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Abstract: The ever increasing need for accurate burned area mapping has led to a number 

of studies that focus on improving the mapping accuracy and effectiveness. In this work, we 

investigate the influence of derivative spectral and spatial features on accurately mapping 

recently burned areas using VHR IKONOS imagery. Our analysis considers both pixel and 

object-based approaches, using two advanced image analysis techniques: (a) an efficient 

feature selection method based on the Fuzzy Complementary Criterion (FuzCoC) and  

(b) the Support Vector Machine (SVM) classifier. In both cases (pixel and object-based), a 

number of higher-order spectral and spatial features were produced from the original image. 

The proposed methodology was tested in areas of Greece recently affected by severe forest 

fires, namely, Parnitha and Rhodes. The extensive comparative analysis indicates that the 

SVM object-based scheme exhibits higher classification accuracy than the respective  

pixel-based one. Additionally, the accuracy increased with the addition of derivative features 

and subsequent implementation of the FuzCoC feature selection (FS) method. Apart from 

the positive effect in the classification accuracy, the application of the FuzCoC FS method 

significantly reduces the computational requirements and facilitates the manipulation of the 

large data volume. In both cases (pixel and objet) the results confirmed that the use of an 

efficient feature selection method is a prerequisite step when extra information through 
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higher-order features is added to the classification process of VHR imagery for burned  

area mapping. 

Keywords: Fuzzy Complementary Criterion (FuzCoC); Object-Based Image Analysis (OBIA); 

pixel-based classification; burned area mapping 

 

1. Introduction 

Every year, wildfires affect millions of hectares of forest woodlands and other vegetation, causing 

the loss of many human and animal lives along with immense economic damage, in terms of resources 

destroyed and the costs of suppression [1]. Especially in the Mediterranean basin where the present study 

is mainly focused, the rate of wildfire incidents is increasing with an alarming rate [2]. 

To overcome the negative impacts of wildfires and preserve sustainability in forest ecosystems, 

governments are compelled to undertake a variety of restoration and rehabilitation measures [3].  

To implement such actions, rapid, reliable, and detailed information regarding the state of the  

fire-affected areas is required [4]. Furthermore, it has been shown that a successful implementation of 

the necessary protection measures against any illegal activity in the affected areas, such as uncontrolled 

expansion of agricultural activities and tourism, encroaching or illegal construction, would require 

explicit spatial information regarding the location and extent of the burned areas [4,5]. 

Since the early 1980s, satellite remote sensing has been extensively used for mapping and managing 

burned areas [6,7]. As a result, up until now a variety of satellite data with different spatial resolutions 

has been extensively used for mapping fire-affected areas at local, regional and global scale [8]. 

Traditionally, medium and coarse resolution satellite data such as Landsat TM (30 m), Landsat MSS (80 m), 

MODIS (250 m), AVHRR (1km), and SPOT-VGT (1 km) have been used for extraction of fire-related 

information. In recent years, however, the availability of Very High Resolution (VHR) satellite imagery 

such as IKONOS, WorldView, and QuickBird has provided new possibilities in burned area mapping at 

local scales [9]. Since fire plays a crucial role in many ecological processes at the local level  

(e.g., vegetation composition, biodiversity, soil erosion, and the hydrological cycle), the use of VHR 

data provide very detailed thematic products and consecutively valuable information. Examples of the 

successful use of VHR imagery in burned area mapping can be found in [10,11] and [12]. 

Up until now, several classification techniques have been applied in burned area mapping, including 

maximum likelihood classification [13,14], logistic regression [15], classification and regression 

trees[14,16] linear and/or nonlinear spectral mixture analysis [17,18], thresholding of Vegetation Indices 

(VIs) [14,19], Neural Networks [20], Neuro-Fuzzy techniques [21], Support Vector Machines  

(SVMs) [22–24], and Object Based Image Analysis (OBIA) [25,26]. However, the selection of the 

optimal method each time depends on several factors, such as the scale and the goals of the  

current project. 

ESA has recently developed, applied and validated several algorithms for the regular, consistent and 

accurate mapping of burned areas across the globe based on three different sensors (ERS-2 ATSR, 

ENVISAT AATST/MERIS and SPOT Vegetation) [27]. The findings of this research (Fire CCI Project) 

will be made available to the whole scientific community. However, due to the course spatial resolution 
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of the aforementioned sensors, the produced maps have limited use for local scale applications.  

The production of such maps at very high spatial resolution is an open research interest. 

The goal of generating accurate burned area map products at a local level is usually accomplished 

using VHR imagery combined with one of the previously mentioned techniques. Specifically, the 

growing availability of VHR satellite imagery along with the development of advanced image analysis 

techniques (e.g., OBIA, SVM, Neuro-Fuzzy classification) resulted in the production of accurate burned 

area maps with limited human interaction [28,29]. In addition to the above, there are recent cases in 

which the reliability of the resulting thematic (land cover) maps was increased with the inclusion of 

additional features in the classification process, such as texture and spatial indicators [28,29].  

When the use of higher-order features is combined with the application of advanced image analysis 

techniques, such as feature selection methods and advanced classification methodologies, an increase in 

accuracy and reliability in land cover mapping has been reported [30–32]. Although Vegetation Indices 

(VIs) and textural features have been exploited as additional sources of information in burned area 

mapping by [33] and [34], the use of higher-order features has not been yet fully investigated and remains 

an active topic of research. In particular, none of the previously mentioned studies has evaluated multiple 

higher-order feature categories neither applied an advanced feature selection technique. 

