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Abstract: This study demonstrated the potential of using dual-wavelength airborne light 

detection and ranging (LiDAR) data to classify land cover. Dual-wavelength LiDAR data 

were acquired from two airborne LiDAR systems that emitted pulses of light in 

near-infrared (NIR) and middle-infrared (MIR) lasers. The major features of the LiDAR 

data, such as surface height, echo width, and dual-wavelength amplitude, were used to 

represent the characteristics of land cover. Based on the major features of land cover, a 

support vector machine was used to classify six types of suburban land cover: road and 

gravel, bare soil, low vegetation, high vegetation, roofs, and water bodies. Results show 

that using dual-wavelength LiDAR-derived information (e.g., amplitudes at NIR and MIR 

wavelengths) could compensate for the limitations of using single-wavelength LiDAR 

information (i.e., poor discrimination of low vegetation) when classifying land cover. 

Keywords: dual-wavelength; LiDAR; land cover classification; support vector  

machine (SVM) 

 

1. Introduction 

Airborne light detection and ranging (LiDAR), which measures distance by illuminating a target with 

a laser, is used for the rapid collection of geolocated elevation data from the surface of the earth. The 

positions of the targets can be obtained based on a positioning and orientation system. Increasing 

numbers of researchers have used airborne LiDAR data in landscape mapping [1,2]. LiDAR data 
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typically contain 3D spatial point clouds and the intensity of returns (echoes), and its penetration 

capabilities make it a better system for identifying vegetation compared with photogrammetry. LiDAR 

systems can automatically classify land cover from geometric properties [1,3]. Moreover, multispectral 

image and LiDAR data can provide a large amount of spectral and geometric information for land cover 

classification. The combination of LiDAR data with either multispectral [4–6] or hyperspectral [7] 

imagery has been demonstrated to improve land cover classification. 

Recently, LiDAR technology has been developed into a full-waveform LiDAR system, which can 

record the complete waveform of a backscattered signal echo [8]. The full-waveform LiDAR collects a 

continuous signal for each pulse, whereas the discrete-return LiDAR only collects four to five discrete 

points. Previous studies [8–10] have indicated that waveform LiDAR data record more physical 

characteristics than discrete-return LiDAR data. These physical characteristics affect the shape of 

waveforms and potentially benefit the land cover classification. For example, the waveform of an echo 

is wider on the canopy or ploughed fields than that on the roads [8]. Each waveform is commonly 

represented by a mixed Gaussian model that is produced using a Gaussian decomposition process [11]. 

Each return echo is represented by a Gaussian function, and the Gaussian parameters can be used to 

characterize the physical features of the echoes. For example, the echo width (Gaussian standard 

deviation) obtained from full-waveform data after decomposition, which is unavailable to 

discrete-return LiDAR data, has proven useful for land cover classification [12–14]. The 

signal-processing step extracts various features from the waveforms, such as echo width [14,15], 

amplitude [15], intensity [15], rise/ fall time [9] and Fourier coefficients [10,16], which are used to 

classify land cover and identify tree species. Given these useful features, the application of waveform 

LiDAR data in land cover classification has been demonstrated. 

Although most commercial airborne LiDAR systems emit laser radiation at a single wavelength, 

multi-spectral LiDAR (MSL) systems that emit laser radiation at various wavelengths have been 

recently developed. Given that the return laser intensities at various wavelengths are combined in the 

MSL data, these data can then be used to obtain several MSL indices, such as the normalized 

difference vegetation index (NDVI) [17] and tree structure segmentation [3], which cannot be obtained 

using single-wavelength LiDAR data [18,19]. Thus, multiple potential applications of MSL systems 

have been demonstrated. Chlorophyll content retrieval with hyperspectral LiDAR was reported by 

[20], and NDVI with multispectral LiDAR was studied by [21,22]. Morsdorf et al. [23] simulated an 

MSL waveform system to demonstrate its ability in capturing a vertical profile of leaf-level physiology. 

