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Abstract: Net primary productivity (NPP) can indicate vegetation ecosystem services 

ability and reflect variation response to climate change and human activities. This study 

applied MODIS-1 km NPP products to investigate the NPP variation from 2001 to 2006, a 

fast urban expansion and adjustment period in Guangzhou, China, and quantify the impacts 

of weather and land use/land cover (LULC) changes, respectively. The results showed that 

the NPP mean value increased at a rate of 11.6 g·C·m−2·yr−1 during the initial three years 

and decreased at an accelerated rate of 31.0 g·C·m−2·yr−1 during the final three years, 

resulting in a total NPP loss of approximately 167 × 106 g·C. The spatiotemporal of NPP 

varied obviously in the central area, suburb and exurb of Guangzhou driven by three 

patterns of weather and LULC changes. By the interactive effects and the weather variation 

dominated effects, NPP of most areas changed slightly with dynamic index less than 5% of 

NPP mean value in the central area and the suburb. The LULC change dominated effects 

caused obvious NPP reduction, by more than 15% of the NPP mean value, which occurred 

in some areas of the suburb and extended to the exurb with the outward urban sprawl. 

Importantly, conversion from wood grassland, shrublands and even forests to croplands 

occupied by urban landscapes proved to be a main process in the conversion from  

high-NPP coverage to low-NPP coverage, thereby leading to the rapid degradation of 

urban carbon stock capacity in urban fringe areas. It is helpful for government to monitor 

urban ecological health and safety and make relevant policies.  

OPEN ACCESS



Remote Sens. 2013, 5 4126 

 

Keywords: NPP; spatiotemporal pattern; weather variation; LULC change; effects 

 

1. Introduction 

Until recent years, there has been growing evidence that activities to mitigate climate variation can 

have beneficial impacts on public health, with the need to avoid adverse environmental, social and 

economic consequences [1–6]. As the major source of greenhouse gas (GHG) emission, cities have 

been under tremendous pressure for energy conservation and emission reduction for decades [6–8], 

and have a limited capacity to reduce GHG due to consistently fast urbanization [9]. Improving 

dioxide carbon sequestration and storage by urban ecosystem is another effective way that will have 

benefits for social and economic aspects [10,11]. The global forest observation initiative (GFOI) is 

devoted to assessing the ability of global forest carbon tracking under the guide of Intergovernmental 

Panel on Climate Change (IPCC) [12]. 

Net primary productivity (NPP) is the rate of atmospheric carbon uptake by vegetation [13]. The 

NPP value equals the difference between the carbon absorbed by photosynthesis and the carbon 

released by autotrophic respiration [14,15]. The balance between the uptake and release of carbon 

plays a vital role in global biogeochemical carbon. NPP reflects not only the carbon sequestration 

ability of a plant community in its natural environment but also the vegetation’s response to changes in 

climate and LULC [16–19]. Climate changes of long time or inter-annual weather variations can 

influence vegetation photosynthesis, respiration and decomposition of soil organic carbon (SOC) and 

have important effects on ecosystem productivity [20–22]. LULC change can directly alter the 

ecological system type, structure and function, thus leading to change in the ecological system’s NPP 

and corresponding soil physical and chemical properties [22–25]. LULC change can make the 

ecological system vulnerable [26], increase GHG emissions [27] and decrease carbon storage, 

especially in coastal urban areas where there is rapid development. Therefore, in the context of global 

change, climate and LULC changes have an important and discernible influence on the NPP of natural 

and artificial ecological systems [28].  

On the background of rapid global change, previous researches have investigated the impacts of 

environmental and urban factors on NPP, including the correlation between NPP and climate, humidity 

indices [29–31], population density, and gross domestic product (GDP) [32,33]. The light use 

efficiency (LUE) method, such as CASA (Carnegie Ames Stanford Approach) model, is often used to 

estimate NPP and indirectly indicate the influence of temperature, rainfall, LULC change and other 

parameters on NPP. However, highly heterogeneous, mosaic and complex urban ecological systems 

make it difficult to acquire bio-geographical parameters. Therefore, these studies generally focused on 

ecological systems with little LULC variation on the regional scale, such as the farming-pastoral 

region of northern China, the Taihu basin, the Ordos desert, farmland and forest surrounding urban 

areas, etc. [15,22,34–38]. While these studies are informative about the NPP variation, they lack 

information regarding the spatiotemporal patterns and evolution process.  