The aim of this work is to map recently burned areas using the Support Vector Machine (SVM) 

classifier [35] and the FuzCoC feature selection (FS) method [36] on VHR IKONOS imagery.  

The specific objectives are to: 

 to investigate whether the quality and accuracy of burned area maps produced by an SVM 

classifier increase with the addition of higher-order features to the original VHR IKONOS 

spectral bands, and 

 to compare two classification approaches, namely the object-oriented and pixel-based 

classification approaches, in order to identify which one is the most appropriate for operational 

burned area mapping. 

The rest of the paper is organized as follows. Section 2 presents the datasets used in this study, 

whereas Section 3 describes the proposed methodology. Experimental results along with the validation 

process are presented in Section 4. Section 5 compares the two approaches (pixel and object) with respect 

to their potential use on an operational basis. Finally, Section 6 reports some final conclusions. 

2. Study Area 

The proposed methodology has been tested in two areas of Greece recently affected by severe forest 

fires. The first one is Mount Parnitha (Figure 1a) which is located in Attica, central part of Greece.  

The area was affected by a large forest fire (4990.10 hectares) in the summer of 2007. Mount Parnitha 

is the highest (1413 m) and most extended mountain of Attica and has been declared a national park 

since 1961. In this region, Mediterranean-type climatic conditions with hot summers and mild winters 

are characteristically prevailing. The second study area is the Greek island of Rhodes (Figure 1b), which 

is located in the south-eastern Aegean Sea. Rhodes is the largest of the Dodecanese islands in terms of 

both land area and population. The large fire on the island of Rhodes occurred in the summer  

of 2008 (22 July 2008), affecting an area of 11,863.69 hectares. 
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For the purposes of the analysis we used two pan-sharpened IKONOS images (1m). In both cases the 

satellite images were captured soon after the fire events. More precisely, the imagery for the case study 

of Parnitha’s fire was captured on 8 July 2007, ten days after the fire event. In the case of Rhodes’ fire 

the imagery was captured immediately after the fire event (1 August 2008). 

The acquired satellite images were geometrically corrected. In order to assist the validation procedure, 

two reference maps were created, manually delineating the burned areas on the images. The remaining 

parts of the images were labeled as “Unburned”. 

Figure 1. Location of the study areas. (a) First study area Mount Parnitha, Attiki, Greece (b) 

Second study area Rhodes Island, Greece. 

 

 
  



Remote Sens. 2014, 6 12009 

 

 

3. Proposed Methodology 

The proposed methodology consists of four main steps (Figure 2). The first three involve all the 

procedures related to the preparation of the datasets for the pixel and object-based classifications, 

namely, feature derivation, training sets preparation, and feature selection. The fourth step involves the 

implementation of the pixel and object-based classification models. The developed methodology has 

been applied to the two study areas independently. The rest of this section provides a detailed description 

of each step. 

Figure 2. Methodology flowchart. 

 

3.1. Step 1: Feature Generation for Pixel and Object-Based Classifications 

In the simplest case, remotely sensed data are classified into ground cover classes using the  

gray-level values from each band of a multispectral image. However, prior research has proven that the 

use of additional features in conjunction with the original bands of the sensor may significantly increase 

the accuracy of the classification maps [29]. Particularly in the case of VHR imagery, the derivation of 

new features based on the multispectral bands of the image adds complementary information to the 

original dataset. Using the additional information from the derived features, the discrimination between 

classes is significantly increased, especially in applications where the spectral information is not 

sufficient for the classification of spectrally similar landscape characteristics [37]. 
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Specifically for the classification of burned areas, where the mapping accuracy is greatly affected by 

several types of spectral confusion among concrete classes [25], the use of additional features is expected 

to reduce the classification error and enhance the quality of the derived maps. Examples on the use of 

additional features in burned area mapping can be found in [19,34,38,39]. However, it should be noted 

that the evaluation of supplementary features in the field of burned area mapping has not been thoroughly 

investigated yet. 

3.1.1. Feature Sets for the Pixel-Based Classifications 

This stage involves all the procedures related to the generation of the IKONOS spatial and spectral 

features, at pixel level. The stage is divided in two main phases: (a) texture image analysis and (b) feature 

extraction. In the first phase, we use a texture image analysis technique in order to select the most 

appropriate windows for the computation of textural measures. Subsequently, in the second phase we 

extract several spatial and spectral features from the original dataset. Henceforth, the original dataset 

(the four bands of the IKONOS image) will be referred as IKONOSRGBNIR-PIXEL (Table 1). 

Table 1. Spatial and Spectral Features Derived from the IKONOS Image for the  

Pixel-Based Classifications. 

Feature Category Window Sizes Number of Features 

Bands - 4 

Occurrence Measures 
(Mean, Entropy, Skewness, Variance) 

(11 × 11, 15 × 15,  
21 × 21) 

48 

Co-Occurrence Measures 
(Mean, Entropy, Homogeneity, Second 

moment, Variance, Dissimilarity, 
Correlation, Contrast) 

(11 × 11, 15 × 15,  
21 × 21) 

64 

LISA (Moran’s I, Getis-Ord Gi, Geary’s C) (5 × 5) 12 

PCA - 4 

IHS - 3 

Tasseled Cap - 3 

VIs (NDVI) - 1 

Band Ratio (BN = Blue/NIR) - 1 

Total  172 

To add complementary information to the original spectral bands, we considered the following groups 

of features: 

 First and second order textural measures (Occurrence measures and Gray-Level Co-occurrence 

Matrix—GLCMs) [40]. 

 Spatial autocorrelation indices (Moran’s I, Getis-Ord and Geary’s C) [41]. 

