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Abstract: Ecosystem state can be characterized by a set of attributes that are related to the 

ecosystem functionality, which is a relevant issue in understanding the quality and quantity 

of ecosystem services and goods, adaptive capacity and resilience to perturbations. This 

study proposes a major identification of Ecosystem Functional Types (EFTs) in Spain to 

characterize the patterns of ecosystem functional diversity and status, from several functional 

attributes as the Normalized Difference Vegetation Index (NDVI), Land Surface 

Temperature (LST) and Albedo. For this purpose, several metrics, related to the spatial 

variability in seasonal and annual patterns (e.g., relative range), have been derived from 

remote sensing time series of 1 km MODIS over the period 2000–2009. Moreover, 

precipitation maps from data provided by the AEMet (Agencia Estatal de Meteorología) and 

the corresponding aridity and humidity indices were also included in the analysis. To create 

the EFTs, the potential of the joint use of Kohonen’s Self-Organizing Map (SOM) and the 

k-means clustering algorithm was tested. The EFTs were analyzed using different remote 

sensing (i.e., Gross Primary Production) and climatic variables. The relationship of the EFTs 

with existing land cover datasets and climatic data were analyzed through a correspondence 

analysis (CA). The trained SOM have shown feasible in providing a comprehensive view on 

the functional attributes patterns and a remarkable potential for the quantification of 
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ecosystem function. The results highlight the potential of this technique to delineate 

ecosystem functional types as well as to monitor the spatial pattern of the ecosystem status 

as a reference for changes due to human or climate impacts.  

Keywords: Self-Organizing Map (SOM); Ecosystem Functioning Types (EFTs); MODIS; 

Albedo; NDVI; LST; Precipitation Data 

 

1. Introduction 

Ecosystem transformation and status in the earth system are raising increasing concern [1] because 

the ecosystems are vital for human and animal well-being. Ecosystem provides food and other products 

and performs a wide range of functions that support existence [2]. Hence, there is increasing awareness 

of the dependence of the services and goods of humankind on the Earth’s ecosystem (i.e., natural and 

modified anthropologically) [3,4]. Nevertheless, terrestrial ecosystems are permanently changing at a 

variety of spatial and temporal scales [5], especially in recent decades, where they have experienced 

strong changes due to human activity [6]. 

Accurate information on the distribution, properties and status of ecosystems is essential as input for 

meteorological and biogeochemical models [7,8], for global change research [9], biodiversity 

conservation [10], to develop sustainable strategies for a wide range of human activities [11] and for 

ecosystem management [12]. 

Stratifying the ecosystem into relatively homogeneous regions or patterns allows reducing the 

complexity of the landscape into something that is more manageable and understandable [13]. Ecological 

land classification, a hierarchically structured, multifactor approach for mapping ecological units at 

multiple scales, has been shown to be helpful in quantifying variation in fundamental ecological 

processes [14]. In this respect, diverse approaches and nomenclatures have been applied and defined at 

continental [15], regional [16] and local scales [17]. Depending on the final application, these 

stratifications are namely different. For example, ecoregions have been defined as geographic zones that 

represent geographical groups or associations of similarly functioning ecosystems [18]. Other 

approaches of this type include the maps of isogrowth [19], the delimitation of biozones [20],  

pheno-classes [13] and pheno-regions [21].  

Traditionally, the description and characterization of ecosystems rely only on the structural attributes 

of the vegetation such as physiognomy, landform, dominant species or floristic composition [22]. However, 

the structural attributes of ecosystems may not be sensitive enough to assess the impact of current 

environmental changes if the response of the vegetation structure has a long time lag [23]. Hence, 

the ecosystem status characterization can also be complemented considering also the functional 

attributes (or state variables) [24]. Functional groups correspond to sets of organisms at any level of 

biological organization (i.e., microorganisms, plants) sharing a certain set of common structural or 

process features [25]. These attributes (e.g., primary production or heat fluxes) capture critical aspects 

of carbon, energy and water fluxes between the biota and the environment [26]. Functional attributes 

offer advantages over the traditional use of structural variables, since they respond faster to 

environmental disturbances than structural ones [24]. Additionally, they can easily be monitored at 
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different spatial scales, over large areas, which is particularly useful to track the effects of global 

environmental changes, evaluate the effectiveness of management practices and analyze vegetation 

dynamics [27]. Moreover, functional attributes are associated with ecosystem services [28], which 

represent the goods and services utilized by humanity. 

In this sense, Ecosystem Functional Types (EFTs) offer an optimal framework for functional 

classification of ecosystems because they represent the spatial heterogeneity in ecosystem functioning, 

complementing and improving the description based only on structural features [29]. EFTs are analogous 

to the more extended approach of Plant Functional Types [30] but defined at a broader level of 

organization [31]. EFTs incorporate multiple functioning properties in the classification related to 

different aspects of the exchange of the energy and matter of ecosystems [23], this allows characterizing 

ecosystem heterogeneity and responses to spatio-temporal environmental change. 

Satellite remote sensing is the only practical means by which land surface biogeophysical variables 

can be obtained at the temporal and spatial scales required for global and regional use [30]. Several time 

series of remotely sensed images are available at coarse and medium spatial resolution. In particular, 

Normalized Difference Vegetation Index (NDVI)-based time series are fundamental to the remote 

sensing of vegetation phenology and to extract numerical observations related to vegetation dynamics [27]. 

However, NDVI has shown to saturate over forested regions, while being sensitive to canopy 

background variation in arid and semi-arid areas [32]. Therefore, additional information is required to 

complement NDVI information and compensate for this weakness [33]. Nevertheless, a few attempts 

have been made to integrate additional information into ecosystem monitoring, mainly including 

indicators of energy partitioning into sensible and latent heat fluxes and light reflection [34].  

Accurate and efficient EFTs mapping via remote sensing depends largely on the selection of an 

appropriate classification approach [8]. Different classifiers may produce different results even when the 

same functional variables are used [35]. Many classifiers have been proposed to delineate EFTs such as 

ISODATA [23], CLARA [34] and partitioning based on thresholds [16,36]. A promising alternative to 

these methods is the self-organizing map (SOM) [37]. The SOM is an efficient way to derive maps from 

multi-dimensional and complex data. This method allows showing the data in a more comprehensive 

fashion and in fewer dimensions [38]. The detection of useful knowledge (in the form of patterns, 

structures and relationship) within the raw data is enhanced. Furthermore, the SOM method has 

overcome some of the limitations of the clustering methods since (i) they are more robust and are not 

significantly affected by missing data, (ii) do not require any prior assumption about the underlying 

distribution of the data, (iii) are capable of generalizing in noisy environments and  

(iv) make it possible to learn complex patterns in a limited time [39] with a decreased computational 

cost, also being an appropriate tool when the sample size is large [40]. Although this method has been 

shown to be more successful than the above mentioned algorithms to monitor and classify land cover [41] 

and has been previously used in ecology [42,43] and remote sensing [44], the potential of this 

methodology has not yet been applied to delineate EFTs.  