Guangzhou was one of the earliest cities to conduct reforms and open up its policies in China in the 

1970s. Since 2001, Greater Guangzhou has implemented an urban development and adjustment 
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strategy of “eastern advance, western union, southern expansion, northern optimisation, and central 

region adjustment” in the 11th five-year plan. Rapid urbanisation has led to multiple ecological 

problems [39,40], and differences in NPP between pre-and post-urban development are increasingly 

obvious in China [29,33]. Accordingly, the study of NPP dynamic variation and its driving 

mechanisms in Guangzhou can be regarded as a representative case in southern China. Hu et al. [29] 

noted that weather variations and human activities have led to a significant change in vegetation 

productivity in Guangzhou in a short period, from 2000 to 2008, and the responses by various types of 

vegetation cover were distinct in urban, rural, fringe. It is necessary for further research to investigate 

the effects pattern of weather variations and human activities on NPP in the developing greater 

Guangzhou. Moreover, the response of subtropical vegetation in low latitudes to the LULC changes 

are not well understood, and the results would fill knowledge gaps, especially in urban areas. 

Therefore, this paper attempts to achieve the following aims: (1) Estimating effects of weather and 

LULC changes in the perspective of urban expansion; and (2) Analyzing NPP spatiotemporal dynamic 

under different driving patterns in central areas, suburbs and exurbs in the urbanisation process. The 

results will provide support and a scientific basis for rational decision-making regarding land use and 

ecological environmental protection in Guangzhou. 

2. Study Area and Data Source 

2.1. Study Area  

Greater Guangzhou (22°26'–23°56'N, 112°57'–114°03'E) is located on the northern edge of the 

Pearl River Delta in southern China [41] (Figure 1). Stretching across the Tropic of Cancer, 

Guangzhou belongs to a subtropical, marine monsoon climate with an annual average temperature of 

21.4–21.9 °C. The annual precipitation is 1,612–1,909 mm, and concentrates between April and 

September [42]. These characteristics—warm and rainy with adequate light and heat—are beneficial to 

plant growth. Guangzhou’s population size has developed rapidly in recent years, and by the end of 

2009, Guangzhou’s population size was more than 10 million with a rapid growth rate of 1.54% from 

1990–2009. The economy of Guangzhou has also increased rapidly, with the regional GDP (current 

prices) growing from $31.96 billion in 1990 to $913.821 billion in 2009 [41]. According to 

Guangzhou’s overall planning (2010–2020) and Five-Year Plan (2011–2015), the city will be divided 

into three parts: the central area, the suburb and the exurb. The central area includes Liwan, Yuexiu, 

Haizhu, Tianhe, and Baiyun (south of Liuxihe and north second ring); the suburb includes Panyu, 

Luogang, Huadu, and Baiyun (outside of central area); and the exurb includes Conghua, Zengcheng, 

and Nansha.  

2.2. Data and Processing 

2.2.1. MOD17A3 NPP Product and Uncertainty 

This study applies MOD17A3 annual NPP product with a spatial resolution of 1 km of Guangzhou 

as the study input data from 2001 to 2006. These data are freely available to the public from the 

Numerical Terra dynamic Simulation Group (NTSG) [43]. These products are saved as formatted HDF 
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EOS files in a two-dimensional array with 1,200 columns and 1,200 rows in a Sinusoidal projection [44]. 

A specific MODIS tool of ENVI software, MODIS Reprojection Tool (MRT), was used to transform 

the tiles into the Albers Conical Equal Area projection. Some pixels of the images with NPP values out 

of range of the triple standard deviation and the ineffective values were omitted.  

Figure 1. Location of the study area. 

 

The three sources of MOD17 inputs for each pixel included MODIS land cover products, FPAR 

and LAI products, and daily meteorological data, which are derived from MOD12Q1, MOD15A2, and 

Data Assimilation Office (DAO) data sets, respectively. MOD12Q1 accuracies are within the range of 

70%–80% due to errors between similar classes. The MOD15A2 and DAO dataset in Collection 5 

MOD17 also have an improved correlation (~81%) compared with the observational data. Temporal 

filling and non-linear spatial interpolation approaches have considerably improved the quality of these 

datasets [45]. All three upstream inputs as well as the algorithm itself can introduce uncertainties in 

MOD17 data. In the following reports, validation based on field measurements has demonstrated 

uncertainties associated with the MOD17 products [46]. First, a comparison of MODIS annual GPP 

values with field data collected from 37 Ameriflux and Fluxnet sites distributed throughout North 

America, mid-latitude zones, polar regions and a wide variety of ecosystem types, including bracketing 

forests, shrublands and grasslands, resulted in an overall high consistency (R2 = 0.6993; relative  

error = 19%) [47]. Moreover, the validation of NPP data using Ecosystem Model-Data Intercomparison 

(EMDI) data compiled from more than 1,000 ground points resulted in an overall high consistency  

(R2 = 0.77). Significantly, using scaled and aggregated BigFoot Project data measured at nine different 

ecosystem flux towers throughout the world, Turner et al. [48] found that the annual GPP and NPP 
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showed a close agreement between the MODIS and the Bigfoot products. In addition, a local rice map 

used for rice yield estimation in southern China generated using MOD17 GPP/NPP products was 

shown to have a low relative error of approximately 10% based on validation with actual yields [29]. 