 Spectral features (Principal Component Analysis—PCA) [42], Tasseled Cap [43], and Intensity 

Hue Saturation (IHS) [44]. 

 Vegetation Indices (VIs) [45]. 

 Ratios [45]. 
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Overall we extracted 172 features, listed on Table 1. In the following we provide a brief description 

of the feature set along with the image analysis technique and a short description of the GLCMs.  

For a more detailed description the interested reader is referred to the aforementioned references. 

First and second order measures are the first group of features generated from the IKONOS imagery. 

First order texture measures are statistics (mean value, variance, etc.) calculated from the original image 

values and do not consider pixel neighborhood relationships [46,47]. Unlike the first order measures, the 

computation of the GLCMs considers the relationships among pixels or groups of pixels [46]. 

Knowledge regarding the inter-pixel relationships allows further analysis of the spatial information 

contained on the image and thus, better understanding of the existing spatial patterns [40–48]. GLCM 

computation requires the definition of two parameters, namely, window size inter-pixel distance d and 

direction θ. To calculate the GLCMs in this study, we used the commonly applied parameters θ = 0°  

and d = 1. 

Regarding the selection of the window size, several approaches have been proposed in the literature. 

However, the most commonly applied practice is the trial and error method [49,50]. At that point it is 

important to mention that the use of an inappropriate window size is highly probable to introduce 

erroneous textural information and thus greatly affect the success of the classification [51–53].  

To facilitate the choice of the most appropriate window sizes for this study, geo-statistical analysis using 

semivariograms was performed with the help of the GS+ software. The use of semivariograms [54,55] 

for the determination of the optimal window has been proposed as a promising approach by a numerous 

studies in remote sensing [56,57]. 

The geo-statistical analysis was implemented considering several subscenes extracted from the 

original imagery. More specifically, seventeen sub-scenes were extracted from the two different types 

of land cover (“Burned” and “Unburned”). Subsequently, semivariograms were calculated for each 

different land-cover type and the statistical findings were examined to determine the most appropriate 

window sizes. Based on the results of the semivariogram analysis we reached the conclusion that there 

is no ideal window size to sufficiently explain all land uses in the IKONOS image.  

Instead, the interpretation of the analysis results indicated that there are three different window sizes, 

specifically, 11 × 11, 15 × 15 and 21 × 21, which demonstrated adequate ability in discriminating the 

burned areas from the different subtypes of the unburned areas. 

In addition to the first and second order textural features, we also used three spatial autocorrelation 

indexes, namely, Moran’s I, Getis-Ord, and Geary’s C, in order to explore the existence of any possible 

spatial dependency in our data. All of the indexes are Local Indicators of Spatial Association (LISA) 

and were first introduced in [41]. 

Apart from the computed spatial features, several other spectral features were calculated from the 

IKONOS image. Specifically, three different types of transformations were computed using the  

original image: 

 the principal component analysis (PCA) [42],  

 the intensity-hue-saturation (IHS) [44,58], and 

 the tasseled cap transformation [43]. 

PCA is a technique commonly employed in order to transform the original remotely sensed data into 

a substantially smaller dataset, which contains the most informative part of the original bands [42]. 
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However, in this study we simply consider all four PCA components as additional spectral features, 

rather than for reducing the dimensionality of the image. IHS transforms the original image into a new 

color space comprising three positioned parameters, namely, intensity (I), hue (H), and saturation (S), in 

lieu of the spectral bands Red, Green and Blue (RGB) [44]. The tasseled cap transformation produces 

four data structures which are useful for distinguishing different types of vegetation [43]. As suggested 

in the aforementioned reference, the fourth feature has low variance and as a result is somewhat noisy. 

Therefore, we only used the first three features produced by the transformation. 

Furthermore, two other groups of features were derived from the IKONOS pan-sharpened image, the 

Vegetation Indices (VIs) and Ratios. According to [45], VIs are simple and robust techniques to extract 

quantitative information on the amount of greenness, for every pixel in the image, whereas band ratios 

are useful for their ability to reduce the effect of several sources of noise. Additionally, band ratios also 

facilitate the discrimination between soil and vegetation. During the course of this study, the Normalized 

Difference Vegetation Index (NDVI) and the band ratio BN (Blue/NIR) were used and examined [45].  

All the aforementioned features (including the original bands of the image) were linearly scaled to 

the range [0,1]. The dataset comprising all 172 features (the four bands of the IKONOS image plus the 

derived features) will be henceforth referred as IKONOSFullSpace-PIXEL. 

3.1.2. Image Segmentation and Feature Extraction for Object-Based Classifications 

A prerequisite step before classification in object-based image analysis is the segmentation of the 

image into spatially contiguous and homogeneous regions [59,60]. Especially in the field of remote 

sensing, the availability of VHR satellite data has boosted the demand for the development of new 

segmentation algorithms [61]. However, it should be elucidated that not all segmentation techniques are 

feasible for VHR imagery [62]. 

