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Abstract: We present the Moment Distance (MD) method to advance spectral analysis in 

vegetation studies. It was developed to take advantage of the information latent in the 

shape of the reflectance curve that is not available from other spectral indices. Being 

mathematically simple but powerful, the approach does not require any curve 

transformation, such as smoothing or derivatives. Here, we show the formulation of the 

MD index (MDI) and demonstrate its potential for vegetation studies. We simulated leaf 

and canopy reflectance samples derived from the combination of the PROSPECT and 

SAIL models to understand the sensitivity of the new method to leaf and canopy 

parameters. We observed reasonable agreements between vegetation parameters and the 

MDI when using the 600 to 750 nm wavelength range, and we saw stronger agreements in 

the narrow red-edge region 720 to 730 nm. Results suggest that the MDI is more sensitive 

to the Chl content, especially at higher amounts (Chl > 40 μg/cm2) compared to other 

indices such as NDVI, EVI, and WDRVI. Finally, we found an indirect relationship of 

MDI against the changes of the magnitude of the reflectance around the red trough with 

differing values of LAI. 

Keywords: moment distance index (MDI); hyperspectral analysis; PROSPECT/SAIL 

models; vegetation indices 
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1. Introduction 

Over the past three decades, spectral indices have been devised to extract specific information for 

vegetation biophysical and biochemical properties. For instance, vegetation indices (VIs), usually 

formulated as a combinations of two or three spectral bands, use the concept of band ratio [1–4] and 

differences or weighted linear combinations [5,6] to make the most out of the contrasts in visible and 

NIR portions of the spectrum for measuring the photosynthetic activity of the plant [7,8] and exploring 

vegetation dynamics [9–13]. Studies have demonstrated that spectral VIs are correlated with vegetation 

parameters related to chlorophyll and biomass abundance [7,14,15]. 

The Normalized Difference Vegetation Index (NDVI) [4,16] exploits the strong differences in the 

red and NIR reflectances, where contrast in reflectance between vegetation and bare soil is maximal. It 

is calculated as the difference between the spectral reflectance measurements of the NIR and red bands 

divided by the sum of the same measurements. One drawback of the NDVI is its non-linear 

relationship with biophysical characteristics such as green Leaf Area Index (LAI) [17] and 

aboveground green biomass [18,19], and its sensitivity to soil background [20–23]. Studies have 

shown the NDVI to asymptotically lose sensitivity under moderate to high biomass conditions and for 

certain ranges of LAI [24–27]. This shortcoming of the NDVI had led to the development of 

derivatives and alternative indices. One example is the Wide Dynamic Range Vegetation Index 

(WDRVI) [6,28] that was initiated to enhance the dynamic range of the NDVI and later used for 

charactering vegetation dynamics [13,29,30] and estimating fractional vegetation cover [31].  

We listed a number of VIs in Table 1. One apparent commonality among indices is their goal to 

minimize, if not diminish, the effects of external factors such as background and atmospheric conditions 

on spectral data [24]. Ratio-based indices, for instance the Modified Simple Ratio (MSR) [1] and the 

Transformed Vegetation Index (TVI) [32], are enhanced indices in terms of sensitivity to vegetation 

biophysical parameters. However, no technical distinction is seen between NDVI and TVI when it 

comes to detecting the active vegetation. In the TVI equation in Table 1, a ratio of less than 0.71 is 

deemed as non-vegetation and if it is greater than 0.7, it is considered vegetation.  

In the soil-line-based VI category, the goal is to understand the behavior of indices [33].  

Soil-distance-based VIs hope to cancel soil background effects [34], especially when vegetation cover 

is sparse [20]. The Perpendicular Vegetation Index (PVI) [35]; later modified as PVI1, PVI2 and  

PVI3 [36,37], was the first introduced VI based on the concept of the soil line. Other distance-based 

indices followed: the Difference Vegetation Index (DVI) [35], Green Vegetation Index (GVI) [38,39], 

and Weighted Difference Vegetation Index (WDVI) [5]. Gitelson et al. [40] looked into the  

two-dimensional spectral space defined by vegetation and soil lines and proposed indices to monitor 

vegetation fraction. The technique used focal points along the two lines to derive relationship ratios.  

Optimized indices are combinations of concepts from slope-based and distance-based VIs. The 

Soil-Adjusted Vegetation Index (SAVI) [41], for instance, integrates the NDVI and the soil adjustment 

factor. Further enhancements resulted in a SAVI family of indices [36,42,43]. There have been 

remarkable inconsistencies in the logic with which the soil line has been utilized for specific vegetation 

indices. Bannari et al. ([44]) cited that the distance-based VIs are not consistent as to which band, red 

or NIR, is the independent variable in the regression equation.  
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Mathematical simplicity and ease of use are factors in choosing the vegetation index for a desired 

application. In this respect, ratio-based indices have an edge over their soil-distance-based VI counterparts. 

Although the optimized indices and distance-to-soil-line-based were successful in eliminating the 

atmospheric and soil background effects (e.g., WDVI [5]) or improving sensitivity to high biomass 

(e.g., [45–47]), their application to monitoring vegetation at global scales is still disputed [48].  

Table 1. List of few existing vegetation indices.  

