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Abstract: In this paper we show the potential of combining actual evapotranspiration 
(ETactual) series obtained from remote sensing and land surface modelling, to monitor 
community practice in irrigation at a monthly scale. This study estimates blue water 
evapotranspiration (ETb) in irrigated agriculture in two study areas: the Horn of Africa 
(2010–2012) and the province of Sichuan (China) (2001–2010). Both areas were affected 
by a drought event during the period of analysis, but are different in terms of water control 
and storage infrastructure. The monthly ETb results were separated by water source—surface 
water, groundwater or conjunctive use—based on the Global Irrigated Area Map and were 
analyzed per country/province. The preliminary results show that the temporal signature of 
the total ETb allows seasonal patterns to be distinguished within a year and inter-annual 
ETb dynamics. In Ethiopia, ETb decreased during the dry year, which suggests that less 
irrigation water was applied. Moreover, an increase of groundwater use was observed at the 
expense of surface water use. In Sichuan province, ETb in the dry year was of similar 
magnitude to the previous years or increased, especially in the month of August, which 
points to a higher amount of irrigation water used. This could be explained by the existence 
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of infrastructure for water storage and water availability, in particular surface water. The 
application presented in this paper is innovative and has the potential to assess the 
existence of irrigation, the source of irrigation water, the duration and variability in time, at 
pixel and country scales, and is especially useful to monitor irrigation practice during 
periods of drought.  

Keywords: actual evapotranspiration; drought; irrigation; blue water; water 
resources management 

 

1. Introduction 

The assessment of water use is crucial in a changing environment in which water is an essential but 
scarce resource. From a water management perspective, an accurate evaluation of the irrigation water 
used in agriculture is of high importance. The AQUASTAT database [1] shows a wide range of values 
on water withdrawal for irrigation, with values ranging for example from 0.6% of total national water 
withdrawal in the Netherlands to 60% or 85% in Spain and Tanzania, respectively.  

Crop water use or evapotranspiration (ETactual) has traditionally been separated into a “green” and 
“blue” component, referring to the origin of the used water: precipitation or irrigation water, respectively. 
Early studies estimated blue and/or green water use at country, continental or global levels [2–5].  
Later studies made global estimates of consumptive water use for a number of specific crops per 
country [6–9]. At a global scale and higher spatial resolution, Alcamo et al. [10] estimated blue water 
withdrawal and Döll and Siebert [11] the irrigation water requirements. More recently, a few studies 
estimated global green and blue water consumption in crop production at spatial resolutions of 30  
and 5 arc minutes [12–20]. 

The aforementioned approaches used hydrological models with the objective of estimating actual 
evapotranspiration from croplands per crop type, distinguishing between blue and green ETactual. 
However, the input used and the type of output produced, differed. The results were calculated and 
presented at different spatial resolutions and covered different time periods. The inputs of the methods 
were national statistics, reports, climatic databases and crop-related maps. The spatial and temporal 
resolutions of the source data were coarse in some cases, especially where extracted from statistical 
databases, implying in some cases the use of disaggregation techniques. 

Bearing this in mind, remote sensing techniques may improve the estimates of blue and green water 
use since they provide global coverage, varied temporal and spatial resolution and broad spectral 
information. This allows characterizing the physical processes and monitoring crops in appropriate 
space and time scales. In this context, Romaguera et al. [21,22] included the use of remote sensing data 
and proposed a methodology to estimate blue water evapotranspiration (ETb) that could benefit from 
the remote sensing advantages. This method allows the estimation of ETb at different time scales, 
i.e., hourly, daily, monthly and yearly, which is supposedly an improvement with respect to the 
existing static maps for monitoring irrigation practice. At regional scale, other works used remote 
sensing to evaluate irrigation performance [23–25]. 
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Moreover, in recent years, several studies have approached the problem of global irrigation 
mapping, using national statistical data as input [26,27] or making use of spectral and temporal remote 
sensing data to perform classifications and obtain irrigated areas [28,29]. These methods provide 
information about areas equipped for irrigation, about crop dominance and irrigation source, and about 
existence or absence of irrigation, but none of the methods quantifies the actual amount of water 
received by the crops through irrigation, or blue water. In particular, the source of irrigation water was 
determined by Thenkabail et al. [29,30] in their Global Irrigated Area Map (GIAM), where irrigated 
areas were classified as a function of three sources of irrigation supply: surface water, groundwater, 
and conjunctive use (due to usage of stored rain water). 