In this study, the Fractal Net Evolution Approach (FNEA) [59] was adopted to conduct image 

segmentation, using the commercially available software eCognition [63]. FNEA is a bottom-up 

approach and is categorized as a region-based algorithm [59,64]. During this process, the algorithm 

identifies each pixel as the smallest possible object in the image. Subsequently, pixels are merged into 

larger groups of pixels, through pair-wise merging, based on several user-defined parameters  

(scale, color/shape, and smoothness/compactness) [56,60]. The optimal choice of the parameters’ values 

determines the quality of the segmentation to a significant extent and, consequently, the accuracy of the 

resulted classification map [65]. In this study, we determined the optimal parameter values through a 

trial-and-error procedure. Specifically, we tested several parameter values and assessed the obtained 

results though visual inspection. The optimal parameter values for the segmentation process were 

determined as those exhibiting the best visual outcome, meaning that the object boundaries matched 

better the natural borders of the burned areas. For the Parnitha case, the best segmentation result was 

obtained using the following parameters: layer weight 1 for the blue and green bands, layer weight two 

for the red and NIR bands, scale 120, color criterion shape 0.2, and compactness 0.8. The same 

parameters were also applied in the case of Rhodes, resulting however in a slight over-segmentation of 

the image. Trying to increase the value of the scale parameter, though, constantly resulted in the creation 

of mixed objects that contained more than one land cover classes (under-segmentation). Therefore, we 
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decided to apply the same parameter values as in the Parnitha case to avoid possible misclassifications 

of mixed objects, despite the fact that using those parameters the image was slightly over-segmented. 

To increase the discrimination between “Burned” and “Unburned” objects during the classification 

process, several object features (standard deviation, mean values, etc.) were calculated inside the 

eCognition software. Although the software provides a vast number of features, we considered only a 

certain number of them. A significant number of features were not feasible to be computed, mainly due 

to excessively memory requirements. Moreover, other groups of features (e.g., class hierarchy features) 

did not provide any useful information for the examined classification schemes and were thus not 

considered. We have ultimately computed 119 features, summarized in Table 2. The datasets derived 

from that process will be henceforth referred as IKONOSOBJECT. Similarly to the pixel-based case all the 

aforementioned features have been linearly scaled in the range [0,1]. 

Table 2. List of object features divided into three categories according eCognition’s categorization. 

Feature Categories 
(eCognition 

Categorization) 
Object Features Number of Features 

Customized (Indexes) NDVI, NIR/Red, PC2/NIR, Blue/Red 4 

Layer values 

Mean, Standard Deviation, Skewness, 
Pixel-based, To-neighbors, To-scene, 

Ratio-to scene, Hue, Saturation, 
Intensity 

113 

Geometry Density, Length and Width 2 

Total  119 

3.2. Step 2: Training Samples Selection for SVM Pixel- and Object-Based Classifications 

Any classifier created through supervised learning requires a set of training patterns, whose class 

label is predetermined. Numerous studies of the literature have indicated that the proper selection of the 

training set influences the success of the classification procedure to a significant extent. To this end, the 

selected training set should be adequately representative of the spectral responses of each different  

class [66–68]. Especially in the case of VHR images, it is very difficult to select training samples which 

can express all the spectral variability among classes [45,69]. Therefore, the selection of the most 

representative and informative training set is a very labor-intensive procedure. 

3.2.1. Training Set for Pixel-Based Classifications 

In the case of pixel-based classifications, we selected and evaluated several different training sets, in 

order to find the most informative one, for each one of the different cases (Parnitha and Rhodes).  

This was a notably demanding procedure in terms of time and computational cost and limited in terms 

of size by the requirements in computer memory. In this study, the number of the selected training pixels 

for each class (“Burned” and “Unburned”) was proportional to the area of the classes. As far as sample 

size is concerned, it should be noted that although the selection of training set affects the classification 

accuracy, the selection of the ideal training set still remains an open issue [66]. Ultimately, for the 

Parnitha case we selected a total of 8755 training patterns, 2029 of which belong to the “Burned” class 
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and 6726 to the “Unburned” one. Accordingly, a total of 8512 training patterns were selected for the 

Rhodes dataset, 2527 for the “Burned” class and 5985 for the “Unburned” one. 

3.2.2. Training Set for Object-Based Classification 

Regarding the object-based classifications, samples that are typical representatives for each class 

(“Burned” and “Unburned”) were selected. The number of samples per class was proportional to the 

percentage of the area occupied by each category in the image. A total of 160 training objects were 

selected for the Parnitha case, 50 for the “Burned” class and 110 for the “Unburned” one. Accordingly, 

3585 training objects were selected for the Rhodes case, 1753 for the “Burned” class and 1832 for the 

“Unburned” one. 

3.3. Step 3: Feature Selection for the Pixel and Object-Based Classifications 

Ideally, each feature (e.g., GLCMs) used in the classification process should add an independent 

source of information [70]. However, two major problems arise with the addition of new features.  

The first one is the redundant information added in the original dataset, whereas the second one is 

commonly referred in the literature as Hughes’ phenomenon. According to Hughes [71], for a fixed 

amount of training data, the classification accuracy as a function of the number of bands reaches a 

maximum and then declines, because there is limited amount of training data to estimate the large 

number of parameters needed [71]. Therefore, the addition of new features may lead to a reduction in 

classification accuracy instead of the expected increase. 

In order to avoid any possible decrease in the classification accuracy, a widely used practice in remote 

sensing is the application of a feature selection (FS) method, as a means of removing the noise and 

reducing the computational cost [72]. In our case, the number of extracted features for both pixel- and 

object-based classifications is quite large. To this end, an efficient dimensionality reduction is necessary, 

in order to retain only the significant features for the subsequent classification of the burned areas. Citing 

the unreasonably large computational requirements as a major disadvantage of exhaustive search 

methods in practical applications, previous work justifies the use of a non-exhaustive search procedure 

in selecting features with high discriminating power from large search spaces [30]. 

Up until now, a variety of FS techniques have been investigated and applied in many remote sensing 

classification tasks [73]. The simplest method for finding the optimal subset of features is the trial and 

error method [74]. Especially in the field of remote sensing, the most widespread technique for reducing 

the dimensionality of the data is the Principal Component Analysis (PCA) [75]. In this work, we applied 

an efficient FS filter method to select the most informative and non-redundant features from our dataset, 

driven by the Fuzzy Complementary Criterion (FuzCoC) [36].  

