R2) of the regression 

represents the percentage of NDVI variance driven by climate anomalies and atmospheric interference 

listed above, and the fraction of the NDVI variance unexplained was estimated as 1 − R2. More than 

79% of the final regression models (p < 0.05) had only one independent variable, so again the 

multicollinearity problem was negligible. 
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3. Results and Discussion 

3.1. Comparisons with MODIS 

Though the GIMMS AVHRR data span almost three times the length of MODIS, the latter was 

designed to measure specific narrow reflectance bands, to have explicit atmospheric corrections, to be 

highly calibrated, and to minimize sun-surface-platform radiative geometry effects. Many design 

features of MODIS were implemented to overcome problems originally identified in the AVHRR 

record. The new version of the GIMMS NDVI data set represents the culmination of 3 decades of 

experience with AVHRR NDVI focused on identifying and minimizing known problems. To gain 

insight about the robustness of the GIMMS NDVI for analysis of its longer time period we compared 

GIMMS and MODIS monthly NDVI anomalies for the 2003–2010 Aqua period. Seventy six percent 

(76%) of land grid cells showed statistically significant (p < 0.05) positive correlations between 

GIMMS NDVI and MODIS Aqua NDVI anomalies (Figure S2a). This number was close to the 

percentage (87%) of land grid cells that had statistically significant (p < 0.05) positive correlations 

between the anomalies of MODIS Aqua and Terra NDVI (Figure S2b). Correlations between GIMMS 

and MODIS Aqua were generally high except over tropical forests, eastern temperate regions and a 

band across boreal Asia (Figure S2a). These same regions also showed lower correlations between 

Terra and Aqua NDVI (Figure S2b), indicating high uncertainty in the interannual NDVI signal in 

these regions for all sensors. Gallo et al. [56] and Fensholt and Proud [43] reported similar agreement 

between older versions of GIMMS NDVI and MODIS NDVI. 

These comparisons build confidence that at the scales of our analysis the GIMMS NDVI is 

comparable to the more advanced but shorter time length MODIS data. GIMMS NDVI should perform 

nearly as well as MODIS in detecting climate driven variability but in the case of GIMMS NDVI over 

the longer 30.5-year record. 

3.2. Precipitation Controls on NDVI Variability 

To characterize the response of vegetation measured as NDVI to precipitation we examined what 

regions and what latencies occur in the correlation between NDVI and precipitation. For each grid cell 

we aggregated all monthly NDVI anomalies (N = 348, January 1982 to December 2010) and identified 

significant correlations with precipitation anomalies at various precipitation anomaly lead times. We 

found that globally positive correlations were the strongest and most spatially extensive at lead 1 

(Figure 1a), and locally significant positive correlations could last up to a lead of 6 months. The 

patterns of positive correlations (Figure 1a) were closely associated with shrub, grass, and crop land 

cover types south of ~60°N (Figure 1b, 2001 MODIS land cover, MCD12C1 V5, UMD Scheme, [57]), 

higher fractional herbaceous cover (Figure 1c, MODIS Vegetation Continuous Fields MOD44B V5, [58]), 

and higher aridity index (Figure 1d, [59]). Generally NDVI–precipitation anomaly correlations were 

strongest for grasslands, shrublands, croplands, and savannas and lowest for forests. The lower 

correlations between NDVI and precipitation in forests probably reflect in part lower water limitations 

compared to the regions of high correlations. 
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Figure 1. Global maps of (a) correlation coefficients (corrected for temporal autocorrelation, p* < 0.05) between all monthly Global Inventory 

Modeling and Mapping Studies normalized difference vegetation index (GIMMS NDVI) and 1-month lead precipitation anomalies for  

1982–2010 (N = 347 months), (b) 2001 land cover (MCD12C1) [57], (c) herbaceous cover fraction (MOD44B) [58], and (d) aridity index 

(AI) [59]. 26.1% of land grid cells have significant positive correlations (a). Land cover in (b) is classified as: 1—evergreen needleleaf forests; 

2—evergreen broadleaf forests; 3—deciduous needleleaf forests; 4—decidous broadleaf forests; 5—mixed forests; 6—close shrublands;  