2.2.2. Land Use/Land Cover from Landsat TM 

A series of Landsat Thematic Mapper (TM) multispectral images acquired on November 2001, 

January 2003 and November 2006 in Guangzhou served for the actual Land use/Land covers in 

Guangzhou. Landsat TM image had a spatial resolution of 30 m with seven bands from visible to 

thermal infrared. High resolution images were used to provide land cover details to reference samples 

of classification. There are a SPOT image with four multispectral bands of 10 m and a 2.5-m 

panchromatic band acquired in December 2006, and digital orthorectified aerial photographs acquired 

in 2001 and 2003. TM and SPOT multispectral images were calibrated into the geographic reference 

system of WGS_1984 and initially calibrated to at-sensor radiance and atmospherically corrected to 

estimate the surface reflectance using a radiometric calibration technique based on the image header 

file, solar elevation angle, gain offset and calibration parameters of the image. Next, an atmospheric 

correction was performed on both images using one tool of ENVI software, Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercube (FLAASH) atmospheric correction method [49]. 

FLAASH is a method used to correct sensor radiance for atmospheric effects by mathematically 

modelling the physical behaviour of radiation as it passes through the atmosphere. 

2.2.3. Meteorological Data 

The climate dataset employed in this work to analyze the impacts on NPP variation, which covers 

the period of 2000–2007, includes monthly mean temperature, total monthly precipitation across 

greater Guangzhou. Specifically, some historical records of monthly temperature and precipitation 

were derived from 13 climatological stations from the online Guangzhou Statistical information [50] 

and relevant Statistical Yearbook. As an important interpolation method, kriging has been widely used 

for sampling at each pixel in terms of the climate factors from the site-based information.  

3. Methods 

3.1. Land Use/Land Cover Classification  

Spectral angle mapper (SAM) classifier used for target discrimination compares the spectral  

angle between the reference spectrum vector and each target spectral vector in an n-Dimensional  

space [49,51]. When the spectral angle between the pixel and the reference object is less than the given 

threshold value, the pixel can be considered in the same class as the reference object. The SAM 

combined with different vegetation distribution rules can be adopted to improve the classification 

accuracy of six species of forest–woodland–savannah mosaic, and compared with the maximum 

likelihood classification (MLC); the classification accuracy was increased by 10% in comparison to 

85.2% for MLC [52]. By removing spectrum noise or making differential spectrum, SAM can be 

adopted to eliminate the influence of the vegetation environmental background and the phenomenon 

caused by the same object with different spectrums to improve the vegetation identification precision.  
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For multi-vegetation classifications in urban areas, the hierarchical classification binary tree 

accounted for the spectral separability was designed to provide the class set and classified sequence in 

each node, as well as the matching thresholds. The SAM running along hierarchical tree nodes can 

recognise optimised classification based on the spectral separability level; therefore, Spectral Angle 

Mapper decision tree method was used to map 11 covers using Landsat TM images in the mega-city of 

Guangzhou, China.  

According to the actual land covers in Guangzhou, there are eight vegetation classes selected from the 

International Geosphere-Biosphere Program (IGBP) schemes in Table 1 [53]. In addition, the LULC types 

of “Urban and Built-up Lands”, “Water Bodies” and “Barren” are also identified with high accuracy.  

Table 1. International Geosphere-Biosphere Program (IGBP) criteria used for the land 

use/land cover classes. 

LULC Types 
Canopy 

Cover (%) 
Canopy Woody Communities 

Evergreen Needleleaf Forests (* ENF) >60 Green Needleleaf forests species. 

Evergreen Broadleaf Forests (* EBF) >60 Green Broadleaf forests species. 

Mixed Forests (* MF) >60 Mosaic of multiple forest species, but no single canopy greater than 60%. 

(Open) Shrublands (* SL) 10–60 Woody vegetation less than 2 meters tall and mainly shrub. 

Woody Savannas (* WS) 30–60 Herbaceous and other understory systems. 

Grasslands (* GL) 10–60 Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. 

Croplands (* CL) 10–30 Temporary crops followed by harvest and bare soil. 