The objective of this paper is to apply the remote sensing method by Romaguera et al. [21,22] and 
obtain ETb values at relevant time scales for water management purposes, that is at monthly and 
country/province scale, as well as to show preliminary results and the potential of exploiting these data 
when combined with the source of irrigation water, from the aforementioned GIAM map. The regions 
and period of study are the Horn of Africa (period 2010–2012) and the Chinese province of Sichuan 
(period 2001–2010), both affected by a drought event during the period of study, but with differences 
in terms of water control and storage infrastructure.  

Section 2 describes the method and datasets used in this paper and Section 3 the selected study 
areas. Section 4 includes ETb time series per source of irrigation water in the study areas and a 
sensitivity analysis. Section 5 discusses relevant aspects of the application tackled in this research and 
finally the conclusions of this work are summarized. 

2. Method and Data 

The method to estimate ETb used in this paper is described in Romaguera et al. [21,22]. It is based 
on the calculation of the differences in actual evapotranspiration (ETactual) given by remotely sensed 
ETactual data (RS–ET in the following) and the Global Land Data Assimilation System (GLDAS) 
ETactual model simulations (GLDAS–ET in the following). The former included the effect of irrigation 
where relevant, whereas irrigation was not incorporated in GLDAS simulations. A bias between the 
two datasets is calculated in rain-fed croplands, where no irrigation is supplied, and then used to 
correct the whole dataset, obtaining ETb as:  

biasETETb −∆=  (1) 

where ΔET is the difference between RS–ET and GLDAS–ET and bias is this difference calculated 
only in rain-fed croplands. The idea behind this formulation relies on the fact that GLDAS–ET 
products do not account for extra water supply in form of irrigation in the land surface model [31], 
whereas RS–ET are based on the energy balance and therefore are able to observe full ETactual from 
croplands, including all sources of water. Therefore, the difference between the two datasets provides 
information about the water used in the form of irrigation. 
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2.1. Bias Estimation 

Since the two datasets present systematic discrepancies, rain-fed croplands were used to calculate a 
reference bias to correct for this effect and isolate the differences due to irrigation practices. The 
GlobCover land cover map (version 2.3) [32] was used to identify rain-fed croplands. 

Previous literature showed temporal and spatial variations of this bias [21,33]. For example, in Europe 
the bias amplitude changed through the year roughly resembling a positive concave curve. The 
maximum amplitude value reached up to 3 mm/day and occurred in the months of spring and summer 
in northern latitudes [21]. In that paper, the spatial variability of the bias was taken into account by 
performing a classification of the study area and calculating the spatial mean bias per class and per 
month. Normalized Difference Vegetation Index (NDVI) and satellite observation angle were the input 
parameters for the classification. The validity of the bias curves obtained was carried out by analyzing 
their representativeness in bigger areas, providing satisfactory results in majority classes.  

The classification scheme was improved in recent literature [22] by testing different classification 
approaches and proposing a new set of input parameters. This allowed to obtain a better differentiation 
of the bias curves, reduced the standard deviation of the data and captured the expected variability of 
the maximum bias. 

Therefore, following Romaguera et al. [22], in the present work a yearly classification of every 
study area was carried out with the k-means algorithm and using the following parameters as inputs: 
a yearly climatic indicator (CI) based on net radiation and precipitation, the maximum value of 
monthly ETactual along the year (ETmmax), the month where the ETmmax occurs (t_ETmmax) and the 
maximum NDVI (NDVImax) in the year of interest. The optimal number of classes was calculated 
using a scattering distance (SD) quality index [34].  

For every year and area, a classification was generated and biases per month were obtained by 
spatially averaging the bias obtained in rain-fed croplands per class. Finally, Equation (1) was used in 
the study areas to calculate the total ETb per month and the GIAM map to assign the source of 
irrigation water per pixel. 