Vegetation Index Equation Reference Remarks 
Difference Vegetation Index 

(DVI) 
−  Jordan (1969) [22] 

Sensitive to soil 
background 

Ratio Vegetation Index (RVI) NIR/red 
Pearson and Miller 

(1972) [23] 
Sensitive to soil 

background 

Normalized Difference 
Vegetation Index (NDVI) 

−+  
Rouse et al. (1974) 

[16] 

Enhances contrast 
between soil and 

vegetation 

Modified Simple Ratio (MSR) 
− 1+ 1  Chen and Cihlar 

(1996) [1] 
Improves vegetation 

sensitivity 

Transformed Vegetation Index 
(TVI) 

−+ + 0.5 
Deering et al. 
(1975) [32] 

Modifies NDVI with only 
positive values; <0.71 as 
non-vegetation and >0.71 

as vegetation 

Modified Transformed 
Vegetation Index (MTVI) 

∗ −∗ +  

where c is a weighing factor 

Skianis et al. 
(2007) [3] 

Used with poor 
vegetation 

Perpendicular Vegetation 
Index (PVI) 

sin (a)*NIR – cos (a)*red 
where a is a weighing factor 

Richardson and 
Wiegand (1977) 

[35] 

Utilizes soil line in  
red-NIR space 

Green Vegetation Index (GVI) 

–0.29*MSS4 –0.56*MSS5 +0.60*MSS6 
+0.49*MSS7 

–0.2848*TM1–0.2435*TM2–0.5436*TM3 
+0.7243*TM4+ 0.0840*TM5–0.1800*TM7 

Kauth and 
Thomas (1976) 

[38] 
Crist and Cicone 

(1984) [39] 
 

 
4-band version for MSS 

 
6-band version for TM 

Weighted Difference 
Vegetation Index (WDVI) − ∗  Clevers (1988) [5] 

Specifically for soil 
moisture influences 

Soil Adjusted Vegetation Index 
(SAVI) 

−+ + (1 + ) 
where L is a correction factor 

Huete (1988) [41] 
Combines NDVI and soil 

factor 

Transformed Soil Adjusted 
Vegetation Index (TSAVI) 

( − )( − )∗ + − ∗ + ∗ (1 + ∗ )  

where a is the soil line intercept, s is the soil line 
slope, and x is an adjustment factor

Baret et al. (1989) 
[42] 

Assumes soil line has 
arbitrary slope and 

intercept 

Soil Adjusted Vegetation 
Index2 (SAVI2) + /  

Major et al. (1990) 
[43] 

Ratio b/a as the  
soil-adjustment 

factor 

Enhanced Vegetation Index 
(EVI) 2.5 −+ 6( ) − 7.5( ) + 1  

Liu and Huete 
(1995) [45] 

Modified NDVI with 
improved sensitivity to 

high biomass 

Wide Dynamic Range 
Vegetation Index (WDRVI) 

∗ −∗ +  

where a is a weighing coefficient

Gitelson et al. 
(2004) [6] 

Enhances dynamic range 
of NDVI 

Chlorophyll Index Red-edge 
(CIred-edge) 

− − 1 

where red-edge covers 690 to 725 nm 
and NIR spans the 760 to 800 nm 

Gitelson et al. 
(2006) [46] 

Uses a range of bands 

Combined Vegetation Index 
(CVI) 

− 0.630.95  
Nguy-Robertson et 

al. (2012) [47] 
For moderate to high LAI 
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Limitations in the application of indices may include the choice of wavelength band positions and 

bandwidths [40]. Also, the indices are deficient in putting a focus on the shape of the curve. Whereas 

current indices incorporate two-band or three-band relations, no metric has dealt with the raw shape of 

the curve by featuring multiple bands that could carry additional spectral information useful for 

vegetation monitoring. In this era of spaceborne sensors such as the EO-1 Hyperion [49] and NASA’s 

Hyperspectral InfraRed Imager (HyspIRI) [50–52] that may be launched in the future, VIs can be 

designed for optimal use of the spectrum by creating new indices that incorporate wavelengths not 

sampled by any broadband system [53]. Unlike broadband sensors such as the Landsat TM, ETM, and 

OLI that have few bands, both spaceborne sensors have many spectral channels that span from the 

visible to NIR—regions considered as essential for vegetation studies.  

The shape of the reflectance spectrum can be exploited for assessing the vegetation condition or 

health (through its properties) without locating the red-edge position [54] and studying the shape 

(transformed) of the first derivative curve (e.g., [55]) or formulating derivative vegetation indices  

(e.g., [21]) or eliminating correlated bands (e.g., [56]). Here, we exploited the spectral curve by 

introducing a new metric for spectral analysis that could siphon the fine points of the curve, which we 

believe captures the diversity of biochemical and biophysical signatures of plant species. The chemical 

and physical differences in the configuration of vegetation are often exhibited as differences in their 

contiguous spectral signatures [57]. In this paper, we used an index to try to quantify the differences in 

spectral signatures through changes in shapes in a specific spectral region.  

In a recent paper [58], we demonstrated the Moment Distance (MD) framework with laboratory 

spectra and their association with wet chemistry pigment measurements of chlorophyll and carotenoids 

contents in soybean and maize leaves. We compared the MD index to other spectral indices formulated 

to detect chlorophyll and carotenoid contents. The new approach performed better than conventional 

spectral indices in some cases. In this paper, however, we present a model-based sensitivity analysis and 

look into the behaviors of the MD index using simulated spectral signatures by focusing on the range of 

600 to 750 nm. The range contains pronounced variability in leaf and canopy reflectance [34]. The  

red-edge region [54,59] from 720 to 730 nm [46,47] could also give specific details on leaf chlorophyll 

content [60,61]. We restricted the analysis within the red-edge to closely relate vegetation parameters to 

shape variations characterize by the values of the MDI. We discuss the methods we employed to derive 

information from the choice of range with special attention to the applicability and versatility of the MDI 

for vegetation studies. Lastly, we use a physically based method to extract leaf and canopy reflectance 

values in order to study the relationships of leaf and canopy variables against the new metric.  