7—open shrublands; 8—woody savannas; 9—savannas; 10—grasslands; 11—permanent weblands; 12—croplands; 13—urban and built-up 

lands; 14—cropland/natural vegetation mosaic; 15—snow and ice; 16—barren lands. In the aridity map (d), the climatic zones are classified 

as: hyperarid (AI < 0.03, red), arid (0.03 < AI < 0.20, orange), semi-arid (0.20 < AI < 0.50, yellow), dry subhumid (0.50 < AI < 0.65, light 

green), and humid (AI > 0.65, dark green) (Spatial resolution: (a) = 1°; (b,c,d) = 0.5°). 
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Figure 2. Global maps of correlation coefficients (p* < 0.05) between all monthly GIMMS NDVI and cumulative Global Precipitation 

Climatology Project (GPCP) precipitation anomalies for durations varying from 1 to 3 months for 1982–2010 ((a–c), N = 348 − duration + 1), 

and percentage of land grid cells that have significant (p* < 0.05) positive correlation coefficients as a function of duration (d). Note that 1-month 

duration is equivalent to 0-month lead. All the correlation coefficients have been corrected for temporal autocorrelation (Spatial resolution: 1°). 
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Figure 3. Month of which precipitation is most strongly correlated (positively, N = 29, 1982 to 2010) with GIMMS NDVI of a particular 

month. For each of the 12 months (a–l), NDVI is generally most dependent on precipitation 1 month ahead (Spatial resolution: 1°). 
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Figure 3. Cont. 
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NDVI correlations with cumulative precipitation summed over various lead times were examined to 

account for the long lasting effects of precipitation. Figure 2a–c shows the spatial patterns in 

correlations with cumulative precipitation of all months (N = 348 − duration + 1) for durations of 1 to 

3 months (see Figure S3 for correlations for durations up to 10 months). The number of global land 

grid cells with significant positive correlations increased markedly from 1-month duration (lead 0) to  

2-month duration (lead 0 + 1) and leveled off at 7-month duration (lead 0 + 1 + , … , + 6), and 80% of 

the land grid cells that have significant positive correlations at 7-month duration were significant at  

2-month duration (Figure 2d). The largest increase in the number of pixels with significant positive 

correlations occurred at lead 1. Cumulative precipitation anomalies at 1-month duration (lead 0) were 

negatively correlated with NDVI anomalies in some boreal regions and in part of Southeast Asia and 

South America (Figure 2a). Such negative correlations are not ecologically meaningful and thus 

precipitation of the current month was treated as an interfering element in the NDVI signal  

in Section 3.5. 

Results from lead correlation analyses for individual months showed that globally the pattern of 

strongest correlations at lead 1 was valid for all 12 months of the year, and the strongest correlations 

generally occurred during each region’s respective rainy season (Figure 3). For example, in central 

North America, central Eurasia, India and the Sahel, the strongest correlations with NDVI anomalies 

in June, July, August, September and October were for precipitation anomalies in May, June, July, 

August, and September, respectively (Figure 3f–j). Another example is eastern and southern Africa 

and Australia, where NDVI anomalies in each month of December to April were most strongly 

correlated with precipitation anomalies 1 month before (Figure 3l and 3a–d). Figure 4 shows the 

percentage of global land grid cells that have positive correlations (p < 0.05) between NDVI and 

precipitation anomalies as a function of lead times from 0 to 6 months for each month of the year. 

Often correlations were negative at lead 0 for some areas (Figure 2a), but strong positive correlations 

emerged at leads of 1 and 2 months and peaked at lead 1 with 8–12% of total land grid cells having 

significant positive NDVI–precipitation correlations for all 12 months of the year (Figure 4). Longer 

leads showed diminishing correlations. These global patterns are consistent with regional studies using 

either NDVI or enhanced vegetation index (EVI) and either ground- or satellite-based climate 

data [50,60–62], and with the global analysis of Lotsch et al. [32]. 

Despite the general global pattern of strongest correlations at 1-month lead, in some temperate and 

subtropical herbaceous dominated regions NDVI responses to precipitation lead times varied seasonally, 

reflecting the dynamics of soil moisture availability. Prominent examples are described below. 

Correlation patterns over western and central North America exhibited seasonally varying 

dependence of NDVI on precipitation (Figures 5a and 3e–h): NDVI anomalies in May were most 

strongly correlated with winter precipitation anomalies; in June and July significant correlations were 

observed between NDVI and recent precipitation with some residual dependence of NDVI on 

winter/spring precipitation; by August only most recent precipitation history showed signification 

correlations with NDVI. These results are consistent with expected soil moisture storage dynamics: 

spring and early summer plant growth is dependent upon precipitation received during winter when 

precipitation exceeds evaporation and the excess precipitation is stored in snow and soils, whereas in 

late summer soil moisture from spring is largely depleted and thus plant growth depends on most 

recent precipitation. Although not pointed out in Méndez-Barroso et al. [61], similar patterns can also 
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be found in their results from the station-level time series of absolute EVI and precipitation values in 

northwestern Mexico which is among the regions presented here. 

