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Abstract: Leaf diseases, such as powdery mildew and leaf rust, frequently infect barley 

plants and severely affect the economic value of malting barley. Early detection of barley 

diseases would facilitate the timely application of fungicides. In a field experiment, we 

investigated the performance of fluorescence and reflectance indices on (1) detecting 

barley disease risks when no fungicide is applied and (2) estimating leaf chlorophyll 

concentration (LCC). Leaf fluorescence and canopy reflectance were weekly measured by 

a portable fluorescence sensor and spectroradiometer, respectively. Results showed that 

vegetation indices recorded at canopy level performed well for the early detection of 

slightly-diseased plants. The combined reflectance index, MCARI/TCARI, yielded the best 

discrimination between healthy and diseased plants across seven barley varieties. The blue 

to far-red fluorescence ratio (BFRR_UV) and OSAVI were the best fluorescence and 

reflectance indices for estimating LCC, respectively, yielding R2 of 0.72 and 0.79. Partial 
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least squares (PLS) and support vector machines (SVM) regression models further 

improved the use of fluorescence signals for the estimation of LCC, yielding R2 of 0.81 

and 0.84, respectively. Our results demonstrate that non-destructive spectral measurements 

are able to detect mild disease symptoms before significant losses in LCC due to diseases 

under natural conditions. 

Keywords: cereal disease; barley; leaf chlorophyll concentration; blue to far-red 

fluorescence ratio; reflectance indices; precision agriculture 

 

1. Introduction 

Techniques for monitoring plant physiological and healthy status and their spatiotemporal variation 

will benefit more precise and target-oriented crop management. Cereal leaf diseases such as powdery 

mildew and leaf rust frequently infect barley plants and affect the economic value of malting barley. 

Chlorophyll plays a crucial role for the photosynthetic processes including light harvesting and energy 

conversion, and thus the content of chlorophyll is a potential indicator of a range of stresses [1]. Early 

detection of crop diseases and accurate assessment of chlorophyll variations are important to help crop 

managers to efficiently make applications of agrochemicals and fertilizers [2,3]. 

Active fluorescence techniques allow the sensing of plant physiological changes and are less 

affected by weather conditions than the passive ones [4,5]. The intensity of chlorophyll fluorescence 

emitted by plants is governed by both the photosynthetic activity and chlorophyll concentration [6]. 

Red and far-red chlorophyll fluorescence and blue-green fluorescence (BGF) signals can be used for 

the detection of plant stresses as they often change before visible symptoms are detectable, for 

example water deficiency and heat stresses often lead to an increase in BGF and chlorophyll 

fluorescence, respectively [7–9].  

Spectrally resolved fluorescence signals are typically expressed in the form of fluorescence ratios in 

order to be less dependent on instruments, on the intensity of exciting light and the distance of 

fluorescence detection [10,11]. The red/far-red chlorophyll fluorescence ratio (RF/FRF) is determined 

primarily by the in vivo chlorophyll content, of which the high amount has more reabsorption of RF 

while little effect on the FRF [12–14]. Hence, the decline in chlorophyll content caused by biotic or 

abiotic stresses often result in an increase of RF/FRF [12,15]. In contrast, Gitelson et al. [16] suggested 

that the inverse form as far-red/red fluorescence ratio (FRF/RF) might be more precise for quantifying 

the chlorophyll in a wide range. Although fluorescence indices allow the non-invasive estimation of 

chlorophyll content, it is often unavoidable that they are nonlinearly related to chlorophyll content and 

lose the sensitivity when chlorophyll reaches a certain level [16–18]. Therefore, comprehensive 

algorithms might be useful to improve the use of fluorescence signals in such situations. Partial least 

squares (PLS) [19] and support vector machines (SVM) [20] have been widely used in hyperspectral 

remote sensing studies [21,22]. The partial least squares (PLS) method has the desirable property that 

solves not only the problem of strong co-linearity but also the problem of regression singularity due to 

small sample size and high dimension of predictive variables [19]. PLS is particularly relevant in the 

situation where modeling data consist of many predictors relative to the number of observations [23]. 
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Atzberger et al. [23] highlighted the advantage of PLS in dealing with multi-collinearity over stepwise 

multiple linear and principal component regressions, even when the number of observations was 

smaller than the number of predictive variables. The support vector machines (SVM) method has been 

widely used for classification problems [21,24–26] and for retrieving biophysical parameters [27,28]. 

For non-linear problems in particular, the SVM transforms the nonlinearity into a linear regression via 

mapping the original input space to a high dimensional feature space [29]. 

Blue/red (BF/RF) and blue/far-red (BF/FRF) fluorescence ratios and combined fluorescence indices 

also allow to detect various stresses [8,30] such as water [9] and nitrogen (N) deficiencies [11,31,32] and 

to monitor changes in chlorophyll and polyphenols [11,33]. However, studies on detecting cereal 

diseases or estimating chlorophyll content of barley plants are scarce. Buschmann and Lichtenthaler [34] 

reported that maize plants grown without nitrogen yield higher blue-green fluorescence and also the 

higher values of the fluorescence ratios BF/FRF and BF/RF. Langsdorf et al. [35] also found that 

BF/RF and BF/FRF ratios are the most sensitive indicators to distinguish different N treatments. As 

aforementioned, fluorescence indices for chlorophyll are of potential for detecting diseases, as well as 

for estimating leaf N content since leaf chlorophyll is related to leaf N content [4,36]. However, how 

early fluorescence indices can sense cereal diseases is not well known as diseases may precede 

significant losses in chlorophyll or N [37]. Furthermore, under natural conditions the changes in 

fluorescence signals/indices in response to foliar diseases are usually caused by cross infections. 