The aim of this study is to identify EFTs in Spain for the period 2000–2009 as areas exhibiting similar 

responses to environmental conditions and similar ecosystem processes. The remarkable landscape 

diversity in Spain makes this area a suitable region to identify the EFTs. This work follows preliminary 

investigation on the same topic [16], which revealed the interest and potential of the EFTs classification 

encouraging the authors to further in-depth research. The current extended study uses images of higher 
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spatial resolution (1 km) compared with previous studies (e.g., [23]), and a robust methodology based 

on a two-level procedure, based on the combined use of the SOM and k-means clustering method to 

derive a map of EFTs definition. This method also allows expanding the number of variables involved 

in the definition of the EFTs to the extended use of the NDVI, and evaluates its performance. 

Additionally we analyze, for the different EFTs seasonal patterns and the correspondence between 

functional structural descriptors (i.e., land cover) and ecoregions with the derived ecosystems. 

2. Study Area  

Despite its relatively small extent, 504,645 km2, Spain has a remarkable landscape diversity and a 

wide range of ecosystems due to its relief, climate and geological features (Figure 1). This is the result 

of its geographic position, in the southwestern Europe, and an elevation that varies from sea level to 

3479 m (Mount Mulhacén in Sierra Nevada, in the south) [36]. The central part of Spain is dominated 

by a vast plateau surrounded by a number of mountain ranges (Sistema Central, Sierra Morena, the 

Cordillera Cantábrica and the Sistema Ibérico). Other mountain ranges include the Pyrenees in the north, 

Sistema Penibético in the southeast and Sierra Nevada in the south. 

Figure 1. Study area with the localization of the regions, the Basin Rivers and the mountains. 

 

Synoptic air masses create a NW to SE gradient of water availability (total annual precipitation ranges 

from 2000 mm to 120 mm), ranging from Atlantic humid climate zones on the north coast to 

Mediterranean climate on the east coast, the SE corner becoming the most arid zone of Europe [45]. 

Spain has a mosaic of land cover that includes significant areas of traditional and newly developed 

agriculture (49% of land), dominated by non-irrigated land. These areas are embedded in a matrix of 
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natural and semi-natural vegetation (47% of land), mainly occupied by shrublands, and broadleaved or 

coniferous forests. Vegetation distribution is strongly controlled by aridity, and drought conditions have 

a marked influence on vegetation cover and activity. In particular, the droughts that affect the semiarid 

areas represent an important factor in environmental degradation, because they limit the development of 

vegetation cover and make the soil more sensitive to erosion by wash off from intense precipitation [5].  

3. Data Set 

3.1. Normalized Difference Vegetation Index (NDVI) 

NDVI provides an index of ecosystem function since it has proven to be a proxy for the status of the 

aboveground biomass at the landscape level due to the high correlation with green-leaf density, net 

primary production and the fraction of photosynthetically active radiation absorbed by green biomass 

and CO2 fluxes [46]. 

The 16-day Terra MODIS (MOD13A2) NDVI product at 1 km spatial resolution has been used. 

MOD13A2 ingest level two daily surface reflectance product (MOD09 series), which provides red and 

near-infrared surface reflectance corrected by the effect of atmospheric gases, thin cirrus clouds and 

aerosol [47,48]. The MOD13A2 vegetation product contains a data quality assessment (QA data) product 

holding information on overall usefulness and cloud conditions on a per-pixel basis [49]. 

3.2. Land Surface Temperature (LST)  

LST is an indicative variable of the net surface energy balance driven by long-wave radiation surface 

emission [50]. LST is one of the key parameters in the physics of land-surface processes, combining 

surface-atmosphere interactions and the energy fluxes between the atmosphere and the land surface [51] 

and influencing processes such as evapotranspiration and vegetation stress [52]. The Terra MODIS 8-day 

LST with 1 km resolution (MOD11A2, collection v005) was used. The MODIS land surface temperature 

is derived from two thermal infrared band channels, i.e., 31 (10.78–11.28 µm) and 32 (11.77–12.27 µm) 

using the split-window algorithm [53] which corrects atmospheric effects and emissivity using a  

look-up table based on global land surface emissivity in the thermal infrared band. An accuracy 

assessment across a wide set of test sites indicates an accuracy better than 1 km with a root mean square 

(RMS) less than 0.5 K in most cases [54]. 

3.3. Albedo  

Albedo is a key geophysical parameter in ecosystem characterization since it indicates the amount of solar 

energy absorbed by the surface and therefore the surface energy budget [55]. A large number of studies 

recognize the important role of Albedo influencing gross productivity [56], surface temperature [57], 

evapotranspiration [58] and physical, physiological and biogeochemical processes [59]. 

The Albedo information was obtained from the 16-day MODIS MCD43B3 combined Aqua and Terra 

products [60,61]. It provides a 1 km data describing both the directional hemispherical reflectance 

(black-sky Albedo) and the bihemispherical reflectance (white-sky Albedo). The overall surface Albedo 

was derived by averaging the above two estimates.  
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Black-sky and white-sky Albedos are provided for seven spectral bands (MODIS channels 1–7) and 

the three broadbands (0.3–0.7, 0.7–3.0, and 0.3–5.0 μm). These products make use of a kernel-driven 

linear model of the Bidirectional Reflectance Distribution Function (BRDF), which relies on the 

weighted sum of an isotropic parameter and two functions (or kernels) of viewing and illumination 

geometry. The accuracy assessment against continuous field measurements results in a root mean square 

error (RMSE) of 0.013 and a bias around −0.02 [62]. 

3.4. Precipitation Data 

Climatological data such as precipitation and temperature control differences in the Earth’s vegetation 

cover, affect growth rate, plant reproduction, and frost damage. Monthly precipitation maps were derived 

at 2 km spatial resolution. The accurate estimation of the spatial distribution of precipitation requires a 

very dense network of measuring gaugement. The climatic data used in the study was obtained from the 

AEMet (Agencia Estatal de Meteorología) and corresponds to between 4000 and 7000 (depending on 

the period) recording stations distributed around Spain. Geostatistical approaches [63,64], such as 

ordinary kriging, were chosen for interpolation since they provide a measure of prediction error and 

allow observations to be complemented by secondary attributes that are more densely sampled. Monthly 

and annual averages for the period analyzed were computed from the precipitation monthly maps. 