Figure 4. Percentage of land grid cells that show significant (p < 0.05) positive correlation 

between GIMMS NDVI and GPCP precipitation anomalies for lead times ranging from 0 

to 6 months for 12 months of the year (N = 29, 1982 to 2010). For all 12 months, 1-month 

lead has the highest land coverage of significant positive NDVI–precipitation correlations. 
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An example of a different seasonal dynamic in NDVI responses to precipitation was seen in  

sub-tropical regions such as Australia. During the rainy season correlations were strongest for recent 

precipitation (October–May, Austral spring–fall), while in all dry season months (e.g., June–August, 

Austral winter) NDVI anomalies were correlated most strongly with previous rainy season 

precipitation (Figure 5b, Figure 3 and Figure S4). In other words, correlations with NDVI anomalies 

during the dry season were highest for precipitation in the previous February–April wet season. 

Another example of this pattern was found in Southern Africa (Figure S4). 
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Figure 5. Regional maps of correlation coefficients (p < 0.05) between month-specific GIMMS NDVI and GPCP precipitation anomalies with 

varying leads (N = 29, 1982–2010): (a) North America and (b) Australia (Spatial resolution: 1°). 

 

 
(a)  
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Figure 5. Cont. 

 

 
(b)
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Figure 6. Global maps of correlation coefficients (p* < 0.05) between all monthly GIMMS NDVI and GISS temperature anomalies with lead 

times varying from 0 to 3 months for 1982–2010 (a–d, N = 348 − lead), after removal of grid cells with significant (p* < 0.05) negative 

correlation between GIMMS NDVI and MODIS Terra snow cover (MOD10CM V5). All the correlations have been corrected for temporal 

autocorrelation. The percentage represents the fraction of land grid cells that have significant (p* < 0.05) positive correlations (Spatial 

resolution: 0.5°). 
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Figure 7. Global maps of correlation coefficients (p < 0.05) between month-specific GIMMS NDVI and GISS temperature anomalies at lead 

0 for 1982–2010 (N = 29) for the 12 months of the year (a–l), after removal of grid cells with significant (p < 0.05) negative correlation 

between GIMMS NDVI and MODIS Terra snow cover (Spatial resolution: 0.5°. NH: Northern Hemisphere; SH: Southern Hemisphere). 
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3.3. Temperature Controls on NDVI Variability 

Combining all monthly NDVI and temperature anomalies (N = 348, January 1982 to December 2010) 

produced positive correlations between NDVI and temperature anomalies in northern mid- and  

high- latitudes (Figure 6). Zhou et al. [63] reported similar results in their northern latitude study. 

Correlations with temperature were highest at lead 0 (Figure 6). Central Europe shows the strongest 

temperature effect (Figure 6a) that lasts for 3 to 4 months (Figure 7), while in the other northern mid- and 

high- latitude regions the temperature effect lasts for only 1 to 2 months (Figure 7). This is likely a result of 

the much shorter snow cover duration in central Europe compared to other regions in the same or higher 

latitudes. MODIS Terra snow cover data show that in March snow cover has almost completely 

disappeared in central Europe while in other regions in the same or higher latitudes snow cover remains 

above 70%. The shorter snow cover duration in central Europe is also reflected in the earlier start of the 

growing season in central Europe compared to other regions in the same or higher latitudes (Figure 8). 

Seasonal positive correlations between NDVI and current temperature anomalies were evident and 

supported ecological interpretations. Positive correlations emerged in spring (March) and progressed 

northward into June (Figure 7), consistent with the field observations in northeastern Siberian tundra 

by Blok et al. [64] showing that early summer temperature is the most important factor influencing 

vegetation growth in mid- and high- latitudes. The spring-early-summer northward wave of 

correlation matches closely with the progress of the MODIS-derived start of the growing season 

(MOD12Q2, [65,66], Figure 8). A similar but weaker wave of correlation moved south from  

mid-summer to early fall (July–September, Figure 7). 

Figure 8. Start of growing season for cycle 1 in the Northern Hemisphere. Vegetation 

phenology data are the V4 MODIS Land Cover Dynamics (MOD12Q2, [65,66]) product from 

http://duckwater.bu.edu/lc/datasets.html. Unit: month in the year (Spatial resolution: 0.5°). 