Recent studies have made progress on detecting diseases and nutrient stresses by hyperspectral 

remote sensing [32,38–40]. Reflectance indices have been suggested for detecting diseases such as 

apple leaf scab disease under well controlled conditions [38,39]. However, the discriminatory 

performances are often affected by plant phenological development [39]. Therefore, comparisons 

between different hyperspectral indices are still needed to determine which method is most appropriate 

and which index is most reliable across phenological stages for the early detection of plant diseases, as 

well as between different fluorescence indices. 

The objective of this study was (i) to investigate the performance of fluorescence and reflectance 

indices for detecting diseases in seven varieties of field grown barley and (ii) to estimate leaf 

chlorophyll concentration (LCC) using these indices, and PLS and SVM methods. 

2. Materials and Methods 

2.1. Experimental Design 

The field experiment of barley (Hordeum vulgare) was conducted at the Institute of Crop Science 

and Resource Conservation (INRES-Horticultural Science, 50.7299°N, 7.0754°E; 70 m.a.s.l.), 

University of Bonn, Germany. The soil is sandy loam with the Nmin value of 20 kg·N·ha−1. The annual 

average precipitation and temperature are 669 mm and 10.3 °C, respectively. The experiment was 

organized as a completely randomized block with three replications and a plot size of 6 m2 (4 × 1.5 m) 

for each variety and fungicide treatment. Ten rows of barley plants sown with a density of 320 seeds 

per square meter were grown in each plot. The experimental design included seven barley varieties 

(Belana, Marthe, Scarlett, Iron, Sunshine, Barke and Bambina) and two fungicide variants (with 

fungicide and without fungicide).  
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For the treatment group with fungicide, plants were regularly sprayed with protective or curative 

fungicides over the entire experimental period, while for the treatment group without fungicide no 

fungicides were sprayed. The seven commercial varieties of malting barley were sown on 24 March 

2010. All plots were fertilized immediately after sowing with ammonium nitrate (NH4
+-N) at the rate 

of 100 kg·N·ha−1. 

For the plants of without fungicide plots, the infections were generally mild and showed only a few 

punctiform symptoms due to the unfavorable climatic conditions to pathogens at the study site in 2010. 

2.2. Fluorescence Measurements 

Random plants were preselected and marked prior to the implementation of treatment design of 

fungicide. From these plants, six uppermost fully expanded flag leaves were randomly sampled, stored 

in a cold box and immediately transported into the lab for the fluorescence measurements. The 

fluorescence recordings were carried out at the beginning of June up to July at weekly intervals on five 

dates; 9 June (77 DAS, days after sowing), 15 June (83 DAS), 22 June (90 DAS), 29 June (97 DAS) 

and 6 July (104 DAS). A multi-parametric fluorescence sensor, Multiplex® 3 [41], was used in this 

study for the recording of fluorescence signals. Barley leaves were placed on a black anodized plate for 

measuring the fluorescence indices at room temperature in the lab. The mean readings of the six leaves 

of each plot served as the representative of each plot. Table 1 presents the ten fluorescence indices that 

were investigated in this study. 

Table 1. Fluorescence indices used in this study. 

Index Description Formula 

SFR_G Simple Fluorescence Ratio (green excitation) FRF_G/ RF_G 

SFR_R Simple Fluorescence Ratio (red excitation) FRF_R/ RF_R 

BFRR_UV Blue-to-Far Red Fluorescence Ratio (UV excitation) BGF_UV/ FRF_UV 

FER_RUV Fluorescence Excitation Ratio (red & UV excitation) FRF_R/ FRF_UV 

FLAV Flavonols log(FER_RUV) 

FER_RG Fluorescence Excitation Ratio (red & green excitation) FRF_R/ FRF_G 

ANTH Anthocyanins log(FER_RG) 

NBI_G Nitrogen Balance Index (SFR_G/FER_RUV) FRF_UV/ RF_G 

NBI_R Nitrogen Balance Index (SFR_R/FER_RUV) FRF_UV/ RF_R 

FERARI Fluorescence Excitation Ratio Anthocyanin Relative Index log(1/FRF_R) 

2.3. Hyperspectral Reflectance Measurements 

Prior to leaf sampling, canopy reflectance was measured within two hours of solar noon using 

QualitySpec® Pro (9 June, and 15 June) and FieldSpec® 3 (22 June, 29 June and 6 July) spectrometers 

from a distance of 1 m above the canopy. The same white reference panel (Spectralon) was used for 

calibrations for both spectrometers before spectral measurement in the field. In addition, our 

unpublished results of cross calibration showed that the reflectance difference is negligible, especially 

for the wavelengths shorter than 1,000 nm because both spectrometers were configured with the same 

type of detectors (ASD Inc.). The detailed configurations of the spectrometers were described 

elsewhere [42]. For each of the experiment plots, six reflectance spectra were measured at six random 
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locations within the plot. Finally, reflectance data with 1 nm steps was output for further analysis. 

Table 2 shows the ten reflectance indices [43–49] used in this study. 

Table 2. Reflectance indices used in this study. 