A dual-wavelength LiDAR can separate the canopy from ground returns [24]. The dual-wavelength 

LiDAR system, a current MSL system, has been used for specific applications, such as measuring 

coastal water depths by using green and near-infrared (NIR) bathymetric LiDARs [25], measuring 

NDVI by using red-NIR wavelength LiDARs [26] and measuring the moisture content of vegetation by 

using NIR and middle-infrared (MIR) wavelength LiDARs [27]. However, most dual-wavelength or 

MSL systems are commonly used for bench mounted test instruments or experimental terrestrial 

operations. MSL has not yet been used to measure the land from airborne platforms, as it is still at an 

experimental stage. 

The classification of land cover in regional areas using remote sensing is essential. In this study, 

airborne dual-wavelength LiDAR data were obtained by combining two commercial airborne LiDAR 

systems that emit NIR and MIR laser pulses. The results demonstrated the potential of using 
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dual-wavelength airborne LiDAR data to investigate land cover types. The dual-wavelength amplitude 

information and waveform features were used to classify land cover. A progressive classification test 

was conducted to demonstrate that using dual-wavelength LiDAR data resulted in more accurate land 

cover classification than using single-wavelength LiDAR data. 

2. Methodology 

2.1. Study Area and Remote Sensing Data 

Figure 1a shows the study area, Namasha (Namaxia), which is located on a hillside in southern 

Taiwan. Namasha, which is a famous source of precious wood, is a suburban district in the northeastern 

part of Kaohsiung City, located upstream of the Kao-ping river watershed (Figure 1a). This area was 

severely damaged by Typhoon Morakot in 2009. The study area is 0.95 km2, with an average elevation 

and slope of approximately 722 m and 18°, respectively. Table 1 shows the dual-wavelength data 

configuration in the two LiDAR systems. LiDAR data were acquired using the Optech ALTM Pegasus 

HD400 and the Riegl LMS-Q680i systems. The Optech system emits NIR laser pulses at a wavelength 

of 1,064 nm [28], whereas the Riegl system emits MIR laser pulses at a wavelength of 1,550 nm [29]. 

The proposed dual-wavelength LiDAR was obtained by integrating two LiDAR systems, because no 

airborne, dual-wavelength (e.g., NIR-MIR) LiDAR system was currently available. In the experimental 

period, most land cover did not change in study area. The radiometric correction for each LiDAR system 

has been determined [30]. Further correction of dual-wavelength LiDAR systems will be considered for 

advanced usage [31]. The accuracy of the collected LiDAR data can be verified by comparing with 

independently surveyed ground control points. Both systems yielded horizontal accuracy of less than 

0.40 m and vertical accuracy of less than 0.10 m. 

Table 1. Configuration of dual-wavelength data in the two light detection and ranging 

(LiDAR) systems.  

 Optech ALTM Pegasus HD400 Riegl LMS-Q680i 

Laser wavelength (nm) 1,064 1,550 

Pulse width (FWHM, full width at half maximum) (ns) 7 4 

Beam divergence (mrad) 0.20 0.50 

Field of view (degree) 40 60 

Footprint size (m) 0.2 at 1 km 0.5 at 1 km 

Pulse rate (kHZ) 150 220 

Range accuracy (cm) 1 2 

Date of survey 7 October 2011 8 January 2012 

Flying height (m) 2,000 1,900 

Point density (pts/m2) 1.81 2.07 

An IGI DigiCAM was used in the Riegl LMS-Q680i system to produce an orthoimage. To develop a 

reference dataset for validating the classification results, we identified six classes of land cover based on 

this orthoimage. The classes were selected based on the landscape of the test area: road and gravel 

(R&G), bare soil (SOIL), low vegetation (LV), high vegetation (HV), roofs (ROOF) and water bodies 

(WATER). R&G comprised the asphalt and gravel along the western side of the river and on the south 
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side of the study area. LV comprised grass, low crops and other vegetation shorter than 2 m. HV 

comprised vegetation taller than 2 m, such as broadleaf evergreen forests. Water absorbs most of the 

incoming radiation [32]. This could result in the low intensity of LiDAR return points or few return 

points from water bodies. In this study, low-intensity points were returned from water bodies in the 

Optech system, whereas few return points from water bodies were observed in the Riegl system. 