2.2. Data 

Table 1 describes the main characteristics of the datasets used in the present work which are 
detailed in the following paragraphs. 

Remote sensing ETactual estimates were obtained from two sources: the Meteosat Second Generation 
products provided by the Land Surface Analysis–Satellite Applications Facility (LSA–SAF) [35] for 
the region of Africa (period 2010–2012) and the dataset produced by Chen et al. [36,37] over China 
during the years 2001 till 2010. The periods of study and areas were (partially) determined by the 
availability of data at the moment of writing this paper. The inclusion of the region of China allowed 
the analysis of a longer time series of data, which was limited in the Meteosat products over Africa, 
and also allowed the estimation of ETb in a region with more extensive irrigation practices and 
infrastructure, which is China. 
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Table 1. Specification of the datasets used in the present work. 

Data Source 
Spatial 

Coverage 

Spatial  

Resolution 

Temporal 

Resolution 
Details 

ETactual 

LSA–SAF * MSG disk ** 3 km at nadir daily 

Availability of data: 

Europe: Jan. 2007–present 

The rest: Sept. 2009–present 

Used for the study area in Africa 

Chen et al. [36,37] 

(SEBS model) 
China 0.1° monthly 

Availability of data: 

Years 2001–2010 

Used for the study area in China 

GLDAS 

(Noah model) 
Global 

0.25° 

(~30 km at equator) 
monthly 

Availability of data: 

March 2000–present 

Land Cover MERIS  Global 300 m Static GlobCover map calculated in year 2009 

Rn, P 
GLDAS 

(Noah model) 
Global 

0.25° 

(~30 km at equator) 
monthly 

Availability of data: 

February 2000–present 

NDVI 
AVHRR Africa 1 km monthly 

Generated by IGBP 

Period: April 1992–March 1993 

Used for the study area in Africa 

SPOT–VEG Global 1 km monthly Used for the study area in China 

Irrigation source GIAM Global 10 km Static 

Data: Type of irrigation  

Primary data used: 

—AVHRR from 1997–1999 

—TOA NDVI from 1982–2000 

* List of acronyms: LSA–SAF (Land Surface Analysis–Satellite Applications Facility); MSG (Meteosat 
Second Generation); GLDAS (Global Land Data Assimilation System); SEBS (Surface Energy Balance 
System); MERIS (Medium Resolution Imaging Spectrometer); Rn (Net Radiation); P (Precipitation); 
Normalized Difference Vegetation Index (NDVI); AVHRR (Advanced Very High Resolution Radiometer); 
IGBP (International Geosphere–Biosphere Programme Data); SPOT–VEG (Satellite Pour l’Observation de la 
Terre–Vegetation); GIAM (Global Irrigated Area Map); TOA (Top Of Atmosphere); ** Meteosat disk 
covers latitudes between −60° and +60° and longitudes between −60° to +60°. 

The MSG ETactual model is a simplified Soil–Vegetation–Atmosphere Transfer (SVAT) scheme  
that uses as input a combination of remote sensed data and atmospheric model outputs. The inputs 
based on remote sensing are LSA–SAF products of albedo, and downwelling short and longwave 
radiation fluxes [35,38].The dataset from Chen et al. [37] is based on the Surface Energy Balance 
System (SEBS) [39], which uses multi-sensor remote sensing based NDVI, albedo, surface emissivity 
and temperature. 

Simulated ETactual data with the Noah model [40] were acquired from the Global Land Data 
Assimilation System (GLDAS) [41]. The Noah land surface model is a 1D column model that 
describes the physical processes of the soil, vegetation and snowpack. The inputs of this model are 
satellite and ground-based observational data. The calculation of the latent (LE) and sensible (H) heat 
flux start from potential LE (LEp), based on the soil moisture, atmosphere states, and vegetation 
characteristics. Constrains to LEp are applied resulting in the actual LE and ETactual. 
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The GlobCover land cover map (version 2.3) [32] was used to identify rain-fed croplands. This map 
is based on classification techniques which use the surface reflectance observed by the Medium 
Resolution Imaging Spectrometer (MERIS). 