Index Formula Reference 

PSSRa R800/R680 Blackburn [43] 

ZM R750/R710 Zarco-Tejada et al. [44] 

NPQI (R415 – R435)/(R415 + R435) Peñuelas et al. [45] 

PRI (R531 – R570)/(R531 + R570) Gamon et al. [46] 

MCARI [(R700 − R670) − 0.2 × (R700 − R550)] × (R700/R670) Daughtry et al. [47] 

TCARI 3 × [(R700 − R670) − 0.2 × (R700 − R550) × (R700/R670)] Haboudane et al. [48] 

OSAVI (1 + 0.16) × (R800 − R670)/(R800 + R670 + 0.16) Rondeaux et al. [49] 

MCARI/OSAVI MCARI/OSAVI Daughtry et al. [47] 

TCARI/OSAVI TCARI/OSAVI Haboudane et al. [48] 

MCARI/TCARI MCARI/TCARI Based on [47,48] 

2.4. Leaf Sampling and Chlorophyll Determination 

After the fluorescence recordings, the six leaf samples of each plot were immediately frozen,  

free-dried, grounded and stored in the dark at room temperature for the determination of their 

chlorophyll content. The total chlorophyll content of each sample was extracted from 50 mg 

lyophilized material by 5 ml methanol, which was then filled up to 25 ml. After extraction, the 

absorbance of the extracts was measured with a UV-VIS spectrophotometer (Perkin-Elmer, Lambda 5, 

Waltham, MA, USA) and the leaf chlorophyll concentration (LCC) was finally determined. 

2.5. Data Analysis 

2.5.1. Binary Logistic Regression 

To detect diseases in the without-fungicide treatment group, binary classification with logistic 

regression was performed. This method was successfully used in previous studies for detecting scab 

disease in apple leaves [2,38]. Logistical regression was implemented to examine the ability of each of 

the fluorescence and reflectance indices (Tables 1 and 2) for detecting the event of interest (disease). 

Accordingly, the with- and without-fungicide treatment groups correspond respectively to 0 (healthy) 

and 1 (diseased) in the response variable that represents health status.  

The c-statistic was used to evaluate the discriminatory performance of different indices. The c-value 

is equivalent to the area under the receiver-operating-characteristic (ROC) curve, and it ranges from 

0.5 to 1. The minimum (0.5) and maximum (1) correspond to randomly guessing and perfectly 

discriminating the response, respectively. The general rule that considers: 0.7 ≤ c < 0.8 as acceptable 

discrimination; 0.8 ≤ c < 0.9 as excellent discrimination; and c ≥ 0.9 as outstanding discrimination [50] 

was used to evaluate the discriminatory performance. 
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2.5.2. Partial Least Squares Regression 

The partial least squares (PLS) method was originally developed by the econometrician Herman 

Wold [51], for use in econometrics for modeling of multivariate time series [52]. The widely used PLS 

regression (PLSR), which is the simplest PLS approach for linear multivariate modeling, has the 

advantage that the precision of the model improves with the increasing number of variables  

and observations [19]. 

The predictive and response variables are considered as two blocks of variables in the PLSR 

method [19,53]. The key technique implemented in PLSR is to extract the latent variables (also called 

factors or components), which serve as new predictors and regress the response variables on these new 

predictors [54]. These new predictors (hereafter referred to as factors) are expected to explain the 

variation not only of the response variables but also the predictive variables. How much variation can 

be explained depends on how many factors are extracted. The more factors that are extracted the more 

variation can be explained. However, extracting too many factors increases the risk of model 

overfitting problem (i.e. tailoring the model too much to the training data, leading to the detriment of 

predicting future observations) [55]. Cross validation is a powerful approach to determine the number 

of extracted factors through minimizing the prediction error (predicted residual sum of squares, 

PRESS). However, using the number of factors that yield the minimum in PRESS might also lead to 

some degree of overfitting [56]. Although various cross validation methods are available, one goal is 

always preferred that not only a minimum number of factors be selected, but also the risk of overfitting is 

minimized. To achieve this goal, the statistical model comparison method proposed by van der Voet [57] 

is implemented. The PLSR model implemented in this study was carried out using the SAS 9.2 

software package (SAS Institute Inc.). 

2.5.3. Support Vector Regression 

The support vector machines (SVM) method is a universal theory of machine learning developed by 

Vapnik [20]. The main advantage of SVM is its ability to construct a linear function (e.g., 

classification/regression model) in a high dimensional feature space, where problems of non-linear 

relations of the training data in the original low dimensional space can be represented, transformed and 

solved. The support vector regression (SVR) is the implementation of SVM method for regression and 

function approximation [58] and its standard concept and formulation are briefly described as follows: 
Given a training set {(xi, yi ), ..., (xl , yl)}, where xi ∈ℝn is a feature vector and y ∈ℝ is the target 

output (response variable). Assume that there is a linear function: 

 (1)

where ŷ is the prediction of yi, ω is the weight vector and b is the bias. We suppose in Equation (1) the 

difference between ŷ and y is always extremely small in term of each xi, i.e., the function f(x) is 

powerful to predict y. Hence, in order to solve this linear problem of Equation (1) SVR requires the 

solution of the following optimization problem: 

(2)
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Note that the tacit assumption in Equation (2) was that such a function f(x) does actually exist and 

that f(x) approximates all pairs (xi, yi,) of the training set with the ε precision [58]. This optimization 

method using ε-insensitive loss function is the widely known ε-SVR [29], which is shown with a 

schematic in Figure 1. Only the points outside the shaded ε-insensitive tube are called support vectors, 

which are penalized, and will contribute to the optimization solution [58]. 

Figure 1. Schematic of linear support vector regression (SVR) and the ε-intensive loss 

function (circles with black outline are support vectors). 