2. Materials and Methods 

2.1. MD Applied to the Visible and NIR Range for Vegetation Research 

The sensitivity analysis for the MD was conducted in the VIS to NIR regions of the spectrum through 

simulation of spectral reflectance of individual leaves as a function of leaf properties and canopy 

variables and used them to calculate the Moment Distance Index (MDI). The wavelengths of interest, 

between 600 and 750 nm represent more effective wavelengths for vegetation studies, notwithstanding 

the importance of the bands defining the peaks and trough [4] contained within the range. 
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2.2. Definition and Formulation of the Moment Distance (MD) 

The Moment Distance is a matrix of distances computed from two reference locations (pivots) to 

each spectral point within the selected range. Assume that a reflectance curve is displayed in Cartesian 

coordinates with the abscissa displaying the wavelength λ and the ordinate displaying the reflectance ρ 
(Figure 1). Let the subscript LP denote the left pivot (located in a shorter wavelength) and subscript RP 

denote the right pivot (located in a longer wavelength). Let λLP and λRP be the wavelength locations 

observed at the left and right pivots for a reflectance data, respectively, where left (right) indicates a 

shorter (longer) wavelength. The proposed MD approach can be described in a set of equations. ( + ( − ) ) .  (1)

( + ( − ) ) .  (2)−  (3)

Thus, the moment distance from the left pivot (MDLP) is the sum of the hypotenuses constructed 

from the left pivot to the value at successively longer wavelengths (index i from λLP to λRP); one base 

of the triangle is the difference from the left pivot (i − λLP) along the abscissa and the other is simply 

the value at i (Equation (1)). Similarly, the moment distance from the right pivot (MDRP) is the sum of 

the hypotenuses constructed from the right pivot to the value at successively shorter wavelengths 

(index i from λRP to λLP); one base of the triangle is the difference from the left pivot (λRP − i) along the 

abscissa and the other is simply the value at i (Equation (2)). 

Figure 1. MD Index schematic diagram for spectral reflectance curve. Note that the 

number of points between LP and RP pivots can vary depending on the spectral resolution 

and the width of the selected range. 

 

The MD Index (MDI) is an unbounded metric (Equation (3)). It increases or decreases as a 

nontrivial function of the number of spectral bands considered and the shape of the spectrum that spans 
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those contiguous bands. Calculation of the MDs both from the left pivot to the right and from the right 

pivot to the left is necessary because the distance of a point on the curve from a reference pivot on the 

x-axis conveys the behavior of the curve, which is often asymmetric, from the pivot point of 

perspective. The more the number of points or bands considered between the pivots, the better the 

shape of the curve is resolved and the better the distances detect movements of trough and peak 

locations. The number of bands between the pivots is a function of the spectral resolution of the 

imaging spectrometer and the length of the selected range (i.e., full extent or subsets of the curve) 

being analyzed. Depending on the spectral resolution, the matrix resulting from the calculations of the 

MDs within a range of values could be very large. For example, a set of data having 50 bands from 400 

to 900 nm could result in an initial matrix size of 51 by 51, with 2,601 entries. In hyperspectral data 

comprised of 1,000 bands, the matrix could contain more than one million entries. In cases with too 

many bands, decomposition to matrix subsets may be used to highlight specific pivot wavelength regions 

(PWR) [58] (e.g., 720–730 nm for vegetation red-edge; 900–980 nm for vegetation water absorption).  

Figure 2. Components of the initial MD matrix and its subsets: Wavelength component, λ, 
in the first column; reflectance, R, on the diagonal; other entries represent individual 

moment distances, m, from reference points.  

  ma mb mc md me mf mg mh mi mj mk ml mm mn mo mp mq

                   

λ1  R1 mb1 mc1 md1 me1 mf1 mg1 mh1 mi1 mj1 mk1 ml1 mm1 mn1 mo1 mp1 mq1

λ2  ma2 R2 mc2 md2 me2 mf2 mg2 mh2 mi2 mj2 mk2 ml2 mm2 mn2 mo2 mp2 mq2 

λ3  ma3 mb3 R3 md3 me3 mf3 mg3 mh3 mi3 mj3 mk3 ml3 mm3 mn3 mo3 mp3 mq3 

λ4  ma4 mb4 mc4 R4 me4 mf4 mg4 mh4 mi4 mj4 mk4 ml4 mm4 mn4 mo4 mp4 mq4 

λ5  ma5 mb5 mc5 md5 R5 mf5 mg5 mh5 mi5 mj5 mk5 ml5 mm5 mn5 mo5 mp5 mq5

λ6  ma6 mb6 mc6 md6 me6 R6 mg6 mh6 mi6 mj6 mk6 ml6 mm6 mn6 mo6 mp6 mq6 

λ7  ma7 mb7 mc7 md7 me7 mf7 R7 mh7 mi7 mj7 mk7 ml7 mm7 mn7 mo7 mp7 mq7 

λ8  ma8 mb8 mc8 md8 me8 mf8 mg8 R8 mi8 mj8 mk8 ml8 mm8 mn8 mo8 mp8 mq8 

λ9  ma9 mb9 mc9 md9 me9 mf9 mg9 mh9 R9 mj9 mk9 ml9 mm9 mn9 mo9 mp9 mq9 

λ10  ma10 mb10 mc10 md10 me10 mf10 mg10 mh10 mi10 R10 mk10 ml10 mm10 mn10 mo10 mp10 mq10 