Studies have applied the LiDAR data from water bodies to delineate the river boundaries [33].  

Figure 1b shows the locations of the reference samples used for training and tests. Various classes of 

land cover within a small area are often mixed. For example, when LV is not dense, SOIL and LV may 

mix and become difficult to separate. Thus, two rules were used to assess the reference samples. First, 

the pixels must be clearly recognizable on the reference samples. Second, the reference samples must be 

pure, containing no more than one class of land cover. For example, an area containing a mixture of grass 

(LV) and trees (HV) would not be considered a reference sample. 

Figure 1. (a) Location of the study area; (b) location of the reference data for classification. 

 

 

2.2. Data Processing 

Figure 2 shows the processes used in the classification model, namely, data processing, data 

integration, feature selection and classification. Both the Optech and Riegl LiDAR systems can provide 

waveform data, recording an intensity signal that represents the interactions between the emitted laser 
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and the illuminated objects along the laser path. Multi-return echoes are recorded in the laser waveform 

information, and the waveform data can be decomposed into individual components to characterize the 

original waveform and echoes [34]. In the Gaussian decomposition method, which has been widely 

applied [11,13,14,35], a Gaussian function is used to represent a decomposed component; this method 

was used in this study to decompose a waveform into individual echo components. After 

decomposition, a Gaussian mixture representing a waveform with multiple distinct components was 

obtained. These components were described using three Gaussian parameters, namely, mean, amplitude 

and standard deviation. The Gaussian mean of each component was combined with the attitude 

information of the system when the laser was fired to map the 3D coordinates of each object. The echo 

amplitude and standard deviation were then attached to each 3D component as the attributes of the 

LiDAR points. The amplitude and standard deviation of the first LiDAR echo are termed “amplitude” 

and “echo width” hereafter. 

Figure 2. Flowchart of the approach. DSM, digital surface model; DEM, digital elevation 

model; SVM, support vector machine; HV, high vegetation; LV, low vegetation; SOIL, bare 

soil; ROOF, roofs; R&G, road and gravel. 

 

2.3. Data Integration and Feature Selection 

Most land covers contain one major echo, except trees and building roofs. Only the first-return (echo) 

extracted from each full waveform was selected to analyze the land cover. To integrate the LiDAR data, 
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the sample points from the two LiDAR systems were interpolated into gridded images at 1-m resolution 

and integrated for subsequent processing. The moving average in a circle with a 2-m radius was applied 

for the interpolation. Based on the LiDAR data characteristics, the following features were captured: (1) 

amplitude; (2) echo width; and (3) surface height from the Riegl and Optech systems. Surface height is 

the height of the land cover from the ground elevation and the digital surface model (DSM). The ground 

elevation was obtained from the digital elevation models (DEMs) that were, in turn, obtained by 

processing the point clouds by using TerraScan (TerraSolid software) and manual procedures. First, the 

TerraScan was applied to filter out non-ground points automatically. Manual inspection and editing were 

subsequently conducted to ensure the quality of the ground data points. 

Major features were selected using the Bhattacharyya distance (separability) [36], which is widely 
used in feature selection and extraction studies. For feature selection, the Bhattacharyya distance, B , 

has been used as a class-separability measurement between two land cover types based on the 

assumption of multivariate normality, and is expressed as follows: B = 18 M −M C + C2 M −M + 12 ln C + C /2|C | ∙ C /  (1)

where M  and C  are the mean vector and covariance matrices of class i, respectively. The lower values 

of Bhattacharyya distance represent less separable classes and higher classification errors. Based on the 

relation between the Bhattacharyya distance and classification error in the graph of [36], the criterion 

for the Bhattacharyya distance is 1 if the classification error is less than 10%. 

2.4. Classification  

The support vector machine (SVM), a supervised classification algorithm, is an effective 

classification method. SVM is capable of mixing data from diverse sources, responding robustly to 

dimensionality, and effectively functioning non-linearly in remote sensing applications [37]. The kernel 

of SVM used in this study was the Gaussian radial basis function. The SVM algorithm is implemented 

by using the functions from MATLAB (R2012a). Six classes (R&G, SOIL, LV, HV, ROOF and 

WATER) were chosen as the land cover categories. Amplitude, surface height and echo width from 

Riegl and Optech systems were used as the major features for classification. From the reference 

(sampling) data, 1% of samples in each class was selected as the training data in the SVM classifier. 