 

3.4. Climate Driven Variance in NDVI 

As expected, we found that precipitation was rarely negatively correlated (p < 0.05) with NDVI for 

leads of 1 month or more. Temperature was always positively correlated with NDVI anomalies at a 

lead of 0 month except where temperature and precipitation anomalies were negatively correlated. The 

latter were water limited regions and low precipitation was associated with higher temperature and 

drought. Combining the variance explained by positive correlations with cumulative antecedent 

precipitation (1–6 months lead) and by positive correlations with temperature at lead 0 (excluding 

negatively correlated NDVI–snow grid cell-months) following the method described in Section 2.2.3 and 

Equation (5), we estimated the variance in monthly NDVI explained by climate (Figure 9). Percentage of 
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monthly NDVI variance (R2) driven by climate ranged from about 30% to 70% in some boreal regions of 

Eurasia and North America in spring and summer due to temperature, and in central and western North 

American, central Eurasia, Australia, Africa, and South America due to precipitation. 

Our approach to characterizing climate effects on NDVI was simple in that it considered only 

monthly precipitation and temperature (though we have looked at bi-monthly precipitation and NDVI 

and found little difference in results) and it used a single variant approach. Inclusion of the  

Priestley-Taylor energy constraint did not improve correlations with NDVI compared to  

precipitation–NDVI correlations. We have also applied a multi-variant approach but the results did not 

change our overall conclusions and were more difficult to interpret. 

Our simple statistical approach was applicable because the regions influenced by temperature 

versus precipitation tended to be distinct: temperature correlations were strongest above 30°N latitude 

while precipitation correlations were strongest for herbaceous vegetation, < 1000 mm per year 

precipitation below 60°N latitude. In addition we evaluated the correlations between temperature and 

precipitation (not shown) which showed little interactions in terms of effects on NDVI though the 

analysis helped to explain noise and bias in the NDVI. 

3.5. Influence of Snow, Aerosols, Clouds and Precipitation of the Current Month on NDVI Variability 

Some of the important conditions that interfere with satellite measurements of vegetation activity 

using NDVI include snow cover, atmospheric aerosols, and clouds. Precipitation of the current month 

showed negative correlations with NDVI anomalies in some regions (Figure 2a) and was also treated 

as an interfering element here. The readily available MODIS snow, aerosol and cloud products and 

precipitation data motivated exploration into how much variance in the NDVI signal is caused by these 

interfering elements that linger in the GIMMS NDVI3g. 

Figure 10 is an example month (September) from the series of monthly maps in Figure S5 that 

compare total monthly NDVI variance (Figures 10a and S5a), fractions of NDVI variance contributed 

by climate (Figures 10b and S5b, same as Figure 9g) and by atmospheric interference (Figure 10c and 

Figure S5c), and fraction of unexplained NDVI variance (Figure 10d and Figure S5d). Atmospheric 

interference includes snow, aerosols, clouds and precipitation of the current month all of which are 

negatively correlated with NDVI at lead 0 month (Section 2.2.4). Unexplained NDVI variance 

represents the residual NDVI variance that is not significantly correlated with cumulative precipitation 

(1–6 months lead) or current (lead 0) temperature, snow, aerosols, clouds, and precipitation anomalies 

(Section 2.2.5). Generally NDVI variance was <0.01 (Figures 10a and S5a), which translates to a 

standard deviation of <0.1. In other words NDVI anomalies were less than 0.1 for most land grid cells 

most of time. Figure 10c suggests that interference by snow, aerosols, clouds and precipitation remains 

in the NDVI signal after the GIMMS NDVI3g processing. For some regions and some periods (e.g., 

North America, Europe and central Asia in winter months), more than 80% of the NDVI variance was 

associated with these atmospheric and surface interfering elements. Some notable patterns in the 

monthly maps in Figure S5 include (1) snow in April–May and climate (temperature) in June 

explained a large fraction of NDVI variance at high northern latitudes; and (2) the variability explained 

in the Amazon was mostly from clouds in February during the rainy season and from aerosols in 

September caused by fires (Figure 10c). 
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Figure 9. Fraction of NDVI variance explained (R2) by climate (cumulative precipitation for lead 1–6 and temperature at lead 0 corrected for 

snow interference, both positively correlated with NDVI with p < 0.05, 1982–2010) for the 12 months of the year (a–l) (Spatial resolution: 0.5°). 
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Figure 10. Maps of (a) September GIMMS NDVI variance (1982–2010), (b) the fraction of September NDVI variance explained by climate 