 

Generally, when ε is under a reasonable range, the optimization problem is considered to be 

feasible. However, in practical application, it may not be feasible due to different kinds of noises and 

uncertainty. In this context, the slack variables ξi and ξi
* were introduced to permit an otherwise that 

some instances xi being out of the ε precision, and then the optimization problem of Equation (2) can 

be represented as the formulation of the standard form of SVR by Vapnik [20] as follow: 

(3)

where (xi, yi) has its corresponding ξi  and ξi
*, respectively, which denotes the deviation of predicted 

value above +ε and below −ε (Figure 1). The parameter C is a constant to determine the tradeoff 

between the model complexity and the training errors [59]. In addition to the ε-SVR, ν-SVR and some 

other kinds of SVRs, they vary in the optimization of the corresponding parameters. 

Furthermore, based on kernel functions the training data will be mapped into feature space to apply 

the regression algorithm. Commonly used kernels include linear, polynomial, radial basis function 

(RBF) and sigmoid. In this study, the ε-SVR model was implemented in MATLAB R2010a (The 

MathWorks, Inc.) with the LIBSVM tool [60]. 

2.5.4. Model Validation 

The performance of regression models for the estimation of LCC was evaluated by comparing the 

differences in the coefficients of determination (R2) and root mean square error (RMSE) in predictions. 
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The higher the R2 and the lower the RMSE the higher the precision and accuracy of the model to 

predict LCC. The RMSE values were calculated according to Equation (4), 

(4)

where yi and ŷ are the measured and the predicated values of LCC, respectively, and n is the number  

of samples. 

3. Results 

3.1. Leaf Chlorophyll Concentration (LCC) 

Results of the repeated-measures ANOVA show that both fungicide and variety influenced LCC 

(Table 3). The effect of fungicide treatment on LCC was independent of barley variety (p = 0.12), and 

vice versa. Sampling date had a significant effect on LCC (p < 0.0001), as well as an interaction with 

fungicide treatment (p < 0.01). The interaction between the sampling date and variety was not 

statistically significant (p = 0.17), and the interaction among sampling date, fungicide treatment and 

variety was not statistically significant (p = 0.96, Table 3).  

Table 3. Results of repeated-measures ANOVA performed against the leaf chlorophyll 

concentration (LCC) of barley. 

Source DF F P 

Fungicide 1 17.63 0.0002 

Variety 6 17.10 <0001 

Fungicide × Variety 6 1.85 0.1244 

Date 4 246.98 <0001 

Date × Fungicide 4 3.50 0.0099 

Date × Variety 24 1.31 0.1731 

Date × Fungicide × Variety 24 0.54 0.9588 

Figure 2. Box-and-whiskers plots showing the differences between the with- and  

without-fungicide treatments across varieties for each sampling date. Significant 

differences were observed at the last two sampling dates (*, p < 0.05; **, p < 0.01). 
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As expected, LCC was higher on the first two sampling dates (77 and 83 DAS) and decreased as plants 

aged, irrespective of fungicide treatments (Figure 2). Across all varieties, LCC did not show significant 

differences between the with- and without-fungicide treatments until the last two sampling dates (97 and 

104 DAS), where the LCC was lower in the without-fungicide treatment than the with-fungicide. 

3.2. Discriminatory Performances of Fluorescence and Hyperspectral Indices 

Table 4 shows the discriminatory performance of the ten fluorescence indices in discriminating 

between the with- and without-fungicide treatments. Only few indices performed acceptable (c ≥ 0.7) 

discrimination for each variety on different sampling dates. 

Table 4. The c statistic showing the performance of fluorescence indices in discriminating 

between the with- and without-fungicide treatments (bold font highlights c-values that are 

not less than 0.8). 