After the SVM classifier was trained, all reference data, except the training data, were treated as 

validation data. The various LiDAR feature sets were used for the progressive classification test. The 

confusion matrices for each feature set were calculated to assess the classification results. 

3. Results and Discussion 

3.1. Analysis of Features 

Figure 3 shows the distribution of the amplitude, surface height and echo width of the image pixel 

elements from the six classes in the reference data. The amplitude values from the Riegl system allowed 

three groups, namely, WATER, {R&G, LV, HV} and {SOIL, ROOF}, to be distinguished. The amplitude 

feature from the Optech system improved the separation of WATER, R&G and the remaining classes. The 
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merits of using both amplitudes for classifying land cover are reflected in the accuracy of the preliminary 

classification. The surface height from the Riegl and Optech systems provided information for separating 

{R&G, SOIL, LV, WATER} from {HV, ROOF}. The echo width information from the Riegl system 

indicated two groups, namely WATER, and {R&G, SOIL, LV, HV, ROOF}.  

In summary (Figure 3), WATER can be readily classified using most of the features. R&G can be 

classified using amplitude information from the Optech system. SOIL can be separated from other 

classes by combining data on amplitude and surface height from the Riegl system. HV can be classified 

by combining amplitude and surface height information from the Riegl system, and ROOF can be 

classified by combining all features. 

Figure 3. Frequency distribution of (a) the amplitude from the Riegl system, (b) the amplitude 

from the Optech system, (c) the surface height from the Riegl system, (d) the surface height 

from the Optech system, (e) the echo width from the Riegl system and (f) the echo width 

from the Optech system. 

 

3.2. Feature Selection Using Bhattacharyya Distance 

Table 2 lists the Bhattacharyya distances among the classes for different feature sets. The 

performances of the Riegl and Optech surface height and echo width were consistent. The Riegl surface 

height and echo width were eventually considered as the major features in the study based on the 

comparison of Bhattacharyya distance matrix determinants. The matrix determinants of the Riegl surface 

height and echo width were larger than those of the Optech ones. When the model considered the Riegl 

surface height information, the classes such as HV and ROOF could be separated from other classes. 
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When the model considered the Riegl echo width information, the Bhattacharyya distances between HV 

and SOIL and between HV and R&G were 0.85 and 0.83, respectively. The Riegl and Optech systems 

provided complementary amplitude information for land cover discrimination. When the Optech 

amplitude information was used, the separability between LV and R&G was 1.68, and 0.21 between LV 

and SOIL. When the Riegl amplitude information was used, the separability between LV and R&G was 

0.44, and 1.98 between LV and SOIL. The same situation in complementary amplitude information 

occurred between HV and R&G and between HV and SOIL. Compared with the separability values 

obtained using the Riegl amplitude information, those obtained using the Optech amplitude information 

were higher for HV and R&G but lower for HV and SOIL. However, when the model considered both 

sets of amplitude information, the separability between LV and R&G and between LV and SOIL 

increased. When the model considered both the Riegl and Optech amplitude information, all land cover 

became separable, except between ROOF and SOIL and between ROOF and LV. 

Table 2. Bhattacharyya distance between land cover classes with different feature combinations. 

Bhattacharyya Distance Using h * 

 R&G SOIL LV HV ROOF WATER 

R&G 0 0.28 (0.25) 0.00 (0.16) 3.21 (2.52) 2.27 (1.30) 19.52 (0.24) 

SOIL 

 

0 0.29 (0.02) 3.79 (3.10) 2.87 (1.94) 18.98 (0.11) 

LV 

 

0 3.20 (2.98) 2.26 (1.82) 19.54 (0.15) 

HV 

 

0 0.76 (0.92) 23.07 (3.41) 

ROOF 
 

0 22.16 (2.31) 

WATER  0 

Bhattacharyya Distance Using σ * 

 R&G SOIL LV HV ROOF WATER 

R&G 0 0.74 (0.70) 0.48 (0.31) 0.83 (0.56) 0.12 (0.05) 80.07 (0.28) 