λ11  ma11 mb11 mc11 md11 me11 mf11 mg11 mh11 mi11 mj11 R11 ml11 mm11 mn11 mo11 mp11 mq11 

λ12  ma12 mb12 mc12 md12 me12 mf12 mg12 mh12 mi12 mj12 mk12 R12 mm12 mn12 mo12 mp12 mq12 

λ13  ma13 mb13 mc13 md13 me13 mf13 mg13 mh13 mi13 mj13 mk13 ml13 R13 mn13 mo13 mp13 mq13

λ14  ma14 mb14 mc14 md14 me14 mf14 mg14 mh14 mi14 mj14 mk14 ml14 mm14 R14 mo14 mp14 mq14 

λ15  ma15 mb15 mc15 md15 me15 mf15 mg15 mh15 mi15 mj15 mk15 ml15 mm15 mn15 R15 mp15 mq15 

λ16  ma16 mb16 mc16 md16 me16 mf16 mg16 mh16 mi16 mj16 mk16 ml16 mm16 mn16 mo16 R16 mq16 

λ17  ma17 mb17 mc17 md17 me17 mf17 mg17 mh17 mi17 mj17 mk17 ml17 mm17 mn17 mo17 mp17 R17 

 

Figure 2 illustrates the approach. The entire Matrix 1 is a result of taking two pivots from bands λ1 

to λ17. The actual matrix size is 17 by 17 with diagonals carrying the values of the reflectance 

equivalent to the wavelength positions. All m entries in Figure 2 represent the MD values at possible 

Moment Distances 

Matrix 1 Matrix 2 Matrix 3
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pivot pairings. Matrix 1 can be segregated into subsets with sizes that are dependent on the chosen LP 

and RP. Matrix 2 is a subset of Matrix 1, chosen from reference pivots λ5 and λ11. The smaller 7 by 7 

matrix has five spectral bands (λ6, λ7, λ8, λ9 and λ10) in the PWR. Matrix 3 is another subset covering 

bands λ11 to λ16, with fours bands in another PWR. The PWR is user-selected. However, we suggest 

that it should be chosen according to the characterization of vegetation biophysical or biochemical 

property—wavelength regions that could facilitate in the detection and characterization of spectral 

differences, allowing separations based on the curve shapes. The same set of equations  

(Equations (1–3)) can be applied to calculate MDI for Matrices 1, 2, and 3.  

2.3. PROSPECT and SAIL Models 

Physically based PROSPECT [62] and SAIL [63] models permit the extractions of major vegetation 

biophysical parameters and eventually provide a tool to designing algorithms for canopy biophysical 

and biochemical retrievals [64–66]. The PROSPECT + SAIL model has been used to derive 

hyperspectral reflectance data and look at dynamics of vegetation indices spanning the visible and NIR 

regions of the spectrum [9,67]. The PROSPECT model is a simple radiative transfer model that allows 

the calculation of the leaf hemispherical reflectance and transmittance spectra of a leaf using only four 

main input parameters. Later versions of the PROSPECT have been used to evaluate the sensitivity of 

spectral indices to variation in soil reflectance [68].  

Reflectance simulation included the range from 600 nm to 750 nm, using the PROSPECT 4 version 

that was developed at the USDA-ARS Hydrology and Remote Sensing Laboratory in Maryland. 

PROSPECT 4 combines the two absorption coefficients of total chlorophyll and total carotenoids as 

one [68]. The input model parameters include the leaf mesophyll structure index (n); chlorophyll 

content (Chl in μg/cm2); water content (wc in g/cm2), and dry matter content (dmc in g/cm2). 

Arbitrarily, a total of 77 leaf reflectance and transmittance spectra were simulated using the following 

parameters of a standard crop [62]: n = 1.83, wc = 0.0137, dmc = 0.005, and Chl ranging from  

5 μg/cm2 to 80 μg/cm2 with 1 μg/cm2 increments. The output of the PROSPECT model was used as 

input parameters into the SAIL model. 

The Scattering Arbitrary Inclined Leaves (SAIL) model is a one-dimensional, bidirectional, turbid 

medium radiative transfer model that simulates the reflectance and transmittance of vegetation 

canopies [63]. In our test, we used the SAIL model provided by the USDA Agricultural Research 

Service (www.ars.usda.gov/services/software, verified 20 January 2010) that was developed in 2003 

and updated in 2007. The SAIL model predicts the top-of-canopy reflectance at specific wavelengths. 

SAIL parameters include the controls on solar/view geometry, illumination parameters: fraction solar 

direct, solar declination angle, latitude, sun-view azimuth angle, view zenith angle, Leaf Angle 

Distribution (LAD), the Leaf Area Index (LAI), soil background reflectance and the leaf 

reflectance/transmittance (are importable from PROSPECT). We varied these parameters 

systematically to assess the sensitivity of the Moment Distance approach.  