DAS Index Belana Marthe Scarlett Iron Sunshine Barke Bambina All 

77 SFR_G 0.51 0.58 0.62 0.56 0.64 0.70 0.54 0.52 

 SFR_R 0.56 0.61 0.60 0.52 0.61 0.67 0.50 0.50 

 BFRR_UV 0.69 0.54 0.55 0.54 0.53 0.70 0.62 0.55 

 FER_RUV 0.53 0.56 0.51 0.47 0.53 0.73 0.53 0.51 

 FLAV 0.54 0.56 0.51 0.53 0.54 0.73 0.54 0.51 

 FER_RG 0.57 0.54 0.54 0.54 0.52 0.63 0.57 0.52 

 ANTH 0.56 0.54 0.54 0.55 0.52 0.62 0.57 0.53 

 NBI_G 0.51 0.50 0.52 0.60 0.52 0.65 0.47 0.52 

 NBI_R 0.51 0.52 0.50 0.57 0.52 0.68 0.47 0.52 

 FERARI 0.73 0.53 0.60 0.73 0.65 0.72 0.73 0.56 

83 SFR_G 0.55 0.65 0.58 0.83 0.55 0.65 0.52 0.61 

 SFR_R 0.53 0.65 0.54 0.86 0.59 0.65 0.47 0.62 

 BFRR_UV 0.52 0.57 0.62 0.81 0.58 0.67 0.72 0.59 

 FER_RUV 0.62 0.58 0.57 0.87 0.54 0.53 0.64 0.55 

 FLAV 0.63 0.58 0.57 0.87 0.55 0.53 0.64 0.55 

 FER_RG 0.72 0.55 0.60 0.67 0.55 0.64 0.56 0.54 

 ANTH 0.72 0.53 0.59 0.66 0.55 0.63 0.56 0.55 

 NBI_G 0.64 0.68 0.61 0.70 0.49 0.50 0.60 0.49 

 NBI_R 0.67 0.67 0.60 0.71 0.50 0.51 0.61 0.51 

 FERARI 0.70 0.54 0.71 0.52 0.68 0.70 0.75 0.58 

90 SFR_G 0.52 0.62 0.79 0.61 0.77 0.66 0.55 0.60 

 SFR_R 0.54 0.60 0.81 0.60 0.76 0.67 0.51 0.61 

 BFRR_UV 0.59 0.54 0.58 0.62 0.60 0.54 0.83 0.54 

 FER_RUV 0.50 0.59 0.73 0.53 0.50 0.63 0.79 0.51 

 FLAV 0.51 0.59 0.73 0.57 0.53 0.63 0.79 0.51 

 FER_RG 0.82 0.68 0.68 0.61 0.62 0.70 0.46 0.62 

 ANTH 0.81 0.68 0.67 0.60 0.62 0.71 0.48 0.62 

 NBI_G 0.58 0.66 0.54 0.64 0.60 0.47 0.78 0.54 

 NBI_R 0.53 0.66 0.56 0.62 0.61 0.55 0.78 0.53 

 FERARI 0.65 0.67 0.54 0.58 0.57 0.82 0.89 0.64 
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Table 4. Cont. 

DAS Index Belana Marthe Scarlett Iron Sunshine Barke Bambina All 

97 SFR_G 0.63 0.54 0.65 0.55 0.63 0.67 0.69 0.61 

 SFR_R 0.64 0.52 0.65 0.54 0.66 0.68 0.69 0.62 

 BFRR_UV 0.82 0.71 0.55 0.65 0.64 0.66 0.88 0.65 

 FER_RUV 0.61 0.64 0.68 0.68 0.62 0.58 0.72 0.56 

 FLAV 0.61 0.64 0.68 0.68 0.62 0.58 0.72 0.56 

 FER_RG 0.52 0.50 0.53 0.50 0.51 0.64 0.54 0.53 

 ANTH 0.52 0.49 0.54 0.51 0.51 0.64 0.54 0.53 

 NBI_G 0.65 0.61 0.57 0.67 0.60 0.70 0.79 0.60 

 NBI_R 0.63 0.62 0.58 0.64 0.59 0.69 0.78 0.59 

 FERARI 0.78 0.80 0.62 0.53 0.74 0.67 0.84 0.63 

104 SFR_G 0.58 0.65 0.57 0.58 0.56 0.47 0.61 0.53 

 SFR_R 0.56 0.63 0.55 0.56 0.53 0.54 0.63 0.51 

 BFRR_UV 0.79 0.54 0.52 0.57 0.61 0.69 0.63 0.61 

 FER_RUV 0.67 0.50 0.66 0.54 0.72 0.67 0.53 0.59 

 FLAV 0.67 0.50 0.65 0.50 0.72 0.67 0.55 0.59 

 FER_RG 0.65 0.55 0.49 0.54 0.60 0.70 0.67 0.57 

 ANTH 0.65 0.55 0.48 0.54 0.60 0.70 0.67 0.57 

 NBI_G 0.56 0.57 0.48 0.46 0.65 0.57 0.42 0.54 

 NBI_R 0.62 0.58 0.51 0.45 0.67 0.62 0.61 0.55 

 FERARI 0.66 0.54 0.52 0.52 0.61 0.59 0.69 0.57 

Table 5 shows the performance of the ten hyperspectral indices in discriminating between the  

with- and without-fungicide treatments. In most cases, reflectance indices performed significant 

discrimination (c ≥ 0.8), particularly at later stages. MCARI/TCARI performed best in early stages 

when across all varieties and yielded acceptable discrimination (c = 0.73) on the first sampling date 

(77 DAS). 

Table 5. The c statistic showing the performance of hyperspectral indices in discriminating 

between the with- and without-fungicide treatments (bold font and italics highlight c-values 

that are not less than 0.8 for each variety and for all varieties, respectively). 

DAS Index Belana Marthe Scarlett Iron Sunshine Barke Bambina All 

77 PSSRa 0.45 0.61 0.52 0.77 0.70 0.80 0.68 0.50 

 ZM 0.60 0.72 0.55 0.71 0.67 0.84 0.80 0.57 

 NPQI 0.76 0.62 0.72 0.69 0.67 0.79 0.82 0.68 

 PRI 0.64 0.56 0.49 0.55 0.58 0.55 0.58 0.46 

 MCARI 0.72 0.80 0.59 0.52 0.65 0.87 0.92 0.61 

 TCARI 0.65 0.68 0.52 0.54 0.69 0.84 0.83 0.53 

 OSAVI 0.72 0.56 0.54 0.63 0.54 0.68 0.45 0.52 

 MCARI/OSAVI 0.74 0.81 0.59 0.44 0.65 0.86 0.90 0.62 

 TCARI/OSAVI 0.59 0.69 0.51 0.60 0.70 0.84 0.82 0.54 

 MCARI/TCARI 0.99 0.90 0.70 0.59 0.56 0.88 0.89 0.73 
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Table 5. Cont. 