Cropland/Natural Vegetation  

Mosaics (* CL&NVM) 
10–60 

A mosaic of croplands, forests, shrubland and grasslands in which no one 

component comprises more than 60% of the landscape. 

Barren (* BR) 0–10 
Exposed soil, sand, rocks or snow that never has more than 10% 

vegetated cover. 

Water bodies (* WB) NA Oceans, seas, lakes, reservoirs and rivers. 

Urban and Built-up Lands (*U&BL) 10–30 Buildings and other man-made structures. 

Note: * is the abbreviation of the classes. 

3.2. Analysis of NPP Dynamic Index 

The NPP dynamic index reflects the variation trend within a certain stage. Spatial pattern of the 

NPP dynamic index is helpful to reflect and compare the trend in different regions. The NPP dynamic 

index K is estimated by Equation (1): 

100%b aNPP NPP
K

NPPλ

−= ×   (1)

where NPPa and NPPb are the NPP value of a certain time period at the beginning and end of the 

research period, respectively. NPPλ is the NPP mean value in this period.  

3.3. Effects of Changes in Weather and LULC on NPP 

NPP variations are driven by many impact factors. As illustrated in CASA model, two main input 

factors are weather variables and land cover data. CASA is a process-based model and appropriate to 

estimate NPP on a global or regional scale [13]. In the CASA model, NPP is the product of modulated 

absorbed photosynthetically-active radiation (APAR) and a light use efficiency factor, namely [54]: 
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NPP(x,t) = APAR(x,t) × ε(x,t) (2)

where, NPP(x,t) represents NPP in the geographic coordinate of a given location x and time t. 

APAR(x,t) (MJ·m−2·mon−1) is the APAR absorbed by the vegetation. ε(x,t) is the actual light use 

efficiency (g·C·MJ−1) of the vegetation. The algorithm of light use efficiency can be expressed as 

Equation (3): 

ε(x,t) = Tε1(x,t) × Tε2(x,t) × Wε(x,t) × εmax (3)

where Tε1(x,t) and Tε2(x,t) are temperature stress coefficients; Wε(x,t) is a moisture stress coefficient and 

εmax is a biome-specific light use efficiency factor that is estimated from daily meteorological 

conditions. εmax is the maximal light use efficiency of the specific biome under ideal conditions 

(minimum temperature and vapour pressure deficit) and is related to vegetation fraction and types. 

The CASA ecosystem is robust in describing NPP spatial and temporal patterns [54], and can easily 

obtain NPP with the help of remote sensing data, but which does not take into account the physics 

processes of photosynthetic assimilation, respiration, and assimilate allocation [13]. On the basis of 

light use efficiency (LUE) and weather variables of temperature and moisture [55], inputting with the 

time-series NDVI data for the specific covers, and thus, the NPP variation process, can be estimated 

for each pattern. So, the derived LUE and NDVI data present significant differences among various 

vegetation types. Remote sensing data combined with basic field survey work is beneficial to obtain 

the accurate value for long-term monitoring of a wide area [56].  

As the above stated, the effects of LULC change on NPP can be regarded as a disturbance caused 

by human activities in urban expansions, and the effects of climate change indicates the natural change 

of the ecological system. However, most studies only account for one of the two aspects [57]. In fact, 

the effects of changes in climate on NPP are significant, as are changes in LULC. Therefore, the main 

effects should consider the three contributions of LULC change, climate change and the common 

interactions of both [35].The third one probably contains factors such as stand age effect, plant growth 

and atmosphere CO2 [58]. Considering the evergreen needleleaf forest (ENF) as an example, if S1, S2, 

NPP1 and NPP2 express the LULC area and NPP per unit area, respectively, in times t1 and t2, the 

variation of total NPP (∆NPPT) should be expressed as Equation (4): 

∆NPPT = NPP2 ×S2 – NPP1 ×S1 = ∆NPP × S1 + ∆S × NPP1 +∆S × ∆NPP (4)

Thus, the fractional variation in ∆NPPT includes three parts in Equation (4): the fractional variation 

affected by climate change equals the first item (∆NPP × S1), the fractional variation affected by 

LULC change equals the second item (∆S × NPP1) ,and their common interaction term which is the 

last item (∆NPP × ∆S).Not considering their common interactions, the following equations show the 

relative effects of changes in weather variables (Equation (5)) and LULC (Equation (6)) on total NPP  

(RC, RLULCchange). 