The method relies on the notion of the fuzzy partition vector (FPV), which is a computationally simple 

local evaluation criterion with respect to patterns. Specifically, an FPV is a vector calculated for each 

feature, by assigning to each training pattern a fuzzy membership grade denoting the ability of the 

specific feature to correctly classify the respective pattern, when considered independently from all other 

features. These membership grades are calculated via a computationally efficient relation, inspired by 

the class allocation scheme used in fuzzy c-means (FCM). Operating on an iterative filter mode, FuzCoC 

selects the next feature as the one providing the maximum additional contribution with regard to the 
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information content given by the previously selected features. The additional contribution is expressed 

as a percentage, with respect to the information contained in the previously selected feature space.  

The whole process is terminated when no significant additional contribution can be achieved through 

the inclusion of new features, as determined by a minimum additional contribution threshold tr, selected 

by the user. The final result is a small co-operative subset of discriminating (highly relevant) and  

non-redundant features. A detailed description and analysis of the employed FCM-FuzCoC FS algorithm 

can be found in [36]. In this work we have used the proposed value of tr = 1% for the minimum additional 

contribution threshold parameter. The application of the FuzCoC FS methodology is similar for both 

pixel- and object-based classifications, since the algorithm operates on some training set, irrespective of 

the source of the data. 

For Parnitha’s pixel-based classifications the application of the FuzCoC FS methodology resulted in 

selecting four out of the 172 available features. Similarly, in the case of Rhodes the implementation of 

the FuzCoC FS method resulted in the selection of three features. Table 3 summarizes the selected 

features. Ultimately, three different experimental datasets were available for classification, for each 

study area: 

 IKONOSRGBNIR-PIXEL: The initial four bands of the IKONOS image. 

 IKONOSFullSpace-PIXEL: All 172 available features considered in pixel level. 

 IKONOSFuZCoC-PIXEL: The features selected by the FuzCoC FS algorithm. 

For all three cases, the training sets were created considering the same 8755 pixel locations for the 

Parnitha case and the same 8512 pixel locations for the Rhodes case; only the feature sets were different. 

We should emphasize that it was not practically feasible to integrate all the extracted features into a 

single image using common remote sensing software packages. The file size for the entire set  

of 172 features exceeded the maximum file size imposed by the remote sensing software. This fact also 

emphasizes the practical importance of feature selection. For comparison purposes, we also consider the 

second case (IKONOSFullSpace-PIXEL) in our experimental analysis (Section 4). In particular, this case was 

considered in order to examine the existence of the Hughes’ phenomenon in this specific dataset and to 

facilitate the understanding of the way the FuzCoC FS method influences the classification process and 

the accuracy of the final products. Nevertheless, the process of producing the aforementioned derivatives 

required the employment of advanced programming tools, which are not easily applicable by typical 

remote sensing users. Further discussion regarding the implementation difficulties of this process will 

be provided in Section 5.  

Table 3. List of the FuzCoC selected features (Pixel Level) for the two cases examined. 

Features Parnitha Features Rhodes 

PCA (Second PCA) 
GLCM (Mean in the NIR band)  

(Window size 21 × 21) 

Moran’s I (Blue) 
Occurrence measures (Skewness in the NIR band) 

(Window size 15 × 15) 

Occurrence measures (Skewness in the NIR band) 
(Window size 11 × 11) 

GLCM (Correlation in the NIR band)  
(Window size 21 × 21) 

GLCM (Mean in the NIR band)  
(Window size 15 × 15) 

- 
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Table 4. List of the FuzCoC selected features (Object Level) for the two cases examined. 

Features description can be found on eCognition manual. 

Features Parnitha Features Rhodes 

Ratio (Blue Band) Ratio (Second PCA) 
Max.Diff Min Pixel value (RED Band) 

Mean of outer border (NIR Band) Mean of outer border (NIR Band) 
- Arithmetic Features (NIR/RED) 

In the case of object-based classifications, the application of the FuzCoC FS methodology resulted in 

reducing the initial 119 dimensions to three in the case of Parnitha and four in the case of Rhodes.  

Table 4 reports the selected features, along with a short description of each feature. 

Ultimately, two different experimental datasets were available for each study area: 

 IKONOSOBJECT: All 119 available features considered for object-based classifications. 

 IKONOSFuzCoC-OBJECT: The features selected by the FuzCoC FS algorithm. 

According to various studies in the respective literature, all the aforementioned features—either 

selected or not—have been found useful in assisting the discrimination between different classes in land 

cover mapping. Some of the feature families presented above have also be found useful in previous 

burned area mapping tasks [33,34]. Therefore, in this study we followed a rather comprehensive 

approach, whereby a large number of candidate features was initially extracted (maximum information 

content available) and the most important ones were subsequently selected by the employed feature 

selection method (small number of highly informative features). 

3.4. Step 4: SVM Pixel and Object-Based Classification Models 

Classifications in this study were performed using the SVM classifier, which is widely applied in the 

field of pattern recognition in the last few years [24]. In its original form, SVM is a binary classifier, 

which finds the optimal separating hyperplane between two classes [35]. The SVM classifier can 

effectively solve both linear and non-linear classification problems. In the latter case, a kernel function 

transforms the non-linearly separable dataset into a high-dimensional feature space, where the problem 

can be solved linearly [35]. There are three commonly used kernel functions, namely, the Radial Basis 

Function (RBF) kernel, the Sigmoid kernel, and the Polynomial kernel [76,77]. RBF is the most widely 

applied kernel in remote sensing applications [78,79] and was therefore used in this study. 