4. EFTs Classification Scheme  

EFTs were identified following a multi-step approach (Figure 2). First, the time series of LST, Albedo 

and NDVI were pre-processed and filtered through a Savitzky-Golay [65] filter to smooth out noise 

caused mainly by cloud contamination, atmospheric variability, and bi-directional effects (Section 4.1). 

Second, different metrics related to vegetation phenology and ecosystem functioning (Section 4.2) were 

derived from these series and their contribution to discriminate EFTs was explored. Third, a SOM 

procedure was applied to extract and visually display the topological structure of high-dimensional input 

data (Section 4.3). Finally, the k-means method was carried out based on the SOM prototypes, with the 

aim of partitioning the input data into EFTs (Section 4.4). A more detailed description of the 

methodology follows. 

4.1. Time-Series Filtering  

Although the MODIS data are 8 or 16 day Maximum Value Composite (MVC) products [66], these 

still include noise that can affect the time series signal [67]. For this reason, spectral data was smoothed 

using a Savitzky-Golay filter to mitigate the effects of sensor noise and more efficiently reduce 

contamination [68]. This method is based on simple polynomial least-square calculations and has showed 

effectiveness in eliminating the cloudy values and exceptional data in MODIS time-series data [69]. 

However, instead of fitting a least-square curve to the total length of spectrum all at once, the method 

fits the spectral data piece-by-piece with the size equal to a user-defined value (i.e., filter size) using a 

special form of matrix calculations [65]. This requires two key parameters: the filter size and the degree 

of polynomial orders. The degree of the smoothing polynomial ranges from 2 to 4. A smaller value will 

produce a smoother result but introduce more bias; conversely, a higher value will reduce filter bias,  
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but may “over fit” the data and give a noisier result [68]. In this study, it was found that a combination 

of a filter size of 5 and a degree of polynomial orders of 3 provided the best result in most cases. 

Figure 2. Flowchart of the methodology used to derive the ecosystem functional types (EFTs). 

 

4.2. Estimation of Functional Attributes 

In order to summarize the information provided by the NDVI, LST and Albedo time series, several 

metrics of the annual average curve for the period 2000–2009 have been derived for every pixel of the 

image composite. The metrics used in this paper include: maximum value (Max), minimum value (Min), 

mean value (Mean), annual integral (I) as the area under the seasonal curve, date of maximum (D) as the 

date when the maximum value occurs, relative range (R) as the difference between maximum value and 

minimum value divided by the annual integral. A total of eighteen functional attributes have been 

derived, six for each of the NDVI, LST and Albedo series. These cumulative remote sensing indices or 

metrics [70] have been reported to capture significant features of ecosystem functioning. In particular, 
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the annual integral of NDVI (INDVI) shows the ecosystem’s long-term capacity to sustain biomass 

whereas the date of maximum NDVI (DNDVI) shows its resilience for recovering from disturbances, 

mainly rainfall fluctuations [45]. To keep the continuous nature of the annual period and the relative 

distance between months (i.e., December is as close to February as May is to July), we transformed 

months into polar coordinates to compute the date of maximum. Months were therefore characterized 

by their sine and cosine values (30° for January and 360° for December).  

Additionally, the Thornthwaite moisture index was computed as the difference between monthly 

precipitation (P) and potential evapotranspiration (PET) [71]. This climate index is a useful indicator of 

the supply of water in an area relative to the demand for water (P) under prevailing climatic conditions 

(PET). Therefore, P-PET is used as an estimate of the atmospheric balance between water supply and 

water demand, which reflects the portion of total precipitation used to nourish vegetation over a certain 

area. To derive PET we apply the Thornthwaite method [72] to monthly precipitation maps (2000–2009 

period) from the AEMet dataset. The budget between PET and rainfall yields the yearly humidity and 

aridity indices. The linear combination of them produces the moisture index.  

4.3. Kohonen Self-Organizing Map (SOM) 

The self-organizing map (SOM) is an unsupervised, non-parametric and competitive neural network 

model used to reduce data dimensionality in non-linear data processing and which allows identifying 

groups of observations with similar patterns [37,73].  

The SOM (Figure 3) is composed of two layers: the input and output layer. The input layer represents 

the input feature vector and has as many neurons (n) as it has variables (i.e., functional attributes). The 

output layer or competitive layer is an array of neurons or nodes (M) spatially structured in a regular 

lattice (m × m), usually in a two-dimensional grid. Each output layer neuron is connected to the n 

components of the input layer x (i.e., x1, …, xn) by a synaptic weight wij. An n-dimensional vector of 

synaptic weights (prototype) (wj) is associated with each neuron j in the grid, where n refers to the 

dimensionality of an input data pattern [74]. 

Figure 3. Schematic layout of a self-organizing map adapted from [74].  

 

The SOM is trained iteratively, which could be summarized in four basic steps (for more in-depth 

analysis of the algorithm, refer to [41]):  
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(1) Initialization: the M weight vectors are initialized to a random value between 0 and 1. 

(2) Competition: each input vector in the training set, x, is compared with each weight vector, wj, to 

determine the neuron j which is the closest in terms of distance. This winning output node or 

neuron c(j),which is called Best-Matching Unit (BMU), is typically computed using the 

minimum-distance Euclidean through the following rule: 

{ } Niwxjc j
Mj

,...,1,minarg)(
1

=−=
≤≤

 
(1)

(3) Cooperation: in this stage it is necessary to define a neighborhood function that allows to identify 

the output nodes close to the BMU, c(j), to be updated in the next step. 

(4) Updating: the weight vector of neurons close to the BMU, as well as the weight vector of the 

BMU itself, are updated according to: 

[ ])()())(()()1( twtxtrhtwtw ijciijij −+=+ α  (2)

where t denotes time, α(t) is learning rate with an initial value between 0 and 1, hci(r(t)) denotes the 

neighborhood kernel around the winner unit c, with neighborhood radius r(t).  

This update procedure stretches the winning neuron and its topological neighbors towards the sample 

vector. Neighboring neurons are pulled in the same direction, and thus weight vectors of neighboring 

neurons resemble each other for adopting competitive learning rules and neighborhood (the topological 

neighborhood relationships). Neurons with the same properties in the competitive layer would be close 

to each other, and the others would be far away when the clustering process is finished [41]. 

(5) Repetition: Repeat steps 2 and 3 until the network convergence, where the learning rate and 

neighborhood decrease monotonically with time. 