1

1 1

100%C

NPP S
R

NPP S S NPP S NPP

Δ ×
= ×

Δ × + Δ × + Δ × Δ
 (5)

1

1 1

100%LULCC

S NPP
R

NPP S S NPP S NPP

Δ ×
= ×

Δ × + Δ × + Δ × Δ
 (6)
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4. Results and Discussion 

4.1. Variation of LULC and NPP  

4.1.1. LULC Classification and Uncertainty Processing 

The overall accuracies of 11 types classification were 82.5% (Kappa = 0.80), 81.4% (Kappa = 0.78) 

and 83.3% (Kappa = 0.81) for 2001, 2003 and 2006, respectively, which are, in general, sufficient to 

meet the monitoring accuracy demands of LULC change in Guangzhou. The classification accuracy is 

higher than that of MODIS 12Q1 by about 80% [45]. According to the classification error distributions, 

two steps are used to reduce the effects of both errors and image noise in the NPP analysis. 

(1) Considering a classification accuracy of x, the pixels remained within a range of (1 − x)/2 to  

(1 + x)/2, of which 95% of pixels are regarded as significantly normal pixels with a high accuracy. 

(2) The unsatisfactory pixels that are out of the range are identified, further validated, and then 

rejected in the succeeding analysis process.  

As a result, the comparison of NPP mean values for the two groups of pixels for the same covers 

led to two findings: (1) the NPP mean values of unsatisfactory pixels are greater than the normal pixels 

due to the misclassification; (2) the difference between the two groups is within the range of  

2–10 g·C·m−2·yr−1, and the maximum difference ratio is within 3.0% of the corresponding mean value. 

It is demonstrated that the classification errors have impacts and were eliminated first. At last, the 

classification results were subsequently re-sampled to 1 km resolution to cooperate with the NPP. The 

resample accuracy was 91.1% suggesting a good guarantee of NPP. 

As shown in Figure 2, the SAM decision tree classifier map presents a more robust depiction of the 

vegetation-cover mosaic, and the small croplands and open shrublands throughout the woodland 

grasses and forests are more evident. By comparing the conversion areas from the origin cover to other 

areas in Figure 3, the following distinct LULC changes are obtained. (1) Evergreen coniferous forest 

was reduced and transformed to mixed forest and evergreen broadleaf forest during the first period and 

to shrublands during the latter period. (2) Evergreen broadleaf forest was mainly converted to mixed 

forest and woody savannas during the first and second periods, respectively. (3) Shrublands, woody 

savannas, and grasslands were clearly converted to croplands and cropland/vegetation mosaics during 

the first period. Thus, the trend of forest conversion to shrubs and woody grass was high, and a portion 

of the shrub and woody grass areas were subsequently reclaimed as croplands and cropland/vegetation 

mosaics. It is clearly evident that areas of cropland and cropland/vegetation located in suburbs 

surrounding the Huadu and Baiyun districts were increased by the occupation of original grasslands in 

2003 and were decreased during urban expansion such that conversion to grasslands occurred again in 

2006. In 2006, large areas of forests decreased in size, and certain town areas were associated with 

urban landscapes. There was a high conversion of forest and woody grass cover into large areas of 

cropland and cropland/vegetation mosaics, as shown in yellow, in the suburban areas near the 

Conghua, Luogang and Zengcheng districts. These changes during the initial period corresponded with 

the implementation of the urban development strategy in 2000 in Luogang, Conghua and Zencheng, 

and changes during the latter period correlated with the integration of the Nansha district into the 

mega-city of greater Guangzhou. 
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Figure 2. Land cover/land use (LCLU) classification mapping (a) 2000, (b) 2003, (c) 2006. 

 

Figure 3. Conversion areas among land use/land covers during (a) 2001–2003, (b) 2003–2006. 

 

4.1.2. Total NPP Variations against LULC 

As the above stated, LULC change can directly alter the ecological system’s NPP. Investigation 

into total NPP variations against LULC changes is beneficial to identify the impacts on NPP quantity 

and structure. The statistic mean NPP values of different land covers in Guangzhou are listed in  

Table 2 during the two periods. Among them, the mean values of forests were higher than the average, 

while that of grassland were the lowest. Evergreen needleleaf forests had the lowest NPP among the 

three forests classes, probably due to large areas of sapling forest with lower productivity [59–61]. 