SOIL 

 

0 0.30 (0.12) 0.85 (0.11) 0.30 (0.60) 301.67 (1.68) 

LV 

 

0 0.27 (0.20) 0.11 (0.23) 51.78 (1.06) 

HV 

 

0 0.47 (0.54) 28.45 (1.02) 

ROOF 
 

0 51.23 (0.53) 

WATER  0 

Bhattacharyya Distance Using AOptech ** 

 R&G SOIL LV HV ROOF WATER 

R&G 0 5.44 1.68 1.06 1.92 2.58 

SOIL 

 

0 0.21 0.63 0.14 7.66 

LV 

 

0 0.09 0.01 2.88 

HV 

 

0 0.14 2.12 

ROOF 
 

0 3.15 

WATER  0 

Bhattacharyya Distance Using ARiegl ** 

 R&G SOIL LV HV ROOF WATER 

R&G 0 5.34 0.44 0.29 1.42 28.47 

SOIL 

 

0 1.98 7.29 0.18 38.63 

LV 

 

0 1.06 0.68 26.63 

HV 

 

0 1.81 25.36 

ROOF 
 

0 24.70 

WATER  0 
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Table 2. Cont. 

Bhattacharyya Distance Using ARiegl, AOptech 

 R&G SOIL LV HV ROOF WATER 

R&G 0 8.94 1.69 1.55 2.17 29.98 

SOIL 

 

0 2.09 7.36 0.05 40.48 

LV 

 

0 1.17 0.48 26.10 

HV 

 

0 1.58 25.00 

ROOF 
 

0 24.95 

WATER  0 

Bhattacharyya Distance Using ARiegl, AOptech, h, σ 

 R&G SOIL LV HV ROOF WATER 

R&G 0 9.52 2.34 7.53 4.66 111.44 

SOIL 

 

0 2.91 13.79 4.03 376.15 

LV 

 

0 5.47 4.42 103.44 

HV 

 

0 5.21 56.45 

ROOF 
 

0 112.30 

WATER  0 

Bhattacharyya Distance Using ARiegl, AOptech, h 

 R&G SOIL LV HV ROOF WATER 

R&G 0 8.23 1.70 5.45 3.82 107.14 

SOIL  0 2.55 12.07 3.58 60.54 

LV   0 4.97 3.39 98.71 

HV    0 3.22 46.58 

ROOF     0 44.97 

WATER      0 

* The surface height (h) and echo width (σ) are from the Riegl system; the number in parentheses represents 

those from the Optech system. ** AOptech, ARiegl: the Optech and Riegl amplitude information. 

A feature is more critical if the separability among all land cover types is higher. Moreover, feature 

separability is highly related to classification accuracy. Amplitude is a dominant feature that varies 

based on the radiometric and geometric properties of the targets [38]. When classifying land cover, the 

measured amplitudes are high for bare soil and grass and low for water and roads. However, the 

amplitude varies for high vegetation and roofs of buildings depending on the materials and sensors. 

LiDAR-based features, such as laser intensity, amplitude, surface height, and topographic data, are 

primarily used to classify land cover [39]. The feature information of LiDAR data is critical to increase 

the discriminability of LV and HV classes because the information contains similar spectral signatures 

[40]. Numerous applications described in the introduction (e.g., chlorophyll or NDVI) are available 

from dual-wavelength LiDAR data. Future studies should examine the potential of dual-wavelength 

LiDAR data for extracting the details of vegetation species. When the commercial MSL becomes 

available for airborne platforms in the future, the MSL instruments will contain many more 

wavelengths to improve separability. Key information, such as the chlorophyll, NDVI and moisture 

content, about the vegetation can be derived from MSL data. The applications for vegetation species 

recognition and forest ecosystem estimation would be expected to benefit from the information. 
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3.3. Classification Accuracies 

Table 3 shows the confusion matrices of the classification results using various feature sets. Based 

on the feature set, ϕ1, which comprised the surface height and echo width, the overall accuracy of the 

classification reached 84.29%. However, the level of producer accuracy was extremely low for LV, and 

many LV pixels were misclassified into R&G and SOIL. Thus, the user accuracy was poor for R&G and 