DAS Index Belana Marthe Scarlett Iron Sunshine Barke Bambina All 

83 PSSRa 0.59 0.70 0.82 0.99 0.87 0.95 0.85 0.59 

 ZM 0.49 0.80 0.77 0.98 0.80 0.94 0.70 0.53 

 NPQI 0.71 0.57 0.63 0.61 0.55 0.65 0.74 0.61 

 PRI 0.63 0.49 0.82 0.86 0.90 0.75 0.86 0.69 

 MCARI 0.85 0.68 0.68 0.54 0.65 0.93 0.79 0.66 

 TCARI 0.71 0.49 0.58 0.57 0.68 0.98 0.58 0.55 

 OSAVI 0.58 0.62 0.78 0.73 0.74 0.64 0.70 0.59 

 MCARI/OSAVI 0.86 0.74 0.64 0.56 0.69 0.93 0.78 0.65 

 TCARI/OSAVI 0.69 0.62 0.52 0.65 0.77 0.98 0.54 0.52 

 MCARI/TCARI 1.00 0.88 0.95 0.73 0.51 0.81 0.96 0.80 

90 PSSRa 0.82 0.51 0.98 1.00 1.00 0.73 1.00 0.77 

 ZM 0.65 0.62 0.95 1.00 0.92 0.85 1.00 0.71 

 NPQI 0.96 0.74 0.96 0.84 0.58 0.77 0.97 0.78 

 PRI 0.86 0.70 0.98 1.00 1.00 0.65 1.00 0.86 

 MCARI 1.00 0.75 0.98 0.71 0.55 0.89 0.70 0.80 

 TCARI 0.92 0.70 0.84 0.55 0.65 0.90 0.55 0.66 

 OSAVI 0.95 0.69 1.00 1.00 0.93 0.65 0.97 0.83 

 MCARI/OSAVI 0.99 0.75 0.90 0.49 0.56 0.88 0.56 0.72 

 TCARI/OSAVI 0.71 0.71 0.50 0.78 0.76 0.90 0.71 0.53 

 MCARI/TCARI 1.00 0.81 1.00 0.90 0.80 0.77 1.00 0.83 

97 PSSRa 0.82 0.85 1.00 0.95 0.93 0.97 0.99 0.88 

 ZM 0.88 0.81 1.00 1.00 0.95 0.94 1.00 0.88 

 NPQI 0.52 0.80 0.85 0.86 0.78 0.88 0.88 0.76 

 PRI 0.73 0.88 0.94 0.96 0.96 0.89 0.98 0.89 

 MCARI 0.51 0.65 0.90 0.74 1.00 0.84 0.71 0.73 

 TCARI 0.77 0.59 0.67 0.63 0.93 0.51 0.50 0.54 

 OSAVI 0.77 0.78 1.00 0.99 0.99 0.99 1.00 0.87 

 MCARI/OSAVI 0.69 0.52 0.66 0.49 0.97 0.66 0.62 0.56 

 TCARI/OSAVI 0.83 0.70 0.74 0.64 0.76 0.72 0.82 0.67 

 MCARI/TCARI 0.76 0.86 1.00 0.74 0.77 0.97 0.93 0.82 

104 PSSRa 0.77 0.93 1.00 0.99 0.86 0.98 0.96 0.90 

 ZM 0.80 0.94 1.00 1.00 0.84 0.98 0.97 0.91 

 NPQI 0.72 0.83 0.89 0.90 0.75 0.96 0.86 0.82 

 PRI 0.85 0.84 0.62 0.94 0.84 0.90 0.87 0.78 

 MCARI 0.78 0.91 1.00 0.94 0.99 0.97 0.93 0.88 

 TCARI 0.79 0.88 1.00 0.87 0.96 0.89 0.86 0.85 

 OSAVI 0.80 0.94 1.00 0.99 0.93 0.99 0.97 0.91 

 MCARI/OSAVI 0.74 0.71 0.97 0.78 0.94 0.60 0.50 0.70 

 TCARI/OSAVI 0.50 0.54 0.85 0.50 0.75 0.80 0.78 0.52 

 MCARI/TCARI 0.73 0.91 1.00 0.98 0.83 0.98 0.96 0.88 

On the first two sampling dates (77 and 83 DAS), SFR_R and MCARI/TCARI yielded the highest 

c-value compared to other fluorescence and reflectance indices, respectively. Figure 3 shows the ROC 

curves for the best performing fluorescence index (SFR_R) and reflectance index (MCARI/TCARI) on 

83 DAS. MCARI/TCARI and SFR_R yielded the c-value of 0.80 and 0.62, respectively. 
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Figure 3. ROC plot shows the performances of MCARI/TCARI and SFR_R for the 

discriminating between the with- and without-fungicide treatments at the second sampling 

date (DAS 83). The area under ROC curves is 0.80 and 0.62 for MCARI/TCARI and 

SFR_R, respectively. 

 

Figure 4 shows the performance of MCARI/TCARI on discriminating between the with- and 

without-fungicide treatments on each sampling date. The without-fungicide treatment yielded 

significant lower values of MCARI/TCARI than the with-fungicide treatment.  

Figure 4. Box-and-whiskers plots showing the significant performance of MCARI/TCARI 

on discriminating between the with- and without-fungicide treatments. Significant  

(p < 0.01) differences between the with- and without-fungicide treatments were observed 

on each sampling date across all varieties (circle and plus signs show the means of the 

with- and without-fungicide treatments, respectively). 
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3.3. Relationships between LCC and Fluorescence and Hyperspectral Indices 

To compare the performance of different indices for estimating LCC, we divided the whole data 

into two parts: calibration data consisting of four varieties (Belana, Marthe, Scarlett and Iron) and 

validation data consisting of another three varieties (Sunshine, Barke and Bambina). 

Based on the calibration data, correlation analysis was performed to examine the associations 

between LCC and the fluorescence and reflectance indices across all sampling dates. As shown in 

Figure 5, all the fluorescence indices were significantly correlated with the LCC across the sampling 

dates and varieties (p < 0.0001). The BFRR_UV, SFR_R and NBI_R were the best indices correlating 

with LCC (Figure 5c,b,i). All reflectance indices were significantly correlated with LCC, with the 

exception of TCARI (p = 0.49, Figure 5p) and MCARI/OSAVI (p = 0.50, Figure 5r). 