Before applying the SOM algorithm, variables were standardized in order to ensure that all variables 

had the same a priori relevance for the model. Several parameters in the SOM need to be set up manually, 

e.g., number of neurons, and thus were evaluated in order to apply the better ones. The quality of the 

results is measured through quantization (Qe) and the topographic error (Te) [38]. Qe is the average 

Euclidean distance between each data vector and its BMU [75]. This error measure evaluates the fitting 

of the neural map to the data. Te is a measure of the continuity of the mapping [76], which measures the 

proportion of all data vectors for which first and second BMU are not adjacent vectors. 

4.4. K-means Classification  

K-means algorithm was applied to the prototypes obtained during the SOM learning to determine the 

clusters inherent in the structure of the data at the SOM’s output layer. K-means [77] consists in a  

self-organized identification process of initial and arbitrary group means or centers, which are specified 

for each one of the k clusters. Each pixel is then assigned to the nearest cluster center in an iterative way 

using the minimum distance criterion. In each iteration the center of each cluster is updated by using the 

average vector of the pixels assigned to the cluster, unless a standard deviation or distance threshold is 

specified or there is no significant change in pixel assignments from one iteration to the next. Hence, the 

objective is to minimize a measure of dispersion within the clusters and to maximize the distance 

between clusters. 
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Selecting the optimal number of clusters is a critical issue because there are no predefined classes. To 

avoid subjectivity in delimiting the number of EFTs (clusters), different sets of validity indices have been 

proposed (e.g., Silhouette, Dunn’s, Calinski Harabasz indices) [78]. In this paper, the Davies-Bouldin 

index [79], which is a function of the ratio of the sum of within-cluster scatter to between-cluster 

separation, has been selected because is less sensitive to the position of a small group of data set members 

and the expected behavior in case of more than two clusters is good [80].  

5. Results and Discussion 

5.1. Examples of Functional Attributes 

The analysis of the functional variables shows clear and contrasted patterns, allowing itself to glimpse 

the main functional traits underlying the ecosystems in Spain. Figure 4 shows some examples of key 

functional attributes (e.g., DNDVI, MeanLST, IAlbedo) used in this study to derive the EFTs. The date 

of the maximum NDVI (DNDVI) is associated to the phenological cycle of each vegetation type. Pixels 

showing a spring-peaking vegetation (April) are located in Castilla y León and Castilla-La Mancha, and 

mainly covered by non-irrigated crops such as wheat (Triticum spp). Areas with DNDVI in March 

correspond to dehesas grassland (Extremadura) where the herbal growth (Oxalis sp.) that recovers the 

orchard canopies during winter is eliminated, by tilling, in summer. Summer-peaking vegetation  

(July–August) is generally located in irrigated areas such as the Ebro basin, Vegas Del Guadiana and 

Tiétar and the Alagón-Árrago basin. Summer-peak also occurs in rice paddies located in the Ebro River 

Delta, around the Albufera Lagoon and in the Guadalquivir River marshes. Forested areas, in the north 

of Spain, also showed high values during June–July (orange colors) whereas winter-peaking mainly 

corresponds to citrus crops along the Mediterranean coastline (blue colors).  

Orography, together with other geographic variables such as latitude or longitude, plays a significant 

role in the distribution of MeanLST. This functional attribute reveals a progressively hotter gradient 

when moving from north to south. Lowest MeanLST values (around 18 °C), are mainly located in the 

northern forested areas of Spain. Several patches of cooler areas are also located in the south, such as 

Los Alcornocales (Quercus suber) Natural Park in the Sierra del Aljibe (Cádiz). This is due to the effect 

of the mountains that intercept moisture from SE-prevailing winds coming directly from the 

Mediterranean that diminish the severity of drought in summer. Extreme values of MeanLST, about  

30 °C, correspond to areas of sparse vegetation such as Tabernas Desert in the southeast characterized 

by high aridity and low moisture index, as reported by previous studies [45]. These areas have a period 

of drought during the summer with a low vegetative productivity due to the connection of LST with the 

length of the vegetative period and evapotranspiration [81]. 

Results in the IAlbedo confirm that the land surface albedo of any geographic location varies 

depending on the predominant land cover type, together with other variables such as the density and 

structure of land cover [82]. The highest IAlbedo values are located in non-irrigated croplands  

(Castilla y León, Castilla-La Mancha and Andalucía) because the albedo of these types of crops is mainly 

controlled by the reflection of the bare soil. The albedo generally decreases as one moves from grassland 

(Extremadura) or cropland (Castilla) to more dense vegetation such as broadleaved or needleleaved 

forests (north of Spain).  
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The spatial distribution of the averaged Aridity Index, which represents a measure of water 

availability in the ecosystem, is related to the relief and a longitudinal gradient, which determines the 

spatial distribution of precipitation and temperature. Hence, aridity is more intense in the south of Spain, 

where low precipitation and high temperatures are recorded [83]. 

Figure 4. Example of several functional variables (Date of maximum Normalized Difference 

Vegetation Index (DNDVI), Normalized Difference Vegetation Index (NDVI), Mean Land 

Surface Temperature (MeanLST), IAlbedo, Aridity Index). 

 

5.2. Training SOM 

The SOM component planes of the functional attributes are displayed in Figure 5. This method, 

allows visualizing multiple variables simultaneously and their relationship, being and efficient way to 

analyze the effect of each variable on the patterning input dataset. The 19 subfigures are linked by 

position: in each subfigure, the hexagon in a certain position corresponds to the same map unit, and the 

color of each hexagon informs on the value of the component in that neuron—warm colors for high 

values and cold colors for low values.  
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Figure 5. Visualization of the two-plane components of the Self-Organizing Map (SOM) 

trained from time series of NDVI, Albedo, LST and climatic data of Spain.  

 

Comparing the color gradient of the component planes some correlation patterns among the variables 

could be discerned, indicating a number of general features summarized below. First, multiple variables 

exhibit a similar color indicating a strong positive correlation, such as precipitation, humidity and 

moisture indices, demonstrating that a decrease in the precipitation encompasses a decrease of moisture 

index [84]. Moreover, the integrals and mean values of variables (e.g., MeanLST and ILST) also show 

the same pattern, confirming that the information provided is similar and corroborating that SOM 

patterns make physical sense. Hence, these variables have the same relative influence in the 

characterization of the ecosystem function. For this reason, and to avoid redundancy, only one of the 

related variables in each category may be needed to adequately describe the ecosystem. 