The inputs for the classification of the study areas were obtained from the following sources. Net 
radiation (Rn) (as a sum of longwave and shortwave radiation) and precipitation (P) (as a sum of 
rainfall and snowfall rate) were also taken from the GLDAS dataset. These were used to calculate the 
climatic indicator as the ratio LP/Rn, where L(J/kg) is the latent heat of vaporization, P (mm) is the 
annual precipitation and Rn (W/m2) is the annual net radiation. The monthly ETactual used for the 
classification was taken from GLDAS. Data on NDVI was obtained from the Advanced Very High 
Resolution Radiometer (AVHRR) delivered by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) 
and from the Satellite Pour l’Observation de la Terre (SPOT–Vegetation). These NDVI sources were 
selected as inputs for the classification because they are the ones used for the RS–ET estimations, and 
their values may influence the differences/biases between RS–ET and model simulations. 

The Global Irrigated Area Map by Thenkabail et al. [30] was used to identify the source of 
irrigation, i.e., surface water, groundwater or conjunctive use. This map shows global irrigated areas 
and classifies them depending on the type of irrigation. The “surface water” (SW) class includes major 
and medium irrigation from surface water based on large and medium dams. The “groundwater” (GW) 
class describes minor irrigation from groundwater, small reservoirs and tanks. The “conjunctive use” 
(CU) class comprises predominately minor irrigation from groundwater, small reservoirs and tanks, 
but with some mix of surface water irrigation from major reservoirs. This map was generated using 
classification techniques whose input data were remote sensing based reflectivity, NDVI, rainfall, tree 
cover and elevation, combined with ground data and Google Earth imagery. 

From a technical point of view the inputs were resampled to a common grid and projection, and the 
resolution of remote sensing data was chosen to calculate the ETb results, that is 0.030 and 0.1 degree 
for the Horn of Africa and the Chinese region respectively. The separation of SW, GW and CU was 
carried out at the resolution of the GIAM map, which is 10 km. The temporal resolution of a month 
was chosen in this analysis. In order to homogenize the data, daily ETactual values from MSG were 
monthly aggregated. 

3. Study Areas 

Based on the availability of remote sensing data, two study areas, both affected by a drought event 
during the period of study, but with differences in terms of water control/storage infrastructure were 
selected. First, the Horn of Africa was affected by a drought in the year 2011 [42,43]. In particular, 
Ethiopia is considered a water scarce country. Despite the abundance of water in some parts of the 
country (central, western and southwestern parts), the distribution and availability of water is erratic 
both in space and time due to the lack of water control/storage infrastructures [44]. Strategies have 
been implemented at national level to improve in this direction, like the Irrigation and Drainage  
Project [45]. 

Secondly, China is a country with abundant water resources where dams and reservoirs are 
numerous, built for hydropower generation, flood control, irrigation and drought mitigation. 
In particular, in the province of Sichuan we can find the Dujiangyan irrigation project [46], a more 
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than 2000 year old system that was developed to prevent flood and nowadays is crucial in draining off 
flood water, irrigating farms and provide water resources for more than 50 cities in the province. This 
region suffered a severe drought in 2006 [47,48]. 

Figure 1 shows the GIAM map, location and size of the study areas. For the sake of comparison, the 
neighboring countries/provinces were included in the study area, which computed a total of 1,680,000 
and 875,000 km2 in the regions of East Africa and Southwest of China respectively. Based on 
this map, irrigated areas were scarce in the Horn of Africa, mainly concentrated in the center and 
middle-north of Ethiopia, middle-west and southeast of Kenya and in the coastal areas of south 
Somalia. In Sichuan province, irrigated areas were abundant in the eastern part and they were scattered 
in Yunnan province. 

Figure 1. Global Irrigated Area Map (GIAM) map in the regions of study (a) Horn of 
Africa and (b) Southwest of China, where SW, GW and CU stand for surface water, 
groundwater and conjunctive use, respectively. 