The online collection at the USGS Digital Spectral Library splib06a (http://speclab.cr.usgs.gov; [69]) 

provides reflectance spectra from various types of soil and provided the range of plausible background 

reflectances for our simulations. We took zero as the minimum value and increased the influence to a 

maximum of 80% background reflectance (in steps of 5%) to cover the highest amount of soil effect to 
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the top-of-canopy reflectance. Figure 3 shows a simple schematic diagram: from the simulations to the 

derivations of the MDI.  

Figure 3. Example schematic diagram of how parameters are varied in the simulation. The 

process can be repeated at other values of Chl, background reflectance, and illumination 

and viewing geometries to produce simulated canopy reflectance.  

 

3. Results  

3.1. MDI on Simulated PROSECT/SAIL Reflectance Curves 

The comparison between the MDI from 600 to 750 nm (MDI600–750 nm) and that from 720 to 730 nm 

(MDI720–730 nm) at increasing Chl is shown in Figure 4. Both show that at canopy level, small values of 

MDI are associated with small values of LAI. There is peaking of MDI observed in Figure 4a, at 
around Chl = 25 μg/cm2, before MDI decreases at increasing Chl. MDI(600–750 nm) tends to lose 

sensitivity at very high values of LAI and Chl. The peaking is not evident in the shorter, more specific 

red-edge region at 720 to 730 nm. Figure 4b shows a strong linear relationship between MDI and the 

Chl content at different levels of LAI. At low Chl content (e.g., Chl = 5μg/cm2), MDI values range from 

1.27 to 1.31. 

Figure 4. Relationships of MDI against Chl for PWR (a) 600 to 750 nm and (b) 720 to  

730 nm. Take note of the linearity shown by the spectral range 720 to 730 nm against Chl, 

suggesting that it may be a better range for Chl estimation. 

 
(a) (b)

 

Leaf Reflectance/Transmittance 
(e.g., for Chl = 5μg/cm2) 

Soil Background Reflectance  

(e.g., soil = 5%) 

Illumination and Viewing Geometries  
(e.g., fraction direct solar =1) 
(e.g., view zenith angle = 45) 

(e.g., view azimuth angle = 40) 
others…  

Calculate at various LAI (0.1 to 7) and 
various LAD (5° to 85°) 

Simulated Canopy Reflectance 

MDI Calculations 
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LAI has influence, at varying degrees, on both the MDI(600–750 nm) and MDI(720–730 nm) as shown in 

Figure 5a,b, respectively. The relationship between MDI and LAI is most distinct at low LAI values, 

with loss of sensitivity of MDI beginning at around LAI equal to 3. The trend observed between LAI 

and MDI when the former is below a value of about 3 may be viewed as being due to the variation in 

the bare soil component [70]. One interesting observation is the red-edge range (MDI720–730 nm) that 

tends to minimize the LAI influence (Figure 5b) even at low LAI levels.  

Figure 5. Relationships of MDI against LAI for PWR (a) 600 to 750 nm and (b) 720 to 

730 nm. Note how the MDI computed from 600 to 750 nm PWR loses sensitivity around 

LAI = 3. The range 720 to 730 nm, however, tends to minimize the LAI influence. 

 

Evident in Figure 6a,b are the differences in MDI trends in terms of the leaf inclination. Leaf angle 

affects the MDI at all degrees of leaf tilting for MDI(600–750 nm) (Figure 6a). MDI falls to smaller values 

at increasing angle. Figure 6b conveys a different story with the shorter PWR, MDI(720–730 nm), as being 

less affected by leaf inclination angles. Minimal effects are observed on planophile than erectophile 

leaves. The leaf inclination angles only began to have effects at 55° angle in low chlorophyll contents. 

Figure 6. Relationships of MDI against leaf inclination angle for PWR (a) 600 to 750 nm 

and (b) 720 to 730 nm. The MDI from 600 to 750 nm range is sensitive to leaf inclination 

at almost all angles. Leaf angle has minimal effects on MDI(720–730 nm). 

 

The PWR 600 to 750 nm is sensitive to solar zenith angle, especially at low angles (Figure 7a), with 

MDI leveling off at high degrees of zenith. For the 720 to 730 nm PWR, the red-edge MDI is 

minimally, if not affected, by zenith angle variations (Figure 7b).  

Between the two diagrams in Figure 8, the fraction of direct solar irradiation (FDSI) is linearly 

related to the MDI(600–750 nm) (Figure 8a). The FDSI has minimal to no effects on the MDI at the  

red-edge feature of the spectrum (Figure 8b).  

(a) (b)

(a) (b)
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Figure 7. Relationships of MDI against solar zenith angle for PWR (a) 600 to 750 nm and 

(b) 720 to 730 nm. Note that the MDI from 720 to 730 nm is minimally affected by solar 

zenith angle. 

 

Figure 8. Relationships of MDI against fraction of direct solar irradiation for PWR (a) 600 

to 750 nm and (b) 720 to 730 nm. The larger PWR is more sensitive to FDSI. 

 

Figure 9 displays the behavior of the MDI with various percentages of soil reflectance. Soil 

brightness has minimal effect on the shape of the curve at range 600 to 750 nm (Figure 9a). There is 

significantly no effect of soil reflectance on the MDI at the strip of curve in the red-edge region. In all 

levels of chlorophyll content, the MDI(720–730 nm) is not associated with changes of soil reflectance 

(Figure 9b). The relationship between MDI and soil reflectance at varying levels of LAI is illustrated 

in Figure 10a,b. Both selected PWRs yielded similarities of trends—albeit MDI(720–730 nm) has a much 

lower LAI threshold than MDI(600–750 nm), with the latter still being sensitive at LAI greater than 3. 