Second, several attributes have a strong negative correlation (same pattern but opposite colors). For 

example, between aridity index and precipitation as previously pointed out in the Mediterranean  

region [85], especially during the warm season. 

Third, several attributes present very homogeneous patterns, so these variables contribute little to 

discriminate among EFTs, e.g., RLST and RAlbedo.  

Figure 6 shows the final variables chosen for deriving EFTs based on the SOM maps presented in 

Figure 5 and following two criteria: (i) avoid variables which are redundant (i.e., MeanLST and ILST) 

and (ii) include all the representative attributes involved in ecosystem functioning (e.g., attributes 

concerning the biomass production (NDVI) and heat fluxes (LST)). One of the most appealing 

characteristic of SOM is its faithful representation of the original data, e.g., two data points are 

represented close to each other in the resulting map when they have similar features. 
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Figure 6. Visualization of the two-plane components of the SOM trained from time series 

of NDVI, Albedo, LST and climatic data in Spain used as input to derive the EFTS.  

 

Several SOM neural network architectures were evaluated through the Qe and Te errors in order to 

optimize performance. The main discrepancies in these error parameters appear to regard the number of 

neurons. Since no strict rules to determine the optimal number of neurons exist, different map sizes were 

evaluated (Table 1) resulting in a mild drop of the Qe with increasing number of neurons. Qe is expected 

to decrease because a large number of dimensions better represent the sample; more neurons produce a 

better-input pattern because each data vector will be closer to its best matching unit. Nevertheless, a 

large number of neurons may cause over-fitting, while a small number can cause insufficient learning. 

Te represents the proportion of all data vectors for which first and second BMUs are not adjacent. The 

lower the Te is, the better the SOM preserves the topology. However, Te exhibits a tendency to increase 

with increasing SOM dimensionality due to a large number of non-neighbors in a large SOM matrix. 

Here the optimum size of 600 neurons was selected based on a compromise between Qe and Te [86].  

Table 1. Map quality measures at different map sizes of the trained SOM. 

Map Size 100 200 300 400 500 600 700 800 900

Qe 2.08 1.82 1.67 1.57 1.44 1.39 1.35 1.31 1.30 

Te 0.045 0.057 0.049 0.05 0.048 0.034 0.033 0.032 0.031 

For the rest of the parameters, the best fit was achieved by those parameters proposed by [41]. 

Therefore, an hexagonal topology, a linear initialization with an initial rate of α(0) = 0.7 and a batch 

training were selected. A Gaussian neighborhood function with linear descending rate was also used to 

adjust the weights of the neurons.  
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5.3. Clustering of the SOM 

A k-means algorithm to estimate the optimal number of sub-structures (k) (EFTs) classified the 

prototype vectors from the SOM. Davies-Bouldin index was iteratively ran 100 times to minimize the 

possibility to find a suboptimal solution when the initial prototypes are not properly chosen and the 

sensitivity originate for the selection of the initial cluster [87]. According to the results (see Figure 7) 

the optimum number of EFTs was 36; nevertheless, other local solutions were detected (e.g., k = 26). In 

fact, the existence of several solutions is in agreement with the essence of the ecosystem heterogeneity 

where patterns can be recognized at different levels of complexity and spatial detail [34].  

The final clustering partition is graphically displayed in the upper-right Figure 7. A detailed analysis 

of each cluster could be inferred from comparison with two-plane components (Figure 6). For instance, 

the upper-left cluster (red) was mainly characterize by medium INDVI (around 0.5) indicating medium 

biomass content, low RNDVI (0.4) that means a low intra annual variability, high MeanLST (around  

25 °C) and high aridity index (around 62 °C ). 

Figure 7. (Left-Upper) Clusters obtained with the modified k-means, (Right-Upper) 

validity index values for Davies-Bouldin as a function of the number of clusters ranging from 

2 to 36 and (Down) similarity among the dendrogram resulting from hierarchical 

agglomerative cluster analysis. 
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To facilitate summarizing and reporting results the 36 clusters were further grouped into 12 clusters 

based on dendrogram of a hierarchical cluster analysis. From the 36 clusters considered a priori, only 

representative ecosystems in Spain, which reached a minimum surface of 3%, were taken into account. 

A high cophenetic correlation of 0.85 confirmed the goodness of fit of the dendrogram. Several  

cut-point were evaluated, resulting that a distance of 2 provides a coherent number of EFTs. Similar to [34] 

the EFTs were numerated according the cluster similarities of the dendrogram; for example, EFT.1 and 

EFT.2 were closely related, whereas EFT.12 presents the highest differences.  

5.4. Ecosystem Functional Types  

Figure 8 shows the final 12 EFTs Map for Spain, excluding water and artificial surfaces (black color). 

Almost half of the territory is occupied by two ecosystems, EFT.1 (22.5% of surface) and EFT.2 (21.5% of 

surface). As mentioned above, these two ecosystems present the closest behavior (see Figure A—Appendix 

for supplementary material). EFT.1, mainly located in south-west (Extremadura and Andalucía regions), 

is characterized by high albedo means (0.16) due to the effect of the background, high LST (around  

28 °C) and a moderate biomass (0.5 NDVI). According to Figure 7, EFT.1 encompasses high  

intra-ecosystem variability. This EFT could be divided into six subgroups in a more detailed analysis 

(see Figure B—Appendix), where each subgroup shows a marked spatial distribution, for example, the 

group 13 is mainly located in the sparse area of Almeria, whereas subgroup 34 is mainly located in the 

non-irrigated croplands of Andalucía.  

EFT.2 is largely continuous and encompassing non-irrigated crops located in the center of Spain and 

is characterized by a high albedo (0.25) due to the strong influence of soil in these low dense canopy 

crops. Compared to EFT.1 this ecosystem shows a lower LST mean (around 25 °C) due to north south 

decreasing climatic gradient and a slightly lower NDVI mean NDVI (0.35). This ecosystem has a  

spring-peak of NDVI and a high intra-annual variability. 

Figure 8. Distribution of ecosystem functional types (EFTs) in Spain. 
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Higher intra-annual variability is also assigned to EFT.3, mainly composed by irrigated crops and 

rice paddies with a summer-peak and mean albedo values of 0.17. Orange trees and several areas of olive 

trees located in the eastern part of the Peninsula, with a winter-peak also belong to this EFT. This 

ecosystem illustrates how different land cover can have a similar ecosystem function. In this case, 

Albedo is the main ecosystem functional trait that conforms this ecosystem and differentiates it from 

other ecosystems. Similar to EFT.1, in a deeper analysis these subgroups (e.g., irrigated land-subgroup 7 

and 4-and citrus-subgroup 12) exhibiting different NDVI patterns, can be analyzed separately.  