  
(a) (b) 

4. Results 

4.1. Bias Curves 

The spatial distribution of the bias was obtained monthly for every study area (not shown here). 
These computed a total of 36 images in the Horn of Africa, and 120 in the Chinese area, for the time 
periods analyzed (three and 10 years respectively). After the classification of the study areas, the 
monthly bias value was obtained per class by averaging the monthly biases in rain-fed croplands.  

Figure 2 shows the inter-annual variability of the resulting bias curves. The yearly classification of 
the study areas provided the following number of classes: six (for 2010 and 2011) and eight (for 2012) 
in the Horn of Africa; six (for 2001, 2003, 2004, 2006), seven (for 2002, 2005, 2007, 2008, 2009) and 
eight (for 2010) in the Chinese area. In general, largest biases and similar patterns over the years were 
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found in the Southwest of China, with amplitudes between −80 and 80 mm/month. The largest biases 
were found for the years 2005 and 2010, and the lowest biases for 2009. 

The bias curves found in the Horn of Africa show no clear pattern over the years for some classes, 
which may be explained by the relatively low number of rain-fed pixels used to obtain them. This is 
the case of classes 1 and 2 in 2010 and class 1 in 2011, where the number of pixels used is one or two 
orders of magnitude lower than the rest of the classes. Moreover, in some classes the absence of a clear 
centered peak as observed in China is related to the incoming solar radiation patterns at these latitudes 
(between 5°S and 15°N). At the equator, maximum radiation values are found at the equinoxes (March 
and September) and a single maximum is developed with increasing latitude. In this paper, the biases 
were calculated as spatial averages per class, therefore the combination of values from different 
latitudes may partially explain the fluctuations of the curves.  

For all classes, the magnitude of the biases in the African region is relatively modest compared to 
the ones found in the region of China. As a reference, we provide the average monthly ETactual in both 
regions for the year 2010 obtained from the GLDAS–ET data set. The value was computed over all 
land pixels shown in Figure 1. The average monthly ETactual ranged from 25–60 mm/month and  
from 25–120 mm/month in the African and Chinese regions respectively. These differences can partly 
explain the magnitude of the amplitudes found in the bias curves. 

Figure 2. Spatial mean bias per class for (a) Horn of Africa and (b) Southwest of 
China study areas, obtained in rain-fed croplands as the difference of remotely sensed 
ETactual data (RS–ET) and Global Land Data Assimilation System ETactual model 
simulations (GLDAS–ET). (Note that the discrete ETb monthly values are connected to 
ease visualization). 

  
(a) (b) 

4.2. Monthly ETb and Source of Irrigation 

This section contains preliminary results of the application of the ETb method in the study areas. 
Monthly ETb was calculated for the Horn of Africa for the period 2010 till 2012 and for the Southwest 
of China for the years 2001–2010. Monthly ETb values were extracted from the pixels labeled by 
GIAM as irrigated and assigned to the corresponding source of irrigation (SW, GW, CU). Pixel values 
were converted to volumes (Mm3/month) by using the pixel area and then aggregated per 
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country/province. Figure 3 shows the first results in the study areas where the monthly values of 
precipitation aggregated over the evaluated pixels are also included. 

The temporal signature of ETb allows seasonal patterns to be distinguished within a year and also  
inter-annual ETb dynamics, especially in the long series of ETb obtained in the provinces of China. The 
ETb pattern in Yunnan province was found to be relatively regular, contrary to what was observed in 
Sichuan, with some ETb peaks in the years 2006 and 2007 and lower general values in 2009 and 2010. 

Precipitation showed a significant decrease in the year 2011 in Ethiopia and in the year 2006 in 
Sichuan province. This corresponds to drought periods as explained in Section 3.  

In Ethiopia, a general decrease of ETb was observed in 2011, which points at a lower amount of 
irrigation water used. In particular, total ETb was estimated to decrease from 21 Mm3/month in the  
wet year 2010 to 10 Mm3/month in the dry year 2011. Moreover, in this period an increase of 
groundwater use at the expense of surface water use was observed, which is consistent with the report 
by Hendrix [49]. Despite the existence of the drought, national crop production did not appear to be 
significantly affected as reported by the Food and Agriculture Organization of the United Nations [50]. 
This might be explained by the fact that the drought mainly affected the east and south of the country 
and the majority of croplands use rain-fed production systems and are located in the other part of the 
country [51]. 