Introducing broadleaf to needleleaf forests to accelerate the conversion to mixed forests was an 

effective way to maintain a high level of regional forest NPP [59,62]. In the initial period, needleleaf 

forests converted into mixed forests and broadleaf forests are one case from low-NPP covers to high 

NPP-covers, as illustrated in Table 3, suggesting result of rising total NPP of mixed and broadleaf 

forests in the first period. In addition, the NPP of croplands had the largest increment of 48.4 × 106 gC 

due to elevated areas, for example in the surrounding region of some districts in the 2003 classification 

mapping (Figure 2b). Decline in NPP mainly occurred in the destroyed needleleaf and shrublands.  
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On the contrary from 2003 to 2006, many forests covers were changed into shrublands and 

cropland/vegetation mosaics, while the NPP did not have an obvious increase. The obvious decrease in 

total NPP of grasslands, needleleaf and broadleaf forests reached 79.5 × 106 g·C, 26.7 × 106 g·C and 

22.1 × 106 g·C, respectively.  

Table 2. Net primary productivity (NPP) mean values of the land use/land cover types 

in Guangzhou. 

Code LULC Types NPP Mean Value（g·C·m−2·yr−1） 

1 ENF 388 

2 EBF 446 

3 MF 456 

4 SL 415 

5 WS 398  

6 GL 317 

7 CL 367 

9 CL&NVM 373 

Table 3. Changes in LULC and NPP in Guangzhou from 2001 to 2006. 

 LULC Types 

2001–2003 2003–2006 

Variation of Total NPP 

(×106 g·C) 

∆Area 

(km2) 

Variation of Total NPP  

(×106 g·C) 

∆Area 

(km2) 

1 ENF −17.0 −58 −26.7 −33 

2 EBF 33.4 29 −22.1 −14 

3 MF 10.4 8 1.3 19 

4 SL −11.9 −35 19.6 121 

5 WS 5.3 30 −3.2 6 

6 GL −6.6 −19 −79.5 −173 

7 CL 48.4 55 2.7 25 

9 CL & NVM 5.0 −12 8.0 94 

In general, the reduction of total NPP was mainly from the contribution of needleleaf and broadleaf 

forests, shrublands and grasslands, which had most conversion areas to croplands. With urban 

expansion and rapid economic development, as depicted in Figure 2c, LULC changes mainly displayed 

from high cove forests to croplands in suburb and exurb areas such as Luogang, conghua and 

Zengcheng districts. This process led to an increase in land fragmentation and a decrease in NPP until it 

reached present state. It is reported that the urban expansion mechanism will inevitably lead to reduction 

of the surrounding land covers, such as the common croplands, grasslands, shrublands, etc. Then, the 

further land reclamation in exurb would be used to balance the structure of croplands [63,64]. These 

variations should be visible in the following spatial-temporal dynamics under the LULC changes. 

4.2. NPP Spatiotemporal Variation  

NPP mean value of Guangzhou changed from 331.5 g·C·m−2·yr−1 in 2001 to 366.3 g·C·m−2·yr−1 in 

2003, and then to 273.2 g·C·m−2·yr−1 in 2006, and standard deviation is 10.2, 18.3 and 22.6 g·C·m−2·yr−1, 
respectively. It increased by mean value of 34.8 g·C·m−2 during the first three years and dropped fast 
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by 93.1 g·C·m−2 during the last three years. The NPP obvious changes during the fast urbanization 

period is consistent with the study of Hu [29]. A related study reported on the alternating effects of La 

Niña and El Niño on climate change during 1950–2005 [46]. By investigating the impacts of ENSO in 

Guangzhou, the positive correlation between the Nino3.4 Sea Surface Temperature (SST) index and 

monthly weather variables of temperature and precipitation using a significant t test suggested that 

ENSO had a clear effect on the meteorology variables. For Guangzhou, 2001 was a weak La Niña 

year, 2003 was a strong El Niño year, and 2005 was a weak El Niño year [65]. Thus, the rapid 

urbanisation accompanied by a short-term alteration of ENSO events, which have a boundary point in 

2003, corresponds with an increasing NPP trend during the first period (2001–2003) and a decreasing 

trend during the latter period (2003–2006), as shown in Figure 4a. 

Figure 4. (a) NPP variation trend, (b) statistical histogram of the NPP dynamic indexes, 

spatial mapping in (c) 2001–2003 and (d) 2003–2006. 
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As illustrated in Figure 4, variations in NPP including the increasing and decreasing trends, were 

divided into three levels according to the dynamic index: slight change (|0%–5%|), moderate change 

(|5%–15%|) and obvious change (>|15%|), as shown in the statistical histogram (Figure 4b). During the 
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initial period, the NPP of 68% of pixels had a light growth rate of 0%–5%, while a light to moderate 

reduction of NPP occurred in the central suburb, and central exurb of Guangzhou. During the latter 

period (Figure 4d), the NPP of 74.6% of pixels in most parts of Guangzhou had a lightly decreasing 

trend (−5%–0%), and pixels that had a moderate to obvious decreasing trend occurred in the central 

suburb and the edge between the suburb and the exurb. In addition, the pattern of declining NPP 

obviously expanded from the suburb to the exurb and expanded from the central exurb to the north 

exurb. Meanwhile, the NPP dynamic index of decline varied from light to moderate in these regions. 