Also, in Figure 10c,d, the proportion of soil background has clear effects on the spectral curves at 

varying levels of LAI. 

Figure 9. Relationships of MDI against soil background reflectance for PWR (a) 600 to 

750 nm and (b) 720 to 730 nm. Very minimal background effect has been observed using 

the shorter range.  

 
(a) (b)

(a) (b)

(a) (b)
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Figure 10. Relationships of MDI against soil background reflectance in varying levels of LAI 

for PWR (a) 600 to 750 nm and (b) 720 to 730 nm. No background effect has been observed 

using the red-edge spectral range, especially for LAI equal to 2 and higher. (c,d) spectral 

curves are affected by proportions of soil background at varying levels of LAI. 

 
(a) (b)

 
(c) (d) 

Figure 11. Chl content vs. (a) NDVI (b) EVI (c) WDRVI with a = 0.2 (d) WDRVI with  

a = 0.1 (e) CIred-edge (f) CVI. Note how the NDVI loses sensitivity at smaller quantity of Chl 

content. Also, CIred-edge and CVI show clear linear trends comparable with MDI(720–730nm). 
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Figure 11. Cont. 

 

For comparison, we used existing VIs such as the NDVI, EVI, WDRVI, CI, and CVI and checked their 

relationships against the chlorophyll content. We averaged spectral bands to represent NIR (750–850 nm), 

red (600–700 nm), blue (400–500 nm), and red-edge (690–725 nm). Figure 11 confirms the previous 

findings of NDVI losing sensitivity (Figure 11a) at high chlorophyll content [2]. The linear behavior of 

the CIred-edge and CVI against the Chl (Figure 11e,f), respectively) is similar to that in Figure 4b for 

MDI(720–730nm) vs. Chl. Akin to NDVI, WDRVI tended to lose sensitivity as well (Figures 11c,d), but at 

a much higher Chl content. EVI (Figure 11b) also lost its sensitivity at increasing Chl content. 

However, EVI exhibited a linear trend against Chl at a very low level of LAI (LAI = 0.5). 

The result obtained when we put MDI(600–750 nm) against the magnitude of the reflectance at the 

trough is shown in Figure 12a. We observed indirect linear relationships, with low reflectance values 

relating to high MDIs. The linear trend is not manifested in CIred-edge vs. “reflectance at trough” in 

Figure 12b.  

Figure 12. Magnitude of the reflectance across the red trough falling between the 600 nm 

to 750 nm against (a) MDI(600–750 nm) (b) CIred-edge. CIred-edge loses sensitivity at higher 

trough reflectance. 

 

3.2. Sensitivity Analysis  

The sensitivity analysis (Figure 13) complements the trends shown in Figure 11. MDI(720–730nm) is 

the best method in estimating Chl, especially at high Chl amounts (Chl > 40 μg/cm2). Also,  

MDI(720–730nm) is comparable with CVI and CIred-edge showing sensitivities of both indices to Chl 

interchanging at varying LAI. 

(a) (b) 
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Figure 13. Relative sensitivity (Sr) of MDI(720-730nm) to chlorophyll. Sr < 1 means that  

(a) NDVI or (b) EVI or (c) WRDVI (a = 0.2) or (d) WRDVI (a = 0.1) or (e) CIred-edge or  

(f) CVI is more sensitive than MDI to changes in Chl contents. Sr > 1 indicates MDI being 

more sensitive than the tested indices.  

 

4. Discussion 

The MDI has three advantages compared to other existing indices. First, the MDI uses more than 

two or three spectral bands to infer information about vegetation properties. Its potential to utilize a 

number of bands at a time adds spectral information that may not be found when using reductive 

methods. While other studies use only a limited number of wavebands, MDI takes special attention not 

just on the choice of spectral bands but their positioning within an effective PWR. This leads to the 

second advantage: the MDI could be exploited to cover various specific PWRs as defined by pivot 

pairs. This characteristic enables analysis on a specialized wavelength window, e.g., red-edge region. 

Third, magnitude of reflectance of significant dips, such as the trough between the red and NIR bands 

of the spectrum, could be well detected by the MDI. A sample illustration of this observation is 

presented in Figure 12.  
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The Moment Distance metric takes advantage of the geometry of the curve. MDI detects variations 

of the shape or presence of significant dips and peaks due to the fixing of the two points that serve as 

pivots. The establishment of two pivots solidifies the MD algorithm as an approach for shape 

characterization by defining the structural behavior of the curve not only from a single point of 

perspective, but two. Movements of the key spectral landmarks, either to the shorter or longer 

wavelength, are manifested by change in the MD values. Equations 1 and 2, depending on the spectral 

resolution used, could identify the existence of changes, e.g., flattening to a rising curve, as partly 

illustrated by the sensitivity of MDI to the magnitude of the trough. The relation of the MDI to the 

changes of the spectral curve morphology is important in capturing the dynamics of the red-edge region. 