Figure 3. Monthly ETb per source of irrigation water (surface water, SW; groundwater, 
GW; conjunctive use, CU) in irrigated areas of (a) Ethiopia and (b) Kenya (years 2010–2012) 
and the Chinese provinces of (c) Sichuan and (d) Yunnan (years 2001–2010). The figure 
also shows monthly precipitation (Note that the discrete ETb monthly values are connected 
to ease visualization). 

  
(a) (b) 

  
(c) (d) 
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A decrease of ETb in half of the year 2011 was also observed in Kenya. The precipitation values in 
this period were only slightly lower than for other years. The drought in Kenya affected the 
northeastern regions of the country and therefore there is no significant effect on the precipitation in 
irrigated areas. The study of longer time series of data would allow inter-annual variability, trends and 
anomalies to be analyzed with a better statistical representation, and therefore have a better 
interpretation of these patterns. 

In Sichuan province, the values of ETb in the dry year were of similar magnitude to the previous 
years or increased, especially in the month of August, which points to a higher amount of irrigation 
water used. In particular, ETb was estimated at 200 Mm3/month in the wet year 2005 and 400 Mm3/month 
in the dry year 2006. The National Bureau of Statistics of China [52] reported that total water 
resources in Sichuan decreased by 26% in 2006 with respect to the average of other reported years 
(2004–2012), but still with a high value of 187 billion m3. Moreover, the grain production in 2006 was 
only 10% lower than in year 2005. These two facts suggest that water was still available for irrigation 
and it was used when precipitation decreased. 

In order to better interpret the results obtained, Figure 4 shows the input RS–ET and GLDAS–ET 
values in August 2006, where a peak of ETb is found in Sichuan. In this study area the range of  
RS–ET values was double the ones given by the land surface model in GLDAS–ET, with values up  
to 330 mm/month. In particular, a hot spot was found in Sichuan province near the border with 
Chongqing province with low values of GLDAS–ET. There is a high density of irrigated agriculture in 
this area (see Figure 1), so that the aggregated results per province are highly influenced by these 
values. Figure 4 also includes the temporal series of these two ETactual estimates in a pixel of the hot 
spot, where the significant decrease of GLDAS–ET outputs in the year 2006 can be observed. Due to 
the lack of precipitation, the ETactual model outputs given by the land surface model are lower. 

Figure 4. Monthly ETactual in the study area of Southwest of China in August 2006 
obtained from (a) the remote sensing estimates with the SEBS method and (b) GLDAS 
data; and (c) 10 years of monthly ETactual in the identified hot spot (30°34ʹN, 105°19ʹE). 
(Note that the discrete monthly values are connected to ease visualization). 

 

(a) RS–ET 

 

(b) GLDAS–ET 

 

(c) 
 

 

 
 



Remote Sens. 2014, 6 10043 
 

 

In Yunnan province, in which there was no significant dry year during the period of analysis, the 
total ETb curves show relatively regular patterns and values ten times smaller than in Sichuan. The use 
of the three sources of irrigation water is observed in this province with a major use of surface water. 

In general, the preliminary results shown in Figure 3 also reveal features that could not be 
explained, like the ETb peaks in Sichuan in 2007 or low ETb values in 2009 and 2010. Although 
further research is needed to fully understand the patterns, this paper exemplifies the potential 
exploitation of the temporal dimension of ETb, combined with the source of irrigation water, which 
could be useful for water management purposes. 

The analysis of data in longer periods of time showed an advantage when interpreting and better 
understanding the ETb patterns. Bearing this in mind, the following section about sensitivity was 
elaborated using the case study of Sichuan province (years 2001–2010). 