In our case, the SVM was applied to differentiate the “Burned” from the “Unburned” areas.  

The application of the classifier requires the determination of two parameters by the user: (a) the constant C, 

which is a penalty value for misclassification errors, and (b) γ, which is a parameter controlling the width 

of the Gaussian RBF kernel [35]. The selection of the optimal parameter values in this study was 

performed though a cross-validation procedure. Specifically, the optimal parameters C and γ in our 

experiment were determined using a 5-fold cross-validation on the training set of each case, using a grid 

of possible values C = {2−5, 2−3, …, 215} and γ = {2−15, 2−13, …, 23}. Subsequently, an SVM model was 

built using the selected parameters and the whole training set, which was subsequently employed to 

classify the whole image. The selected parameters for each dataset are reported in Table 5. We should 
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note that the application of SVM does not differentiate for pixel and object-based classification, since 

the classifier is not actually aware of the source of the data. 

Ultimately, five thematic maps were produced and examined: 

 SVMFullSpace-PIXEL: The pixel-based classification map produced by applying the SVM on the 

dataset composed of all the 172 features.  

 SVMRGBNIR-PIXEL: The pixel-based classification map produced by applying the SVM on the 

original IKONOS image (four bands). 

 SVMFuzCoC-PIXEL: The pixel-based classification map produced by applying the SVM on the 

augmented dataset including the higher-order features, after employing the FuzCoC  

FS methodology. 

 SVMOBJECT: The object-based classification map produced by applying the SVM on the 

segmented image, using all the 119 calculated object features. 

 SVMFuzCoC-OBJECT: The object-based classification map produced by applying the SVM on the 

segmented image, after employing the FuzCoC FS methodology. 

Since SVM is not available in the most widely used commercial object image analysis software, we 

implemented a Graphical User Interface (GUI) in MATLAB that used the LIBSVM library [76] for the 

implementation of SVM. The GUI was used to conduct data scaling and apply the cross-validation 

procedure for the selection of C and γ values. Moreover, it was used for training the final model and 

producing the thematic map in object-based classifications. In this case, the objects and the labeled 

samples were first exported in vector format and then imported in MATLAB. For pixel-based 

classifications, the final models and the thematic maps were produced using the commercial software 

ENVI 4.7, whereas the MATLAB GUI was only used for the determination of the two parameters and 

the estimation of the cross-validation error. As mentioned previously, the large data volume involved in 

the case of the pixel-based classifications at the full space required the special manipulation through 

custom MATLAB scripts, as it will be detailed in Section 5. 

Table 5. Selected Support Vector Machine (SVM) parameters for each dataset. 

 Parnitha Rhodes 

Dataset C γ C γ 
IKONOSRGBNIR-PIXEL 128 0.125 32768 23 
IKONOSFullSpace-PIXEL 512 0.5 8 2 
IKONOSFuZCoC-PIXEL 128 0.125 32768 23 

IKONOSOBJECT 2 0.5 8192 2−7 
IKONOSFuZCoC-OBJECT 0.5 2 2048 0.5 

4. Experimental Results  

This section presents the obtained results from the application of the proposed methodologies in the 

Parnitha and Rhodes datasets. Pixel-based and object-based classifications for the Parnitha datasets are 

presented first, followed by the results obtained by Rhodes classifications. The two approaches in both 

cases are subsequently compared in terms of their effectiveness in burned areas mapping. 
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To assess the classification models’ ability to map burned areas accurately, we estimated the 

agreement between the burned area maps resulting from the classification process and the reference map. 

For each individual classification, the confusion matrix has been used to provide a basic description of 

the thematic maps accuracy [80]. The statistical measures derived from that matrices, namely, the Kappa 

index of agreement (KIA), overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy  

(UA) [81] were used to describe the accuracy of the derived maps. Additionally, the accuracy of the 

produced maps was also assessed using the probability of false alarm (Pf) metric [82]: 

௙ܲ = ௙௙ܯ௙௡ܯ + ௡௡ (1)ܯ

where Mff is the number of correctly classified fire pixels, Mnn is the number of correctly classified  

non-fire pixels, Mnf is the number of pixels assigned as non-fire by the classification while assigned as 

fire in the reference map and Mfn is the number of pixels assigned as fire by the classification while 

assigned as non-fire in the reference map. In our case, the Pf metric describes the probability a pixel to 

be erroneously classified as “Burned”.  

All maps were converted to raster images of 1m pixel size and an image-to-image comparison was 

performed using all pixels. To do so, the resulting maps were compared with a reference map featuring 

the two classes, namely, “Burned” and “Unburned”, same as the two classifications. All of the 

aforementioned statistical measures were calculated using all pixels of the image. 

4.1. SVM Pixel-Based Classification Results for the Parnitha Dataset 

In this section, the mapping products derived from the SVM pixel-based classifications are initially 

presented. The first objective of the present study is to evaluate whether the addition of extra features to 

the original IKONOS bands increases or not the accuracy and the quality of the burned area maps.  

To this end, we compared three thematic maps derived from three different feature sets, namely, the full 

space (172 features), the reduced space (the four FuzCoC selected features, see Section 3.3), and original 

spectral space (the four bands of the IKONOS image). 