EFT.7, EFT.8 and EFT.9 are located in the north, with a similar pattern in LST and Albedo means. 

The main source of variation in these ecosystems regards the NDVI pattern. Generally, these areas show 

low intra-annual variability and a DNDVI around June, however the surrogate of ANPP calculated as 

the NDVI mean indicates differences of productivity with values of 0.67, 0.72 and 0.63 respectively that 

are directly related with high amounts of annual precipitation. Conversely, EFT.10, EFT.11 and EFT.12 

reveal low values of mean NDVI mean mainly located in mountainous areas such as the Pyrenees, and 

variable LST depending on the altitude.  

To analyze the differences among EFTs, we examined the functional variation for each type according 

to independent variables such as the Gross Primary Production (GPP) [88] and the rate of 

Evapotranspiration (ETP). Seasonal differences among EFTs are produced (Figure 9). The rate of 

evapotranspiration increases in summer; however, the maximum varies from spring (e.g., EFT.1) to 

summer (e.g., EFT.9). The amount of GPP and ETP is also variable, with a direct relationship between 

the magnitudes. Thus EFTs characterized by a low PET presenting higher GPP values (e.g., EFT.8), and 

are mainly located in the north of the Peninsula. Conversely, EFT.1 and EFT.2, mainly located in the 

southeast correspond to the high PET and low GPP.  

Figure 9. Mean seasonal profile of the Gross Primary Production (GPP) and the rate of 

Evapotranspiration (ETP) for the ecosystem functional types (EFTs). 

 

The contribution of each of the twelve functional attributes used in the identification of EFTs was 

analyzed through a multivariate separability measure such as Wilk’s Lambda analysis [89]. This 

statistical is related to the likelihood ratio criterion and ranges between 0 and 1, where low values 

indicate a high contribution of the variable in the description of the ecosystem. According to the results 

(see Table A—Appendix), the Moisture Index (0.25), IAlbedo (0.28) and the Aridity Index (0.29) were 

the variables that presented a major contribution in the identification of ecosystems, whilst DAlbedo 
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(0.52), DLST (0.52) and the RNDVI (0.78) were the variables with a minor role. In order to determine 

the impact of all the variables considered a priori (Figure 5) the Wilk’s lambda was computed again. 

The results presented similar contributions, with the lowest values relapsed in moisture, IAlbedo and the 

Aridity Index and where the highest values in Relative Ranges of LST, Albedo and NDVI. 

5.5. Intercomparison of the EFTs Map with a Land Cover and Ecoregion Classification 

To evaluate the final EFTs map and provide a further explanation, the map was compared with a 

hybrid land cover map derived from the combination of four datasets (CORINE, GLC2000, MODIS and 

GlobCover) [90] and with the ecoregions map [18]. The correspondence analysis (CA) [91] and the 

Minnick’s coefficient of areal correspondence [92] between the EFTs and the compared maps were used 

for this purpose.  

Figure 10 depicts the correspondence analysis of the EFTs with a land cover and an ecoregion 

classification by means of a bi-dimensional plot. On the left, the CA for the land cover solution accounts 

for 77.3% of the total inertia (62.2% and 15.1% for axes 1 and 2, respectively) that is a measure of 

variance of dispersion in the data. The degree of closeness of points in the CA is indicative of the 

relationships between the EFTs and land cover datasets, items similar to each other will tend to be near 

to each other in the graph.  

Several clear associations are observed, such as EFT.7 with broadleaved forest and EFT. 3 with 

irrigated croplands, as have also been showed by [36]. Two ecosystem functional types (i.e., EFT.1 and 

EFT.2) were specific of cultivated land cover, illustrating the high functional heterogeneity of this land 

cover [34] that can exhibit a multiple phenological response to environmental conditions, climate 

variability, plant communities and topography [13]. Moreover, the function describing the extent of 

overlap between two classes was analyzed by means of the Minnick’s coefficient (Cm) as follows:  

)( BABA

BA
Cm

∩−∪
∩=

 
(3)

where A is the map of EFTs and B is the land cover or ecoregions map, respectively. BA ∩  and BA ∪  

refer to the intersection and the union of A and B ,respectively. 

Values higher than 0.05 are indicative of a moderate to high spatial association (see  

Tables B and C—Appendix). In the case of land covers, more than half of them are associated with an 

EFT, indicating that effectively there are a relationship between land cover and ecosystem function. 

Minnick’s values support CA results and highlight several new associations. Strong values (>0.10) 

included the relation between Cultivated areas and EFT.2. EFT.3 showing a strong relationship with 

Irrigated land cover datasets. Minnick’s values also show cases were a single land cover class could 

exhibit a multiple functional response such as needleleaved with EFT.4 (0.10) and EFT.5 (0.28).  

In contrast, there are ecosystems (i.e., EFT.9) that are related to several land covers simultaneously  

(i.e., Broadleaved (0.12), Mixed (0.10) and Cultivated areas (0.09)). We infer that the EFTs map 

provides unique information for augment available land cover datasets. 

In the Ecoregions, the first two CA axes explained 84.9% of the variance with the EFTs. This higher 

value indicates that Ecoregions are more related to EFTs than land covers, as well as demonstrates the 

consistency of these two maps. Clear associations are shown in the CA as the Northeastern 

Mediterranean Forest and EFT.3. A single Ecoregion, such as the Cantabrian Mixed Forest, encompasses 
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EFT.7, EFT.8 and EFT.9 with 0.36, 0.26 and 0.37 Minnick’s values respectively. Hence, the EFTs map 

complements this map, by providing an even finer level of resolution. In this case, eight ecoregions 

contain 12 EFTs in a broader level and 36 EFTs in case more detailed levels were considered. Regarding 

Minnick’s values, higher degrees of overlap among ecoregions and ecosystems are found. Moreover, 

EFT.11 and EFT.12 that showed a lack of correlation with any land cover, presented a slightly relation with 

the Pyrenees Conifer ecoregion because these EFTs are mainly located in a specific spatial distribution. 