This paper presented results of the analysis for two sets of PWRs, the 600 to 750 nm and the much 

narrower spectral subset 720 to 730 nm [46]. The PWRs encompass the red and NIR and the important 

red-edge region [59,60,71,72] used for vegetation studies. The decomposition from full matrix to the two 

spectral subsets, 600 to 750 nm and 720 to 730 nm, allowed us to look at how the selected pivots define 

the strength of each point on the asymmetrical curve from their respective standpoint. 

The high-resolution spectral data from the PROSPECT-SAIL simulations tested the sensitivity of 

the MDI against the vegetation properties and illumination/viewing geometries. Based on the 

simulation results, the MDI shows promise in detecting changes in leaf chlorophyll content at a 

specific PWR. While good correlations were found between the MDI and vegetation parameters at a 

wider LP-RP combination (600–750 nm), results show that in narrowing the PWR, a stronger and 

more significant relationship could be attained. Reasonable agreements depicted in the trends between 

MDI and other parameters (e.g., LAI, Leaf Angle Distribution) were obtained when using 600 to 750 

nm. The observed trend is attributed to the entire range of variation of leaf reflectance at the 600 to 750 

nm domain, where leaf reflectance increases from minimum to maximum value [73]. The MDI(600–750 

nm) vs. FDSI indicated a high correlation, which could permit the MDI(600–750 nm) to be used in situations 

where only the spectral data is available. Figure 8 shows a strong linear trend for the MDI(600–750 nm) 

(larger PWR) against FDSI, something not manifested with the shorter PWR, MDI(720–730 nm).  

Daughtry et al. [74] also suggested a larger PWR, 500 nm to 1,100 nm. 

The much narrower PWR, LP = 720 nm and RP = 730 nm, demonstrates the capability of the MDI 

for Chl estimation (with LAI influence minimized). MDI(720–730nm) results in a larger dynamic range 

against Chl than MDI(600–750 nm). In Figure 4b, increasing MDI is associated with increasing Chl, which 

is analogous to what is referred to as the red-shift [75], or movement of the red-edge inflection point 

(REIP) to longer wavelength at increasing Chl. MDI(720–730nm) detects the REIP shift when more 

moment distances are accumulated at the RP than the LP producing larger MDIs. RP accumulates 

more MD when the red trough deepens at increasing Chl producing shorter distances from the LP.  

In contrast to NDVI (Figure 11a), EVI (Figure 11b), and WDRVI (Figure 11c,d)) that tend to lose 

sensitivity at higher chlorophyll contents, the MDI(720–730 nm) does not, as is illustrated in Figure 4. In 

Salas and Henebry [58], the narrow spectral range of 720 to 730 nm also performs well (r2 = 0.96) when 

MDI from laboratory spectra is linked to wet chemistry pigment measurements [76] such as Chl. Only 

the CIred-edge, which showed to be sensitive to changes in green biomass [27], and its closely related index 

CVI are comparable to the MDI(720–730 nm) in terms of the linear dependency to Chl content (Figure 11e,f). 

The CI and CVI could complement the MDI(720–730 nm) in the estimation of Chl content [58].  
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Since the formulation of the MD algorithm takes into account the shape of the curve, the saturation 

of the MDI (as shown in Figure 5 maintaining a constant value) at high LAI vindicates the unchanging 

shape of the curve at certain PWRs. Although red-edge indices may show the highest potential to 

accurately detect LAI values greater than 4 [26], our results show that it is necessary to experiment on 

the spectral domain for the MDI within the red-edge region. Further, the results of MDI(720-730 nm) vs. 

LAI suggests the possibility of looking at some other spectral PWRs for LAI estimation, or explore the 

sensitivities of other bands to LAI, such as the blue and green bands [77], without the MDI reaching 

saturation point. 

There are two reasons for the reasonably good agreements of the MDI(720–730 nm) against the Chl. 

First, apart from the fact that the region lies in the essential vegetation spectral shift from red to NIR, 

the MD approach accounted for specific details of the curve at a high spectral resolution (simulating at 

1 nm intervals). Second, the region is less sensitive to spectral noise caused by the soil background and 

by atmospheric effects [78,79]. In fact, the soil background has rather minor effects on MDI(720–730 nm). 

The utility of the 720–730 nm region may be compromised, however, by the effects of very low LAI 

and very high soil reflectance (Figure 10). Though it is shown that the influence of LAI is minimized 

even at low LAI values, the simulations indicate that MDI(720–730 nm) may work best for higher values of 

LAI, starting around LAI = 2 to 3, when the soil background reflectance becomes less significant. 

Differences of the trends in the effects of the soil reflectance on the MDI in Figure 10 demonstrate 

the capability of the MD to detect movements of the curve shape that may be caused by soil 

background. Changes of the shape of the spectral curve, like the width of a trough, are shown in  

Figure 10c,d. Both diagrams in Figure 10a,b display the consequence of the flattening of the trough 

between the red and NIR as soil reflectance dominates at low LAIs.  

Because most VIs lose sensitivity at very high green biomass, including NDVI, EVI, and WDRVI, 

it may be ideal to utilize MDI using the range 720 to 730 nm, or possibly another range within or near 

the red-edge region—perhaps 705 nm to 750 nm [80]—for effective Chl estimation, especially 

applicable at ground level where spectrometer datasets can have high spectral resolution.  