(same as Figure 9g), (c) the fraction of September NDVI variance induced by current monthly precipitation, snow, aerosols and clouds (all 

negatively correlated with NDVI), and (d) the fraction of September NDVI variance not explained by either climate in (b) or the interfering 

elements in (c). For (d), white color on land represents no significant correlation between NDVI and any of the climatic variables or 

interfering elements and the fraction of unexplained variance is set to be 1 (Spatial resolution: 0.5°). 
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Figure 11. Percentage of vegetated grid cells in each Transcom region (a–k) with 

significant correlations (p < 0.05) between NDVI anomalies and anomalies in climate 

(cumulative precipitation of lead 1–6 and temperature at lead 0 corrected for snow 

interference, both positively correlated with NDVI, solid line) and in current monthly 

precipitation, snow, aerosols and clouds (negatively correlated with NDVI with p < 0.05, 

excluding grid cells with significant positive NDVI–climate correlations, dashed line), and 

percent remaining vegetated grid cells showing no correlations with the variables tested 

(unknown, dotted line). They sum up to 1 for each month in each region. 

 

Even the combination of climate and the interference listed above cannot fully explain all the NDVI 

variance. In regions such as Europe, southeastern China, parts of South America, and sometimes parts of 

boreal Asia, a significant fraction of NDVI variance remains unexplained (Figures 10d and S5d). 

Figure 11 summarizes regional (regions as defined in Transcom [67]) and seasonal patterns in % of 

land grid cells in which NDVI anomalies (1) are significantly correlated with climate (cumulative 

precipitation of lead 1–6 months and temperature at lead 0, all positive), (2) are accounted for variance 

(from snow, aerosols, clouds and precipitation of the current month combined, all negatively 

correlated with NDVI anomalies), and (3) show no correlations with the variables tested in this study. 

Significant climate correlations are generally most prevalent during the growing season (e.g., boreal 

and temperate regions, Southern Africa). Fraction of land grid cells in tropical regions (Tropical 

America and Asia) showing significant positive correlations with climate is low with little seasonal 

variability. Australia had high correlations with climate (precipitation) for all 12 months. Fraction of 

land grid cells with no significant climate or interference correlations was high in non-growing season 
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in boreal and temperate regions. Tropical regions and temperate South America had high fractions of 

land grid cells with no significant correlations with the variables tested. These results (Figures 9–11 

and S5) show when and where NDVI was more reliable at capturing vegetation responses to 

climate anomalies. 

3.6. Uncertainties in the Data and Results 

All correlations and regressions presented here were those with probabilities >0.95 that were 

obtained solely by random chance. We tested the assumption of normality of distributions and the 

potential for bias caused by outliers by performing non-parametric Spearman’s rank correlation and 

found little influence on the results and conclusions. We tested for potential bias as a result of temporal 

and spatial aggregation by using a different precipitation data set (TRMM) with finer temporal and 

spatial resolutions (bi-monthly and 0.25° as opposed to monthly and 2.5° for original GPCP) and 

found that it did not change the results or conclusions. We tested to a limited extent the assumption 

that precipitation was an adequate surrogate for water limitation and found the assumption to be 

supported. We identified regions and months where correlations were most robust as well as 

where/when uncertainty was large. We evaluated the GIMMS NDVI against two other satellite data 

(MODIS Aqua and Terra) and identified where all three products were in agreement and where 

satellite NDVI data in general were not adequate to address vegetation responses to climate. 
There was still a significant fraction of NDVI variance unexplained in some regions and some 

periods. The unexplained NDVI variance may be partly due to the uncertainty in the NDVI and 

climate data sets. It could, however, be a result of the variability in other drivers of NDVI that we 

didn’t account for in this study (see the next section). 

3.7. Significant Drivers of NDVI Variance 

Other than climate driven variability, we have not taken into account processes that are likely to 

also influence NDVI variability, such as stimulation of plant growth caused by increasing atmospheric 

CO2, land use change such as deforestation and biomass burning, irrigation and fertilization, and N 

deposition. Particularly, land management practices such as irrigation and fertilization contribute to a 

significant fraction of the NDVI variability in croplands [68].  

From our analysis we identify a number of significant causes of NDVI variance and their likely 

effects on NDVI. 