Liu [59] pointed out that temporal dynamics of NPP in Guangzhou belonged to a stable type in  

1981–2000, but there has been a downward trend from 1991 to 2000. Belonging to increasing type 

cities, the NPP increasing rate of Jieyang and Shanwei was 39 and 45 g·C·m−2 per five years, 

respectively, in 1981–2000. On the contrary, NPP of the surrounding region Foshan, Shenzhen and 

Dongguan decreased by 114, 87 and 75 g·C·m−2 per five years, respectively, in 1991–2000. This is 

basically in accordance with our study in Guangzhou. 

4.3. Effects of Changes in Weather and LULC 

Using Equations (5) and (6), the effects of changes in weather and LULC on the NPP of eight land 

covers were calculated. The average values for effects of weather and LULC change were 0.43 and 

0.51, respectively, in 2001–2003, and were 0.45 and 0.48, respectively, in 2003–2006. There were 

contributions of common interactions for both effects of about 0.06 and 0.07 during the two periods. 

As stated above, ENSO events clearly affected the weather meteorology variables and thus, impacted 

the NPP in Guangzhou as well as the global NPP [46]. Despite the overall effects of climate 

conditions, the effect of the LULC was greater than that of weather variations during both periods, 

suggesting the significance of LULC as a driving force. Spatial correlation and cluster methods have 

been used to analyse the quantity and spatial patterns caused by the driving effects at three levels 

corresponding to slight, moderate and strong variations. A combination of NPP dynamic index and the 

concerned effects revealed the mechanism of the LULC effects shown in Figure 5. Moreover, the 

results clearly demonstrated the spatial relationship of the NPP variation response with the driving 

force at different intensities. As illustrated in Figure 6, obvious spatial cluster scopes and the trend of 

NPP variation appears in the central area, suburb and exurb under three driving patterns including 

weather variation dominated, LULC change dominated, and interaction of both effects.  

The results show that four categories of effects of weather and LULC variation, divided by the area 

ratio of three levels, show different impacts in the central area, suburb and exurb. When the two effects 

were under 25% (Figure 5a), both caused similar area ratio (~68%) of NPP slight change which 

indicates the interactive effects of both slightly affects NPP. Most areas of NPP had a light fluctuation 

within range of −5% to 5%. Moreover, when the relative effects varied between 25% and 40%  

(Figure 5b), the NPP area ratio influenced by weather variation during the two periods were 15.1% 

(~1,120 km2) and 27.8% (~2,061 km2), respectively, while area ratio affected by LULC change were 

less than 10%. Therefore, weather variation within range of 25%–40% played a weather-dominated 

role. NPP dynamic index also focused between −5% and 5%. A similar condition was observed when 

the relative effects were more than 85% (Figure 5d). It was demonstrated that a slight fluctuation in 

larger areas caused by interactive effects or the weather-dominated effects was common. As shown in  
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Figure 6, spatial patterns of these areas were weather in the border between suburb and exurb, and with 

the passage of time, the influence scope was wider in suburb as opposed to that in exurb.  

Figure 5. Statistical histogram of NPP dynamic index within the different scopes of 

effects. (a) 0%–25%. (b) 25%–40%. (c) 40%–85%. (d) 85%–100%. (1) 2001–2003 weather 

variation. (2) 2001–2003 LULC change. (3) 2003–2006 weather variation. (4) 2003–2006 

LULC change. 
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When the effects dropped into the 40%–85% range (Figure 5c), NPP affected by LULC change 

mainly had a lightly increasing and decreasing trend with the area ratio about 67.8% and 73.1% during 

both two periods, respectively. So, the effects within the 40%–85% range were mainly dominated by 

LULC change. These variations obviously assembled in the suburb in the initial period (Figure 6b), 

and then in the exurb in the latter period (Figure 6d). The distinct development from the suburb to 

exurb was consistent with the urban sprawl trend. In this outward process as shown in Figure 2c, 

LULC change in some areas of the exurb caused NPP degradation from the slight decreasing (ratio of 

−5%–0) to the moderate decreasing (ratio of −15%~−5%) during the two periods.  