Figure 5. Scatter plots showing the relationships between LCC with (a–j) the ten fluorescence 

indices and (k–t) ten reflectance indices used in this study for the calibration data set. 
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3.4. Estimation of LCC 

3.4.1. Polynomial Regression Model 

Based on the trend of scatter points, second order polynomial regression was used to fit regression 

models for the three best fluorescence indices (Figure 6a–c) and three best reflectance indices  

(Figure 6d–f). The validation data set was used to examine the performance of the six indices in 

predicting LCC. Table 6 shows the results of the model calibration and validation for each index. 

Figure 6. Fitting second order polynomial regression models to the calibration data for  

(a) SFR_R, (b) BFRR_UV, (c) NBI_R, (d) ZM, (e) PRI and (f) OSAVI and validating 

each of the indices for predicting LCC using the independent validation data. 

 

For the calibration data set, SFR_R, BFRR_UV and NBI_R accounted for 57%, 73% and 52% of 

the variation in LCC, respectively (Table 6). ZM, PRI and OSAVI accounted for 74%, 75% and 72% 

of the variation in LCC, respectively. 

For the validation data set, SFR_R, BFRR_UV and NBI_R models yielded the R2 of 0.46, 0.72 and 

0.42, respectively. ZM, PRI and OSAVI models yielded the R2 of 0.76, 0.75 and 0.79, respectively. 

Figure 7 shows the comparison between the measured and predicted values of LCC using each of these 

six indices. BFRR_UV was the best fluorescence index for predicting LCC among the fluorescence 

indices (Figure 7b). OSAVI was the best reflectance index for predicting LCC among the fluorescence 

indices (Figure 7f). 
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Table 6. Results of LCC estimations in calibration and validation data sets using SFR_R, 

BFRR_UV, NBI_R, ZM, PRI, OSAVI, partial least squares regression (PLSR) and support 

vector regression (SVR) (RMSEc and RMSEv represent root mean square errors for 

calibration and validation, respectively). 

Model Descriptions 
Calibration Validation

R2 RMSEc (µg/g) R2 RMSEv (µg/g) 

SFR_R Polynomial 0.57 1,927.3 0.46 1,863.8 

BFRR_UV Polynomial 0.73 1,524.0 0.72 1,376.3 

NBI_R Polynomial 0.52 2,040.6 0.42 1,952.3

ZM Polynomial 0.74 1500.9 0.76 1,283.5 

PRI Polynomial 0.75 1,471.8 0.75 1,319.5 

OSAVI Polynomial 0.72 1,549.0 0.79 1,155.5 

PLSR 6 Factors 0.84 1,188.1 0.81 1,111.0

SVR RBF kernel 0.86 1,094.9 0.84 1,021.9 

Figure 7. Measured-by-predicted values of LCC showing the validation results of (a) SFR_R, 

(b) BFRR_UV, (c) NBI_R, (d) ZM, (e) PRI and (f) OSAVI in predicting the LCC of the 

validation data set. Solid and dashed lines show the best linear fit and 1:1 lines, respectively. 
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3.4.2. PLSR and SVR models 

Although fluorescence indices showed acceptable results, SFR_R and NBI_R still failed to account 

for a large portion (R2 < 0.5) of the variation in LCC (Table 6). Therefore, multivariate regression 

methods were performed to improve the accuracy in estimating LCC using fluorescence signals. 

PLSR and SVR models were constructed using all the available fluorescence signals/indices. They 

explained 84% and 86% of the variation in LCC of calibration data, respectively (Table 6). For the 

validation data, PLSR and SVR yielded R2 of 0.81 and 0.84, respectively. Figure 8 shows that the 

consistencies between the measured and predicted values of LCC were very high and close to the 1:1 

line. SVR slightly outperformed PLSR model for predicting LCC in the calibration and validation data 

sets. PLSR and SVR models were superior to the fluorescence and reflectance indices (Table 6). 

Figure 8. Measured-by-predicted values of LCC showing the validation results of  

(a) PLSR model and (b) SVR model in predicting the LCC of the validation data set. Solid 

and dashed lines show the best linear fit and 1:1 lines, respectively.  
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was performed on individual leaves, the reflectance was done from the canopy and could have detected 

the infections in the leaves of lower layers. 

MCARI/TCARI, which is the combination of the Modified Chlorophyll Absorption in Reflectance 

Index (MCARI) [47] and the Transformed Chlorophyll Absorption in Reflectance Index (TCARI) [48], 

showed promising performance for discrimination and differentiation between the with- and  

without-fungicide treatments (Table 5). MCARI was developed for minimizing effects of  

non-photosynthetic materials [47], based on which TCARI was proposed to counteract the effect of 

soil background on MCARI [48]. Since diseases affect the absorbed photosynthetically active radiation 

and thus the radiation use efficiency by leaves, MCARI/TCARI is reasonably expected to detect 

physiological changes due to diseases, as well as the natural senescence of plant materials. The plants 

of without-fungicide treatment are also expected to accelerate the senescence process compared to the 

with-fungicide treatment. 

BFRR_UV, as a blue/far-red fluorescence ratio (BF_UV/FRF_UV, Table 1) is considered as a 

robust indicator of plant stresses [15], however provided excellent (c ≥ 0.8) discrimination for only one 

variety (Bambina) on the third and fourth sampling dates (90 and 97 DAS) (Table 4). Again, this might 

be due to that fluorescence measurements were performed on individual leaves rather than the canopy 

level, as well as for other fluorescence indices. 