SOIL. For the other classes (R&G, SOIL, HV, ROOF and WATER), the feature set, ϕ1, provided 

sufficient information for classification. Based on the feature set, ϕ2, including additional Optech 

LiDAR amplitude information, the overall accuracy reached 90.00%. By considering Riegl amplitude 

features, surface height and echo width in the feature set, ϕ3, the overall accuracy reached 91.63%. LV 

was misclassified as R&G more frequently using Riegl amplitude information compared with using 

Optech amplitude information. However, SOIL was misclassified less using the Riegl amplitude than it 

was using the Optech amplitude (Table 3). User accuracy in separating SOIL and ROOF was higher  

using the Riegl amplitude than it was using the Optech amplitude, whereas user accuracy for R&G  

and LV was higher using the Optech amplitude information compared with using the Riegl  

amplitude information. 

Table 3. Confusion matrices between the reference and SVM classification using various 

feature sets. The feature sets are ϕ1: {h, σ}, ϕ2: {AOptech, h, σ}, ϕ3: {ARiegl, h, σ}, ϕ4:{ARiegl, 

AOptech, h, σ } and ϕ5:{ARiegl, AOptech, h }, respectively. The user’s, producer’s and overall 

accuracies and the Kappa of the classifications are shown. ARiegl, AOptech, h, σ 

Feature 

Set 
Reference Pixels 

Classified Pixels Producer’s 

Accuracy (%) R&G SOIL LV HV ROOF WATER 

 R&G 21,231 1,731 70 0 23 3 92.07 

 SOIL 508 9,758 59 0 2 0 94.49 

ϕ1 

LV 3,029 5,174 2,602 3 0 0 24.07 

HV 22 0 166 29,402 1,473 60 94.47 

ROOF 233 0 21 1,001 8,664 8 87.28 

 WATER 0 0 0 0 0 1,254 100.00 

 User’s accuracy (%) 84.85 58.56 89.17 96.70 85.26 94.64  

 Overall accuracy (%) 84.29       

 Kappa 0.804       

 R&G 22,790 14 208 1 4 41 98.84 

 SOIL 0 10,275 50 0 2 0 99.50 

 LV 409 5,540 4,844 13 0 2 44.82 

ϕ2 
HV 19 1 119 30,001 946 37 96.39 

ROOF 193 39 40 974 8,680 1 87.44 

 WATER 0 0 0 0 0 1,254 100.00 

 User’s accuracy (%) 97.35 64.75 92.07 96.81 90.12 93.93  

 Overall accuracy (%) 90.00       

 Kappa 0.872       
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Table 3. Cont. 

Feature 

Set 
Reference Pixels 

Classified Pixels Producer’s 

Accuracy (%) R&G SOIL LV HV ROOF WATER 

 R&G 22,173 259 526 0 91 9 96.16 

 SOIL 83 10,230 13 0 1 0 99.06 

 LV 3,893 1,301 5,609 2 0 3 51.90 

ϕ3 
HV 49 0 228 30,624 192 30 98.40 

ROOF 351 3 10 196 9,365 2 94.34 

 WATER 0 0 0 0 0 1,254 100.00 

 User’s accuracy (%) 83.52 86.75 87.83 99.36 97.06 96.61  

 Overall accuracy (%) 91.63       

 Kappa 0.892       

 R&G 22,924 12 93 0 8 21 99.42 

 SOIL 0 10,283 43 0 1 0 99.57 

ϕ4 

LV 309 943 9,543 6 0 7 88.30 

HV 30 0 249 30,767 54 23 98.86 

ROOF 360 19 55 14 9,477 2 95.47 

 WATER 0 0 0 0 0 1,254 100.00 

 User’s accuracy (%) 97.04 91.35 95.59 99.93 99.34 95.94  

 Overall accuracy (%) 97.40       

 Kappa 0.966       

 R&G 22,942 24 73 1 1 17 99.50 

 SOIL 0 10,289 38 0 0 0 99.63 

 LV 307 869 9,631 0 0 1 89.11 

ϕ5 
HV 8 0 251 30,702 131 31 98.65 

ROOF 658 79 41 204 8,944 1 90.10 

 WATER 0 0 0 0 0 1,254 100.00 

 User’s accuracy (%) 95.93 91.37 95.98 99.34 98.55 96.17  

 Overall accuracy (%) 96.84       

 Kappa 0.959       

When the feature set, ϕ4 (surface height, echo width and dual-wavelength amplitude), was used, the 