In general, the decrease of NPP suggested the land degradation, while the increase of NPP reflected 

the vegetation restoration [15,30,38]. Therefore, with the effects being varied within 25%–40%, 

weather variation played the main role in NPP and mainly caused slight land degradation in the suburb 

in the early stage. LULC change with its effects above 40% dominated the results that the obvious land 

degradation happened from the suburb to the exurb in the urban outward expansion. As the above 

stated, the main land cover types around urban such as croplands, grasslands, shrublands and even 

forests, were gradually taken for the urban sprawl, and then supplemented the loss of croplands. In the 

LULC change perspective, ENF, EBF, SL and GL had large conversion areas to CL. This conversion 

case from high-NPP covers to low-NPP covers directly causes reduction of NPP. Although a 

temporary slight increase of NPP occurred in the early stages, the conversion from other vegetation 
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types to urban and croplands strengthened human disturbance and ultimately led to obvious land 

degradation in the latter period. 

Figure 6. Spatial mapping of three effects patterns in the central area, suburb and exurb. 

(a) 2001–2003 weather variation. (b) 2001–2003 LULC change. (c) 2003–2006 weather 

variation. (d) 2003–2006 LULC change. 

 

4.4. Weather Variations 

The average annual temperature and annual total precipitation of Guangzhou are shown in Figure 7, 

which indicates that the temperature fluctuation was stable and smaller than the precipitation 

fluctuation. It is demonstrated by variations of monthly temperature and total precipitation in Figure 7, 

and precipitation reached the bottom in 2003 and then increased significantly. NPP change had a 
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positive correlation with temperature and a negative correlation with precipitation, and the correlation 

coefficient between temperatures, precipitation was higher in the latter period than in the early period 

(Table 4). It is probably a lag NPP response to the strong El Niño event in 2003. The highest negative 

correlation coefficient between precipitation and NPP occurred in the suburb, and the weak relation 

occurred in the central and exurb during both periods. However, from 2001 to 2003, the correlation 

coefficient was only −0.27 with standard deviation 0.46, and it reached to −0.85 with standard 

deviation only 0.14 from 2003 to 2006. The correlation coefficient suggested that the relationship 

between precipitation and NPP was more closed in the large suburb area during the latter period, which 

was consistent with the effects dominated by weather variation.  

Figure 7. Annual average temperature and total precipitation in Guangzhou from 2000 to 2007. 

 

Table 4. Correlations between NPP and temperature and precipitation. 

 2001–2003 2003–2006 

 NPP-Temperature NPP-Precipitation NPP-Temperature NPP-Precipitation 

 Average SD (*) Average SD Average SD Average SD 

Central Area 0.13 0.55  −0.19 0.55  0.74 0.33  −0.63 0.36  

Suburb 0.19 0.45  −0.27 0.46  0.84 0.25  −0.85 0.14  

Exurb 0.18 0.68  −0.21 0.67  0.34 0.47  −0.63 0.38  

Note: SD (*) is the standard deviation. 

5. Conclusions  

From the perspective of urban expansion, NPP was used to discover the spatiotemporal pattern 

variation of urban carbon storage and its driving mechanisms. To achieve this purpose, the current 

study replaced complex physiological parameters in the ecological models with a comparison between 

the effects of weather variations and LULC changes on NPP. An evaluation based on this method can 

not only identify the entire trend of weather variations and natural ecosystems, but it also estimates the 

NPP response to different effect patterns caused by urbanisation. Future work should further explore 
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how conversion of LULC can determine intensity and magnitude of the effects. The next step will be 

further assessment in relation to LULC change with ability for GHG reduction in urban areas, based on 

the study conclusions: 

During the fast urban expansion and adjustment period, the NPP mean value reached  

331.5 g·C·m−2·a−1 in 2001, 366.3 g·C·m−2·a−1 in 2003 and changed to 273.2 g·C·m−2·a−1 in 2006. The 

spatiotemporal pattern of NPP variations was distinct in the central area, suburb and exurb, which was 

caused by both effects with different intensities. Combined with the NPP variation response, the four 

intensity categories were divided into three driving patterns, including the interactive influences of 

both effects (effect intensity <25% or >85%), effects dominated by weather variations (effect intensity 

of 25%–40%) and effects dominated by LULC changes (effect intensity of 40%–85%). The previous 

two patterns mainly led to a slight and common fluctuation in the central urban and the suburb; while 

the third pattern was the main driving force causing the fast reduction of NPP in some areas of the 

suburb and exurb. Importantly, this study revealed that the conversion from grassland, shrubland and 

forest cover to urban areas and croplands corresponds to a change from high-NPP coverage to  

low-NPP coverage. So, the conversion case strengthened human disturbance and ultimately led to fast 

degradation of carbon stocks ability. The total decreased NPP was about 167 × 106 g·C during this fast 

urbanization period. 
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