4.2. Estimation of LCC 

Several studies have consistently shown that RF/FRF is a good inverse indicator of the chlorophyll 

content [10,18,61]. However, our results show that BF/FRF (BFRR_UV) yielded the highest 

correlation with LCC (Figure 5c), suggesting that the BF/FRF (BFRR_UV) can serve as an indicator 

of the leaf chlorophyll. Similarly, Heisel et al. [62] found that the BF/FRF (F440/F740) and BF/RF 

(F440/F690) were more sensitive to the growth conditions than the most frequently used chlorophyll 

fluorescence ratio RF/FRF (F690/F740).  

SFR_G and SFR_R, the FRF/RF ratios that are suggested as chlorophyll indicators by  

Gitelson et al. [16], were positively correlated to LCC (Figure 6a,b) but yielded lower correlation 

coefficients as compared to BFRR_UV. This is probably due to (i) different varieties were served as 

model calibration and validation data sets, (ii) same amount of N fertilizer for each variety. The given 

conditions could have caused the inconsistency with the previous studies [11,31]. On the other hand, 

results are consistent to some degree with previous study that the reflectance indices comprised of 

blue-green and far-red wavelengths are efficient for estimating chlorophyll when across barley 

varieties [42]. Thus, results reveal that the blue to far-red fluorescence ratio (BF/FRF) might be more 

useful for modeling LCC across crop varieties. Far-red fluorescence excitation ratios FER_RG and 

ANTH were also closely related to LCC, which suggests the potential for simultaneously monitoring 

both chlorophylls and anthocynins using chlorophyll fluorescence [63].  

PLS is known as an efficient tool to solve the collinear problems of multivariate statistical  

analysis [19,22]. Apparently, the fluorescence indices are collinear since the fluorescence ratios are all 

derived from the measured fluorescence signals (Table 1). Results show that PLSR model provided 

higher prediction accuracy as compared to the best fluorescence index BFRR_UV (Table 6). 

Generally, calibration data is expected to have the minimum in predicted residual sum of squares 
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(PRESS). However, a model with fewer factors is always preferred to alleviate the risk of over-fitting. 

Therefor, 6 factors were extracted for implementing the PLSR model because it satisfied not only the 

requirement of minimizing PRESS, but also the necessity of statistical tests for none significant 

increase in the PRESS [57]. 

SVM has theoretically the advantage for high dimensional data. Similar with previous study [41], 

nonlinear problems of fluorescence indices also occurred in this study (Figure 6). However, it is 

critical to determine the proper kernel function in order to produce a good performance and also 

weaken the complexity of model selection. In this study, the RBF kernel was preferred because RBF 

kernel outperformed linear and polynomial kernels (data not shown). In addition, RBF kernel not only 

can handle the case when the relations between dependent variables and predictors are nonlinear but 

also has fewer numerical difficulties [64]. 

It is difficult to make a fair comparison between the SVM and the PLS methods. There are more 

factors and parameters to be carefully considered for the SVM and PLS models as compared to a 

simple regression method. In this study, SVR model only slightly outperformed PLSR model (Table 6 

and Figure 8). Although the consistent result has also been addressed in other studies [65–67], this 

does not mean that SVR is always the best choice because SVR optimization is relatively slow and 

complicated compared to PLSR [65]. Overall, SVR and PLSR both seem to be powerful to improve 

the use of fluorescence signals in estimating LCC. 

The relative error of estimation was about 10% for PLSR and SVR, which is low from the practical 

point of view. The polynomial models using the fluorescence index BFRR_UV was about 13%, which 

is applicable in practices. However, the multivariate models such as PLS and SVM might be more 

reliable for future scenarios, where which index is the best choice remains to be studied as shown in 

the preceding discussion. As the “full spectrum” methods, PLS and SVM not only can deal efficiently 

with the strong multi-collinearity problem but also consider covariance to the model 

response/dependent variable(s) [23] when extracting regression factors and support vectors, 

respectively. Therefore, they are expected to be better adapted to deal with potential confounding 

factors compared to a simple index-based approach [23].  

5. Conclusions 

There is a time lag between the occurrence of barley diseases and significant losses of leaf 

chlorophyll concentration (LCC). Hyperspectral reflectance indices showed good discrimination 

between healthy and slightly-diseased barley plants that precede significant losses in LCC. A 

combination of MCARI and TCARI (MCARI/TCARI) showed a promising performance on early 

detecting diseases across seven barley varieties. Reflectance indices generally showed good 

performance on predicting LCC (R2 = 0.75 − 0.79). The blue to far-red fluorescence ratio, BFRR_UV, 

also performed well for predicting LCC (R2 = 0.72) compared to other fluorescence indices. However, 

the BFRR_UV vs. LCC relationship was nonlinear, which still constrained the accuracy for LCC 

estimation. PLSR and SVR models overcome the nonlinear problem, significantly increased the 

accuracy in estimating LCC (R2 > 0.81). 

The possible shortage of this study is that fluorescence signals were measured on individual leaves 

while hyperspectral reflectance were measured on canopy level, thus a meaningful comparison 
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between the fluorescence and reflectance indices is not possible. Future studies should consider 

performing canopy level fluorescence and hyperspectral measurements for cross comparisons, for 

example mounting the fluorescence sensor on a wheeled platform [11].  

Further studies on different species under different environmental conditions remain to be undertaken to 

explore the full potential of fluorescence and hyperspectral remote sensing for detecting and identifying 

crop diseases, which would facilitate the fungicide-specific management in precision agriculture. 
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