4.3. Sensitivity to Bias Curve Assignment  

Since the principal aspect of the ETb method used is the definition of the bias curves, this section 
analyzes whether the ETb estimates are sensitive to the bias assignment. Figure 5 shows the monthly 
ETb results obtained in the province of Sichuan in the irrigated pixels as indicated in Figure 1. Four 
cases were considered depending on the bias assigned per month: (i) maximum of all classes;  
(ii) minimum of all classes; (iii) bias assigned based on the classification and (iv) mean bias calculated 
in all rain-fed croplands when no classes are considered.  

Figure 5. ETb obtained in the province of Sichuan using the maximum, minimum, 
assigned-per-class and mean bias. 

 

All four cases show maximum values of ETb in the years 2006 and 2007. However, inter-annual 
variability was found to be sensitive to the selection of the bias. ETb presented low monthly values  
in most of the study period when using the maximum bias, whereas higher values and relatively 
regular patterns were obtained with the minimum bias. The curves obtained with the mean and 
assigned-per-class bias showed intermediate values, with ETb in general lower in the former case. In 
this context, Romaguera et al. [22] showed that the bias estimation was improved when using different 
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classes instead of a single mean bias obtained for all rain-fed pixels. Therefore, despite the possible 
ETb similarities between these two cases, the classification approach is preferred to evaluate ETb. 

5. Discussion  

This paper illustrates preliminary results of the potential of using a remote sensing based method for 
obtaining time series of blue water evapotranspiration and combining it with the source of irrigation to 
monitor irrigation practices. The details and drawbacks of the models and data used were discussed in 
Romaguera et al. [21,22] and Thenkabail et al. [30]. 

The outputs produced in this paper need to be understood as preliminary examples of application.  
A better understanding of the ETactual inputs used would be required in order to obtain concluding 
outcomes. Regarding the bias, Section 4.3 showed how the ETb estimates were sensitive to the  
bias assignment. 

Accuracies, Errors and Uncertainties 

The uncertainties in ETactual estimation from remote sensing and the land surface modelling played 
an important role in the total ETb uncertainty. Kalma et al. [53] showed that remote sensing data 
provided typically relative errors of 15%–30% in ETactual estimation. In the case of the GLDAS 
products, the ETactual accuracy was not sufficiently evaluated in the literature, although some estimates 
exist. Fang et al. [54] reported the uncertainty in GLDAS–ET estimates by continent as equivalent 
heights of water based on 1979–2007 outputs from the four models included in the system. The 
climatology values of ETactual were 550 mm/year in Africa and 430 mm/year in Asia, with an uncertainty 
of ±60 mm/year in both cases. Besides, the definition of the bias curves has a standard deviation 
associated to the spatial averaging of the values per class. Despite the lack of detailed information 
about the GLDAS–ET accuracies, the aforementioned quantities were used (not shown here) to obtain 
the contributions of these three aspects to the total uncertainty by using the first order Taylor series 
expansion, where the covariance terms were neglected (inputs are independent) and linearity was 
assumed. A typical daily ETactual rate of 5 mm, a 30% in error of RS–ET, an average uncertainty  
of 5 mm/month in GLDAS–ET, and a bias curve in the Sichuan province were assumed. It was found 
that the error in RS–ET was the major contributor (50%–95%), modulated by the error of the bias 
which oscillated in time from around 5%–50%. The contribution of the GLDAS–ET inaccuracy was 
negligible. Increasing daily ETactual rates resulted in higher relative contribution of RS–ET, as 
expected, while decreasing the role of the bias, and being insignificant, the GLDAS–ET impact. 
Decreasing daily ETactual rates resulted in higher relative contribution of GLDAS–ET, with a maximum 
of 20% when a low value of daily ETactual was considered (0.1 mm/day). 

These values served as an indication of the relative importance of RS–ET, GLDAS–ET and the 
bias, to the total uncertainty of ETb. In the case of irrigated areas, ETactual values are expected to be 
high, and therefore the role of the bias accuracy is less significant. However a better estimate of the 
GLDAS–ET uncertainty is required to properly quantify the different contributions. 