Figure 10. Correspondence analysis between Ecosystem Functional Types (EFTs) and  

(Left) ecoregions (SISW: Southeastern Iberian Shrub and Woodlands, SISM: Southwest 

Iberian Mediterranean Sclerophyllous and Mixed Forest, ISSF: Iberian Sclerophyllous and  

Semi-deciduous Forest, CMF: Cantabrian Mixed Forest, PCM: Pyrenees Conifer and Mixed 

Forests, NIMF: Northwest Iberian Montane Forest, ICF: Iberian Conifer Forest, NSMF: 

Norhteastern Spain and Southern France Mediterranean Forest) and (Right) hybrid land 

cover (CUL: Cultivated and Managed areas, IRR: Irrigated Areas, MOS: Mosaic of 

cropland/natural, NEED: Needleleaved Forest, BROAD: Broadleaved Forest, MIX: Mixed 

Forest, SHR: Shrubland, HER: Herbaceous, SPA: Sparse Vegetation and BAR: Bare areas).  

 

6. Discussion 

Throughout the last decade, the role of ecosystem functioning in both environmental management 

and biodiversity conservation has significantly increased [92]. Ecosystem characterization results in a 

useful tool for several tasks, such as direct evaluation of ecosystem services, selection of protected areas, 

planning and monitoring ecological restorations among others.  

Usually, the characterization of EFTs relies on estimators of the seasonal dynamics of carbon gains, 

such as the NDVI, EVI, fAPAR that have been proven to be useful parameters to characterize the 

ecosystem diversity [36]. Nevertheless, remote sensing provides additional functional variables to 

complement ecosystem functioning descriptors [93]. Hence, in this article we expanded the concept of 

ecosystems, adopting a more comprehensive method that extends the traditional concept of EFTs [23] 

and incorporates other variables related to energy partitioning into sensible and latent heat fluxes and 

light reflection that have only been tested in a local framework [34]. Moreover, we include climatic 
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variables, such as precipitation, that have previously been demonstrated to be a regional driver on the 

function of ecosystem [94], although they have never been included in the definition of EFTs. In fact, 

results from a Wilk’s lambda analysis to determine which variable played the greatest role in the formation 

of the EFTs, revealed that climatic variables such as the Moisture Index (i.e., Wilk’s lambda 0.25) presented 

the main contribution in identifying the ecosystem functioning. Our findings support and reflect the 

outcomes of various studies addressing water-limited ecosystems, in which rainfall determines plant 

water stress and affects ecosystem function, renders it vulnerable to degradation and reduces its 

productivity [4]. The difference between maximum and minimum NDVI (RNDVI) revealed the lowest 

contribution in the definition of EFTs (i.e., Wilk’s lambda 0.79). This is in agreement with [24] that also 

found a low weight of this variable due to the bioclimatic control on the NDVI signal in the 

Mediterranean Iberia that underlies the variation in ecosystem responses observed. 

The identification of EFTs and the analysis of the functional attributes by a SOM and k-means in this 

study highlights the power of this technique for interpreting highly functional variables and for 

identifying EFTs. Although this method has become a focus of particular interest across various 

ecological studies and has been applied successfully, as far as we are aware, this is the first time that 

SOMs have been applied to remotely sensed data to investigate ecosystem function. Therefore, this 

approach demonstrates an important new methodology for ecosystem characterization and analysis.  

The SOM was used as a visualization tool to identify patterns in the dataset, allowed us to elucidate 

the interplay and relationships among difficult variables such as the functional types, where numerous 

biological and environmental factors are involved in a complex manner. For instance, high LST 

encompasses a high Aridity Index (Figure 5). This method allowed us to deal with a large amount of 

variables demonstrating its effectiveness in the handling of a large amount of variables. Comparing with 

classical techniques, that can only deal with accurate visualization of whole data sets when the number 

of features required is lower than three (e.g., RNDVI, INDVI, DNVI), we evaluated a high amount of 

variables that is a promising method of evaluating the effect of new attributes on ecosystem in the future.  

On the other hand, the SOM along with the k-means technique made it feasible to classify behavioral 

patterns and organize behaviors in different classes according to functional type attributes. One of the 

main challenges using a SOM along with the k-means technique is the definition of the number of 

clusters that will best represent the ecosystem. To minimize the problem associated with the random 

selection of the centroid in the k-means algorithm, we used 100 runs. Data was patterned into 36 clusters 

that was gathered according to hierarchical agglomerative to facilitate summarizing results. However, 

this multi-level approach tolerates returning to a higher detail level if necessary. Each of the twelve 

clusters represented well, each individual characteristic in terms of the main functional attributes 

considered (i.e., LST, NDVI and Albedo). In compliance with Appendix, we could postulate the twelve 

clusters as individual functional entities. Moreover, results from other independent attributes related to 

clime and biomass (i.e., GPP and PET) also demonstrated the discrepancies among ecosystems  

(see results in Section 5.3) which confirms that they function differently.  

EFTs direct validation was a non-trivial task due to lack of ground truth or in situ measurements. 

Moreover, the ground measures could not be not equivalent due to differences in how they quantify the 

functional information [95]. Hence, the assessment of the EFTs maps was carried out, as previous  

studies [13], by visual exploration of the map with other derived EFTs in the area and by comparing the 

EFTs map with land cover and ecoregions datasets.  
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The resulting EFTs map was consistent with preceding studies presented in [29] and [36], revealing 

a similar spatial distribution that decreases gradually southwards and eastwards in terms of biomass 

production. Although, our characterization of the heterogeneity in ecosystem functioning goes a step 

further increasing the spatial resolution from 8 km (e.g., GIMMS, AVHRR) to 1 km (e.g., MODIS). This 

is a benefit, mainly in more fragmented and complex landscapes or intensively used areas, as Spain, 

where the coarse spatial resolution is limited for describing the spatial variability of vegetation [29]. Hence, 

a 1 km spatial resolution improves the identification of that phenomenon. Moreover, these studies only 

rely on the classification according to vegetation such as NDVI, whereas our EFTs also considers the 

contribution of energy balance resulting in a more comprehensive characterization of ecosystems. For 

instance, Galicia was classified by [36] as a mainly continuous ecosystem with high INDVI and low 

RNDVI (Da1). This result is coherent with a previous test obtained from our methodology using only 

NDVI variables. However, including additional information such as LST allowed complementing the 

description and variability of the ecosystem mainly in forested areas where NDVI saturates a high level. 

Thus, LST in this area acts as main force to characterize the ecosystems and represents their variability 

in this patchy area.  

To evaluate our EFTs we analyzed the relation between EFTs and land cover datasets and ecoregions. 

We therefore analyzed the relation between EFTs and land cover, with a correspondence analysis of 

77.3% (two first axis), that as previous findings in a global framework [29], indicates that EFTs have 

potential in the monitoring of human influence on ecosystem functioning and in supporting degradation 

studios. In the case of Ecoregions, the correspondence analysis and the Minnicks’ values between EFTs 

and the Ecoregions indicated that they are highly related, however the EFTs map contained additional 

information about energy fluxes and phenology that is not inherent in the in the biogeographic strata. 