overall classification accuracy substantially increased compared with using a single system. When ϕ4 

was used, the producer accuracy for LV increased to 88.3% from 44.82% and 51.90% for single 

systems, and both the overall producer and user accuracies exceeded 90%, except the LV producer 

accuracy. The overall accuracy (97.4%) and Kappa (0.966) values were highest when features 

including the dual-wavelength amplitude were used. Without considering the echo width in ϕ5 (surface 

height and dual-wavelength amplitude), the overall accuracy decreased to 96.8% and the Kappa value 

decreased to 0.959. Thus, the echo width could be discarded because of its low effect on the 

classification. Figure 4 shows the land cover classification results based on various datasets. Most land 

covers were classified more accurately. These results indicate the effectiveness of using 

dual-wavelength airborne LiDAR data to classify land cover (Figure 4). Given that the reflectance of 

land cover objects varies based on wavelength, land cover objects (e.g., LV and HV, SOIL and LV) 

cannot be readily distinguished when amplitude information is used at a single wavelength. The 
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features of dual-wavelength data are primarily responsible for the improvement in land cover 

classification demonstrated in this study. 

Figure 4. Results of the classifications using the five feature sets: (a) Riegl surface height, 

echo width (set ϕ1); (b) Optech amplitude, Riegl surface height, echo width (set ϕ2);  

(c) Riegl amplitude, Riegl surface height, echo width (set ϕ3); (d) Riegl amplitude, Optech 

amplitude, Riegl surface height, echo width (set ϕ4); (e) Riegl amplitude, Optech amplitude, 

Riegl surface height (set ϕ5); and (f) the orthoimage.  
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The use of dual-wavelength LiDAR data offers effective geometry information to classify land 

cover. First, LiDAR data can provide 3D information. Thus, the DSM, DEM, and surface height can be 

directly obtained. Second, LiDAR data can record multiple returns in forest areas. The canopy 

reflectance information in spectral images is considerably influenced by the objects under the canopy. 

Dual-wavelength LiDAR amplitude and geometric information for the canopy, understory vegetation, 

soil, and other land cover types precisely represent the features of these covers. By contrast, based on the 

spectral image, the canopy signal cannot be readily separated from that of the understory vegetation and 

soil. Thus, the LiDAR data are potentially useful in classifying 3D tree species. Third, current LiDAR 

systems can record waveform data that allow physical features to be extracted, such as the echo width 

used in this study. These features cannot be obtained from discrete-return LiDAR. All these features, 

including dual-wavelength amplitude features, facilitate land cover classification, as clearly 

demonstrated by the current findings. Therefore, this study revealed the potential of dual-wavelength 

LiDAR applications, which can be developed when airborne LiDAR systems become available. From a 

practical perspective, the combination of LiDAR and multi-spectral images will be useful for land 

cover classification. 

4. Conclusion 

In this study, two airborne LiDAR systems were used to obtain dual-wavelength LiDAR data (i.e., 

amplitudes at NIR and MIR wavelengths) and classify land cover. The proposed processes involved 

waveform data processing, data integration, feature selection, and land cover classification. The 

findings show that using dual-wavelength airborne LiDAR systems could substantially improve land 

cover classification in large areas compared with using single-wavelength LiDAR. The dual-wavelength 

amplitude features facilitated the identification of vegetation, particularly LV, more accurately 

compared with using single-wavelength amplitude. 

Based on the major features of LiDAR data, land cover was effectively classified in the absence of 

auxiliary remote sensing data, and the overall classification accuracy reached 97.4%. Additional 

applications can be designed for this method in the future until airborne dual-wavelength LiDAR 

systems are developed. 
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