Moreover, the accuracy of the static GlobCover and GIAM maps may decrease in time. These are 
used in the method to define rain-fed areas and to assign the type of irrigation respectively. Therefore, 
they are also a source of uncertainty. 
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The results in this paper were aggregated per country/province, which may be appropriate for 
regional planning purposes. However, specific spatial features may be lost in big areas due to the 
aggregation process, such as multiple cropping practices. Therefore, analysis at different spatial scales 
is recommended when examining particular features. Besides, the spatial resolution of the input data 
may be a limitation in heterogeneous areas, and therefore scaling techniques [55,56] are advised for 
understanding the sub-pixel variability. 

In order to obtain concluding results about the application shown in this paper, long time series of 
data are desired to be able to properly analyze trends, and possible anomalies in the climatology. From 
the point of view of the land surface models, global data can be obtained for long time periods, from 
the year 1970 until the present for the Noah model in GLDAS. However, remote sensing ETactual 
outputs are more limited in time and space and depend a lot on the geometry of observation, technical 
characteristics, and lifetime of the sensors on board the satellites. In this context, Mu et al. [57] 
provided global ETactual products every eight days at 1 km resolution between the years 2001–2010. 
Their algorithm is based on the Penman-Monteith equation using daily meteorological reanalysis data  
and 8-day remotely sensed vegetation property dynamics from the Moderate–Resolution Imaging 
Spectroradiometer (MODIS) as inputs. 

In general terms, the interpretation of the results regarding irrigation practices bears an uncertainty 
related to the multiple situations that can be found in reality. Water availability and decisions taken by 
the farmers to irrigate or not and how much, are factors that influence the results. However, in the face 
of an extreme event like a drought, the results obtained in the case studies of the present paper 
indicated the possibility of identifying and explaining the episode in terms of irrigated water. 

Finally, compared with the existing literature about ETb given by Liu and Yang [16] and Mekonnen 
and Hoekstra [19], the method applied in this paper is innovative in two aspects: first it uses physically 
based remote sensing data instead of statistical data, and second it provides a better temporal 
resolution, more suitable for water management applications. Moreover, from an implementation point 
of view the method has a reasonably straightforward application procedure. 

6. Conclusions  

This paper illustrates the potential of using remote sensing and simulated actual evapotranspiration 
(ETactual) time series combined with an existing “type of irrigation” map, to monitor irrigation practice. 
It provides new tools to obtain monthly blue evapotranspiration (ETb) and shows the application in two 
relevant study areas: the Horn of Africa and the Chinese province of Sichuan, both affected by a 
drought event during the periods of analysis, but with differences in terms of water control and storage 
infrastructure. Further, monthly ETb are subdivided into the source of irrigation water: surface water, 
groundwater and conjunctive use, which relates to the availability of water resources. 

The preliminary results show seasonal and inter-annual patterns in ETb. In the face of an extreme 
event like a drought, changes in ETb (i.e., irrigated water) can be identified, as well as the relative use 
of different sources of irrigation water. In Ethiopia, total ETb is estimated to decrease from 
21 Mm3/month in the wet year 2010 to 10 Mm3/month in the dry year 2011, while ETb from 
groundwater increased; in Sichuan ETb is estimated at 200 Mm3/month in the wet year 2005 and 
400 Mm3/month in the dry year 2006; these very different patterns of drought response, as found for 
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the two locations, are qualitatively consistent with the literature. However, further research is needed 
to fully understand the whole of the temporal patterns found. 

The research also reveals methodological and data limitations. The results in Sichuan are found to 
be dependent on the bias assignment required in the method. Moreover, particular spatial ETactual 
patterns are encountered in the input data. Finally, the use of longer time series of data for better 
interpretation of the results is recommended. 

The application shown in this paper is innovative compared to similar literature in two aspects: first 
it uses physically based remote sensing data instead of statistical data, and second it provides a better 
temporal resolution, more suitable for water management applications. This paper constitutes a starting 
point for global temporal ETb analysis, applying an innovative remote sensing based approach and 
further research will contribute to the achievement of more concluding and operative results. In the 
field of water management, the approach has potential to assess the existence of irrigation, the source 
of irrigation water, the duration and variability in time, at pixel and country scales, and could be 
especially useful to monitor irrigation practice during periods of drought.  
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