(1)  Climate driven variability in NDVI as quantified in this study. Northern latitude NDVI 

anomalies were positively correlated with temperature. NDVI anomalies in temperate to 

tropical semi-arid and arid regions were positively correlated with precipitation with regionally 

varying seasonal dynamics. 

(2)  Climate driven variance missed by our simple representation of climate variability (e.g., soil 

moisture, solar radiation, vapor pressure deficit (VPD), and evaporation) and by our linear 

spatial averaging. 

(3)  Atmospheric interference from snow, aerosols and clouds reported here are negatively 

correlated with NDVI. Though these are addressed in part by the GIMMS NDVI3g processing, 

we found some residual negative correlations with these variables. 
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(4)  Variance caused by sensor-sun-surface radiation geometry. This uncertainty is also addressed 

as part of the GIMMS NDVI3g processing prior to our use. 

(5)  Other mechanistic processes not accounted for: irrigation, fertilization, fires and land degradation. 

(6)  Atmospheric and surface interfering factors not accounted for in our analysis (e.g., water vapor 

and cloud type) and from aerosol, water vapor, and cloud effects not captured in the GIMMS 

NDVI3g processing. 

3.8. Future Work 

Our results support the use of satellite data for the representation of vegetation responses to climate 

variability in models. A few studies have confirmed that vegetation anomalies observed from satellites 

are associated with regional climate anomalies and are large enough to explain the anomalies in 

measured and modeled carbon and water fluxes [69,70]. However, some global scale studies show 

little correspondence between satellite-based estimates of FPAR (fraction of photosynthetically active 

radiation) and anomalies in global carbon fluxes from atmospheric inversions [25,71]. Our next work 

will be to characterize the impacts of climate driven NDVI anomalies on modeled carbon fluxes and to 

evaluate these impacts using independent methods such as eddy covariance data and atmospheric CO2 

inversions. We expect that variances of up to 0.01 in the NDVI signal in some regions during growing 

season can represent relative standard deviations of up to 10% in the FPAR which itself is proportional 

to NPP in some global carbon cycle models [17]. Preliminary evaluation of how this amount of climate 

driven variability influences carbon fluxes (not shown) suggests that climate driven variability in 

NDVI identified in this study could produce variability in simulated NPP of 20% or more in some 

regions and seasons. Examples of this level of variability in gross primary production and leaf area 

index have been reported at eddy covariance sites [72,73], and further work evaluating model 

responses to climate driven NDVI variability against other independent flux data is underway. 

4. Conclusions 

Our analyses confirm that GIMMS NDVI3g (Global Inventory Modeling and Mapping Studies 

normalized difference vegetation index, version 3) captures vegetation responses to climate nearly as 

well as more advanced sensors such as MODIS (Moderate Resolution Imaging Spectroradiometer) 

Aqua, in agreement with results from other studies [43,56]. The 30.5-year GIMMS AVHRR 

(Advanced Very High Resolution Radiometer) NDVI3g record thus provides a robust time series to 

explore causes of variations in land surface vegetation greenness as expressed by NDVI.  

In addition to taking advantage of the longer time series we also provided a more thorough  

month-by-month analysis of drivers of NDVI variability than previous global studies. Temperate and 

subtropical arid and semi-arid regions and northern high latitude spring and summer showed strong 

interannual climate driven variability in NDVI. Seasonal variability in the importance of antecedent 

precipitation represented seasonal variability in available soil moisture as in central North America 

where dependence of vegetation growth on water stored from the winter gradually diminishes into the 

summer. These patterns of variability could be used to evaluate soil moisture predictions from more 

sophisticated, complex soil moisture models. As expected, evergreen systems showed reduced 

seasonal and interannual variations. This behavior was true for precipitation, but our results showed 
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that 50% or more of the NDVI variance in May can be attributed to temperature variability (Figure 9c) 

for some regions in the boreal forests. Thirty to sixty percent (30–60%) of the NDVI variance for the 

Sahel-Sahara border of northern Africa and in Southern Africa can be explained by precipitation 

variability during their respective rainy seasons. During their respective dry seasons NDVI variance 

was low in general. Temperate grasslands showed strong climate (precipitation) controls during the 

growing season. Here again NDVI variance tended to be low outside the growing season so low 

explained variance by climate was expected for these periods. The climate driven variability in NDVI 

shown in this study demonstrates the ability of the GIMMS NDVI3g data record to provide realistic 

representation of interannual variability in solar radiation absorbed by vegetation.  
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