The selection of pivot points is another advantage of the Moment Distance vis-à-vis other methods, 

as it highlights the framework as an index generation rather than a specific index. While the results 

show the Moment Distance being able to identify PWRs linked to vegetation properties and 

illumination/viewing geometries, a limitation is also exposed. The performance of the MDI is 

dependent on the availability of many spectral bands. For instance, the recently-launched Landsat 8 

Operational Land Imager (OLI) has only nine relatively broad bands [81], which may be insufficient to 

detect curve changes. However, with the existence of Hyperion, a spaceborne imaging spectrometer 

launched in 2001 [49,67], the upcoming HyspIRI mission [50,51], airborne imaging spectrometers 

(e.g., AISA Eagle [82], MASTER [83], and AVIRIS [84,85]), and the advent of robust, affordable 

field spectrometers, fine spectral resolution datasets are increasingly available for MDI utilization. 

5. Conclusions  

This article has presented the definition and formulation of a new, computationally simple but 

powerful approach, the Moment Distance (MD), and a model-based sensitivity analysis of the Moment 

Distance Index (MDI) tuned to both broad and narrow spectral regions. Using the capability of the 
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PROSPECT/SAIL to simulate a set of realistic hemispherical reflectance spectra from leaves, we have 

shown the potential of the Moment Distance to identify specific spectral locations linked to vegetation 

properties and illumination/viewing geometries. Moreover, we assessed the new algorithm against 

other existing indices, using subsets of wavelength regions, ensuring its sensitivity to the Chl pigment. 

Since the new index relies on the location of the two pivots and the number of spectral bands in 

between, it makes sense to explore other Moment Distance Indices defined by other PWRs not covered 

in this study. PWRs can be tuned in to different spectral regions for better detection of changes of 

shape related to pigment concentrations.  

The shape of a spectral curve can be difficult to distinguish quantitatively among multiple instances of 

similar scenes. The MDI can be explored beyond the bands this paper has covered as its applicability to 

multiple bands can be perceived as more robust to fluctuations on the curve. We have seen this aspect of 

the MDI to be particularly important for spaceborne imaging spectrometers that may have noise or 

artifacts arise in particular bands, such as was experienced with Hyperion [86,87]. The Moment Distance 

has the potential to spread retrieval risk across several bands while retaining sensitivity. 

In an attempt to define the shape of the curve and its benefits to vegetation spectral property 

estimation, we developed the algorithm with the assumption that specific spectral PWRs and the 

wavebands contained in it could define the curve and its movement. We conclude in our test that the 

MD approach has succeeded in at least three ways.  

First, the approach allows the use of the reflectance data without having to go through any 

transformation method. It does not limit itself from two to three bands to infer spectral information; 

rather, it utilizes more bands through a simple algorithm. The method of considering more bands may 

be seen as an impediment to a swifter analysis. Nonetheless, this should not be considered a limitation, 

but an essential feature of the approach for analyzing shape and deriving additional information from 

the curve. Also, simplicity in the analysis is one of the highlights of the MD. In the development of the 

algorithm, the Pythagorean Theorem is introduced as its base concept, all for ease in the computation 

of the moment distances. The introduction of the PWR showed the possibility of looking at and 

analyzing hyperspectral dataset in a different way.  

Second, the choice of the red and NIR bands for our testing not only confirms the importance of the 

red-edge region, as many previous studies have suggested, but also shows the MDI as a comparable, if 

not better, index for photosynthetic pigment estimation. For instance, the MDI performs well in our 

investigations against the Chl. In fact, in the sensitivity analysis, MDI is the best method in estimating 

Chl, especially at high Chl amounts. Also, contrasting trends found in both PWRs—720 to 730 nm and 

600 to 750 nm—open doors for MD exploration over a wide range of spectral domains and endless 

decomposition of the curve—varying range locations, number of bands, and relating to various 

vegetation properties or parameters.  

Third, MD demonstrates the possibility of looking at movements in spectral reflectance by 

constricting the shape within pivots. MD is sensitive to changes in the asymmetrical shape of the curve 

as shown in our results in Figure 10 when the spectral curves vary with differing proportion of soil 

background at various levels of LAI. The MDI responds to changes of shape in the spectral curve 

through the difference between the MD from the left pivot to the right from the MD calculated from 

the right pivot to the left. Such changes in the shape of a spectrum are difficult to observe using band 

ratios that emphasize differences in magnitude of just a few bands.  
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One of the important prospects for positions of our results is in the simulation of sensor bands. For 

example, spectral bands from imaging spectrometers, both airborne (e.g., AISA Eagle, AVIRIS, 

MASTER) and spaceborne (e.g., EO-1 Hyperion and HyspIRI), can be mimicked using the exact band 

centers in the PROSPECT/SAIL simulation. Utilizing various PWRs, we can look at relationships of 

the new algorithm against vegetation parameters, especially when enhancing the spectral resolution by 

adding new bands in between, or deleting existing ones, or averaging the bands. In addition, a study 

can be done to evaluate whether the results achieved using the simulated hyperspectral spectra will 

hold true with sensors with multispectral bands, such as the Landsat sensors (TM/ETM+/OLI). 

Finally, our experimental results indicate that the new MD approach can specifically narrow  

pre-identified and wider wavelength regions, such as the red and NIR, that are important for vegetation 

studies by exploiting the concept of PWR. We hope that what we presented here could lead to 

improved hyperspectral analysis through acquiring a better understanding of the curve structure and 

gathering more information latent in the shape of the reflectance curve. Though our findings here are 

limited to shapes of spectral reflectance, we are certain that the method can be applied beneficially to 

other types of curves.  
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