The obtained results (Table 6) indicate that the use of the higher-order features increases the 

classification accuracies of the derived burned area maps. Additionally, no Hughes’ phenomenon is 

present in our case, since the classification accuracy is maximized when all the 172 features are 

considered (OA 97.47%, KIA = 0.934). The classification based on the dataset with the reduced space 

achieved marginally lower classification accuracy (OA 97.27%, KIA = 0.928) in comparison to the 

classification based on the IKONOSFullSpace-PIXEL dataset. However, in both cases (full space and reduced 

space), the thematic maps attained higher overall classification accuracies in comparison to the thematic 

map derived from the IKONOSRGBNIR-PIXEL dataset (OA of 95.95%, KIA = 0.894). The SVMFuzCoC-PIXEL 

classification resulted in higher UA, particularly in the case of the “Burned” class, where the difference 

with respect to the other two classifications (SVMRGBNIR-PIXEL and SVMFullSpace-PIXEL) is substantial 

(approximately 4% in both cases). This implies that the SVM classifier in the reduced space is less prone 

to overestimate the “Burned” class (that is, it produces fewer misclassification in unburned areas) 

compared to the other two cases. Moreover, the probability of false alarm Pf is more than 2.5 times lower 

in the case of SVMFuzCoC-PIXEL, which means that this scheme is less prone to misclassify non-fire pixels 
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than the classification scheme in the two other cases. These results reveal that SVM performed better in 

the datasets where additional information was included. 

In addition to the quantitative measures presented so far, a visual assessment of the burned area maps 

was also carried out. In order to preserve space, this analysis considers only the two main cases of 

interest, that is, the SVMRGBNIR-PIXEL and SVMFuzCoC-PIXEL classifications, since the SVMFullSpace-PIXEL 

case involves many practical inefficiencies. Figure 3 presents the resulting burned area maps in both 

cases, along with the reference map. A careful examination of the maps reveals that SVMRGBNIR-PIXEL 

produced a much higher number of misclassifications than the SVMFuzCoC-PIXEL case, especially in 

unburned areas. This fact highlights the practical significance of the difference between the two 

classifications, regarding the UA and Pf discussed above. Although the absolute value of Pf in both cases 

is very small, the higher noise level in the SVMRGBNIR-PIXEL map is quite distinguishable within the 

unburned areas. 

Table 6. Accuracy measures for SVM pixel-based classifications (Parnitha). 

Classification Class PA UA OA KIA Pf 

SVMFullSpace-PIXEL 
Burned 95.99 94.42 

97.47 0.934 0.015 
Unburned 98.00 98.58 

SVMRGBNIR-PIXEL 
Burned 91.09 93.24 

95.95 0.894 0.018 
Unburned 97.67 96.89 

SVMFuzCoC-PIXEL 
Burned 92.37 97.08 

97.27 0.928 0.007 
Unburned 99.02 97.35 

A closer examination of the SVMRGBNIR-PIXEL map revealed that the misclassified pixels were mainly 

located in shadowed areas (mainly tree shadows). Furthermore, commission errors (areas erroneously 

classified as “Burned”) were observed on bare soil, roads, and recently ploughed fields, whereas 

omission errors (areas erroneously classified as “Unburned”) were observed on areas with surface fires, 

slightly burned vegetation, and burned rocky areas. Especially in the case of the rocky sites inside the 

burned forested areas, the algorithm failed to correctly classify them as burned. This was not unexpected 

due to the high spectral similarity of those pixels (burned rocky areas) with other unburned pixels. The 

classifier correctly mapped rocks as unburned areas (since rock does not get burned), although those 

areas would be mapped within the burned area perimeter in operational burned area mapping. Errors 

were also observed on the borders of the two classes. 

Examination and visual interpretation of the SVMFuzCoC-PIXEL map revealed that the classification 

quality was higher comparatively to the SVMRGBNIR-PIXEL map, mainly due to the reduced noise effects. 

Figure 4 depicts a detail of the two maps inside the burned are perimeter. It becomes apparent that the 

SVMRGBNIR-PIXEL map is affected by a much higher degree of the salt-and-pepper effect than the 

SVMFuzCoC-PIXEL map, which exhibits reduced noise effects. Moreover, the classes in the SVMFuzCoC-PIXEL 

were characterized from greater homogeneity comparatively to the respective classes in the  

SVMRGBNIR-PIXEL. Misclassification errors were also found in the same areas as in the previous 

classification (SVMFuzCoC-PIXEL) examined. Nevertheless, it should be mentioned that in both cases it was 

difficult for the classifier to correctly delimit the boundaries of the unburned vegetation patches.  
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Figure 3. SVM pixel-based burned area maps for the Parnitha dataset: (a) reference map, 

(b) SVMRGBNIR-PIXEL classification, and (c) SVMFuzCoC-PIXEL classification. 
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Figure 4. Delineation of the unburned patches in the pixel-based classifications and the 

reduced noise effects after the FuzCoC feature selection: (a) SVMRGBNIR-PIXEL classification 

and (b) SVMFuzCoC-PIXEL classification. The blue areas depict the burned areas after 

classifications. The background of the figures is a false composite (NIR-Red-Green) of the 

IKONOS image.  

  

In conclusion, the numerical and visual comparison of the burned area maps indicated that the use of 

selected FuzCoC features along with the SVM classifier resulted in a map product with higher accuracy 

and reliability. 

4.2. SVM Object-Based Classification Results for the Parnitha Dataset 

This section presents the results obtained from the implementation of the SVM object-based 

classification models. Table 7 reports the results of the accuracy assessment procedure for both cases 

(with and without FS). The obtained results suggest that both methods achieve highly accurate 

classifications. In particular, the SVMOBJECT classification attained an OA of 97.17% (KIA = 0.926), 

whereas the SVMFuzCoC-OBJECT an OA of 97.85% (KIA = 0.943). Similarly to the pixel-based 

classifications, the application of the SVM in the reduced feature space (the three features selected by 

the FuzCoC FS methodology) resulted in increased UA for the “Burned” class compared to the full space 

classification, although the difference is somewhat smaller in this case (2.49%). Moreover, the value of 

Pf for the SVMFuzCoC-OBJECT classification is more than two times smaller than that for the  

SVMOBJECT classification. 
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Table 7. Accuracy measures for SVM object-based classifications (Parnitha). 