For instance, the Iberian sclerophyllous region was highly associated with three ecosystems (EFT.1, 

EFT.2 and EFT.3), indicating that the EFTs present a more detailed classification that we suggest that is 

more appropriate to an ecosystem management. 

Our methodology has been proven adequate to characterize EFTs and gives us an appropriate 

framework to integrate other variables. In this study, we have focused on a 10-year average functioning 

of the ecosystems. Nevertheless, this method is a promising tool to characterize ecosystems on an 

annual-basis and to evaluate changes in ecosystem services and goods. 

7. Summary  

Ecosystem functional types (EFTs) defined as areas exhibiting similar response to environmental 

conditions and similar ecosystem processes are considered as a useful proxy to characterize the 

ecosystem status. This paper elaborated and attempt to introduce and assess the performance of a refined 

methodology such as the Self-Organizing Map (SOM) combined to k-means to identify the EFTs based 

on several metrics derived from coarse resolution data for the period 2000–2009. The case study 

presented is considered a suitable area to test the new approach for two reasons; firstly, this is a 

framework for the regional scale with high heterogeneity as demonstrated in previous studies that were 

carried out for the same area. Secondly, the earlier studies conducted used low-resolution data such as 

AVHRR [36] or with high spatial resolution data (i.e., Landsat) but in a local framework [34]. Hence, 



Remote Sens. 2014, 6 11411 

 

 

MODIS data at 1 km spatial resolution have been used in this paper allowing increasing the detail in the 

identification of EFTs. 

One of the novel contributions of the approach presented refers to the inclusion of new satellite-based 

metrics or attributes, rarely introduced in previous studies. These metrics allow us to expand the 

traditional definition of EFTs (based only on NDVI as an indicator of biomass) and including indicators 

of energy, water balance and amount of solar energy, making it more comprehensive for identifying 

multifunctional patterns associated to both biomass production and feedbacks on climate.  

Another relevant contribution is the use of a robust methodology based on the SOM combined to  

k-means to delineate EFTs. This approach, together with the above-mentioned inclusion of new 

ecosystem functional variables, improves both the repeatability and interpretability of the ecosystem 

classification. Moreover, this method has reduced subjectivity in the process of class identification since 

requires no prior knowledge of the relationships between variables. The flexible approach described in 

this paper is particularly considered suitable for dealing with a high amount of input. Form the results, 

it is clear that the approach could provide a powerful tool to visualize and analyze high-dimensional 

data. From an ecological point of view, SOM appeared as a value tool in: (i) analyze the relationship 

among variables in an easy way, (ii) to select the functional metrics that better represent the ecological 

variability, by leaving out redundant information and (iii) to group areas according to the similarity of 

their functionality.  
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Appendix 

Figure A. Box-plots of the three ecosystem function variables (LST, Albedo and NDVI) for 

the twelve EFTs.  
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Figure A. Cont. 

 

Figure B. Distribution of the 36 EFTs in Spain.  

 

Table A. Wilk’s lambda results to identify the partial contribution of each variable in the 

discrimination of EFTs. 

Variable Wilk’s Lambda

Moisture 0.24913 

IAlbedo 0.27629 

Aridity Index 0.29232 

ValminNDVI 0.3122 

ValmaxLst 0.33468 

INDVI 0.33787 

DNDVI 0.34857 

ValmeanLST 0.37458 

ValminAlbedo 0.397 

DAlbedo 0.51617 

DLST 0.51617 

RelNDVI 0.78532 



Remote Sens. 2014, 6 11419 

 

 

Table B. Minnick’s coefficient (Cm) to show the degree of overlap between the land cover 

dataset and the EFTs.  

 
EFT.

1 

EFT.

2 

EFT.

3 

EFT.

4 

EFT.

5 

EFT.

6 

EFT.

7 

EFT.

8 

EFT.

9 

EFT. 

10 

EFT.

11 

EFT.

12 

Irrigated 0.03 0.04 0.23 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Cultivated 0.37 0.64 0.09 0.06 0.01 0.03 0.01 0.01 0.01 0.00 0.00 0.00

Mosaic 

Cultivated 
0.04 0.02 0.02 0.04 0.03 0.08 0.07 0.06 0.09 0.00 0.01 0.00

Broadleaved 0.01 0.00 0.01 0.08 0.04 0.10 0.15 0.07 0.12 0.00 0.01 0.00

Needleleaved 0.01 0.00 0.01 0.10 0.28 0.09 0.07 0.06 0.03 0.00 0.01 0.00

Mixed Forest 0.00 0.00 0.00 0.02 0.05 0.04 0.09 0.11 0.10 0.00 0.01 0.00

Shrublands 0.03 0.00 0.02 0.21 0.11 0.05 0.02 0.01 0.03 0.00 0.01 0.00

Herbaceous 0.12 0.03 0.05 0.14 0.01 0.04 0.05 0.03 0.04 0.00 0.01 0.01

Sparse 0.07 0.03 0.04 0.08 0.03 0.04 0.00 0.00 0.01 0.01 0.02 0.02

Bare  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

Wetlands 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

Snow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C. Minnick’s coefficient (Cm) to show the degree of overlap between the land cover 

dataset and the ecoregions. 

 
EFT.

1 

EFT.

2 

EFT.

3 

EFT.

4 

EFT.

5 

EFT.

6 

EFT.

7 

EFT.

8 

EFT.

9 

EFT. 

10 

EFT.

11 

EFT.

12 

Cantabrian 

Mixed Forest 
0.00 0.00 0.01 0.00 0.00 0.08 0.36 0.26 0.37 0.00 0.03 0.01 

PyreneesConifer 0.01 0.00 0.00 0.00 0.01 0.09 0.09 0.03 0.03 0.00 0.05 0.08 

IberianConifer 0.03 0.07 0.06 0.05 0.09 0.08 0.00 0.00 0.00 0.02 0.00 0.00 

Iberian 

Sclerophyllous 
0.40 0.39 0.08 0.26 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

Northeastert 

Mediterranean 

Forest 

0.01 0.01 0.14 0.06 0.18 0.03 0.04 0.03 0.00 0.00 0.00 0.00 

Northwest 

Iberian 

Montane 

0.02 0.08 0.06 0.03 0.05 0.21 0.03 0.03 0.06 0.00 0.01 0.00 

Southeastern 

IberainShrubs 
0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Southwest 

Iberian 

Sclerophyllous 

0.12 0.01 0.03 0.11 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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