Classification Class PA UA OA KIA Pf

SVMOBJECT 
Burned 94.64 94.56 

97.17 0.926 0.015 
Unburned 98.08 98.11 

SVMFuzCoC-OBJECT 
Burned 94.64 97.05 

97.85 0.943 0.007 
Unburned 98.99 98.13 

Figure 5. SVM object based burned area maps for the Parnitha dataset: (a) SVMOBJECT 

classification and (b) SVMFuzCoC-OBJECT classification. 

 

 

In order to explain the misclassification errors in the burned area maps, a visual examination of the 

classification maps was also conducted, which is depicted in Figure 5. In general, both burned area maps 

show a reasonably accurate visual depiction of the classes of interest in this area. The main 



Remote Sens. 2014, 6 12023 

 

 

misclassifications were observed in objects with shadows, bare soil, roads, surface fire, slightly burned 

vegetation, objects with old dry vegetation (especially coniferous) and recently ploughed fields. 

Moreover, misclassifications were observed in mixed objects, that is, objects containing both classes, 

namely, “Burned” and “Unburned”. In these cases, the segmentation process failed to partition the image 

in homogeneous regions, leading to the creation of objects with two classes. This problem exists mainly 

in dense forested areas which suffered from surface fires and in bare lands with sparsely distributed 

shrubs. Considering this fact, it seems that the segmentation process is of great importance for the 

accuracy of the classification and should be further investigated. 

The SVM classifier applied on the IKONOSFuzCoC-OBJECT dataset performed slightly better inside the 

burned area, as compared to the SVM applied on the IKONOSOBJECT dataset. Finally, a visual 

examination of the classifications revealed that in both cases the SVM classifier correctly classifies the 

unburned islands of vegetation. An example of unburned patches inside the fire perimeter is depicted in 

Figure 6 for both cases. 

Figure 6. An example of unburned patches in the object-based classifications:  

(a) SVMOBJECT classification and (b) SVMFuzCoC-OBJECT classification. The blue areas depict 

the burned areas after classifications. 

 

Besides the fact that both SVM models yielded high classification performances, the classifier 

demonstrated very high ability in discriminating the different classes inside and outside the fire 

perimeter. Particularly inside the fire perimeter, the classifier exhibited high ability in discriminating the 

unburned vegetation patches. As it was expected, the application of the object-based approach 

significantly reduced the salt-and-paper effect, compared to the pixel-based approaches. Moreover, in 

both approaches (pixel and object) the reduced space classifications resulted in the lowest Pf values. 
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Finally, it should be emphasized that the use of the FuzCoC FS methodology significantly reduced the 

classification time and maintained high accuracy in the burned area map product. 

4.3. SVM Pixel-Based Classification Results for the Rhodes Dataset 

Here we present the application of the SVM pixel-based classification procedure on the second study 

(island of Rhodes). The obtained results (Table 8) indicate that the highest OA was attained using all the 

available features (SVMFullSpace-PIXEL), which is approximately 2.5% higher than the respective accuracy 

obtained using the reduced space (SVMFuzCoC-PIXEL). The accuracy considering only the original space 

(SVMRGBNIR-PIXEL) is substantially lower than either one of the two other cases. It is also evident that the 

Rhodes burned area mapping task constitutes a harder classification problem than the Parnitha one and, 

therefore, the differences between the three approaches (original, full, and reduced space, respectively) 

are larger. Consequently, the gains from the use of extra features along with an FS process become more 

obvious. In all cases, the SVM exhibits the tendency to overestimate the “Burned” class, a fact that can 

be easily perceived from the much lower PAs for the “Unburned” class. The SVMFuzCoC-PIXEL exhibits a 

rather more balanced behavior in that respect, which is reflected in the smallest Pf value observed for 

this case, although its OA is lower than the SVMFullSpace-PIXEL classification. A lower Pf value means that 

the SVM classifier is less prone to misclassify non-fire pixels. 

Table 8. Accuracy measures for SVM pixel-based classifications (Rhodes). 

Classification Class PA UA OA KIA Pf

SVMFullSpace-PIXEL 
Burned 95.20 90.36 

89.97 0.766 0.075 
Unburned 79.32 89.02

SVMRGBNIR-PIXEL 
Burned 95.29 83.12 

83.86 0.604 0.154 
Unburned 60.56 86.33 

SVMFuzCoC-PIXEL 
Burned 89.47 91.82 

87.59 0.722 0.060 
Unburned 83.77 79.62

In order to examine and compare the quality of the classification, we also conducted a visual 

inspection of the derived maps. Similarly to the analysis of Section 4.1, we concentrate on the two main 

cases of interest, that is, the SVMRGBNIR-PIXEL and the SVMFuzCoC-PIXEL (Figure 7). A close inspection of 

the classifications reveals that the SVMFuzCoC-PIXEL map is of rather higher quality compared to the 

SVMRGBNIR-PIXEL one, mainly due to the reduced noise effects. The SVMRGBNIR-PIXEL map exhibits severe 

overestimation of the “Burned” class, with a large number of pixels outside the fire perimeter being 

misclassified. Conversely, the SVMFuzCoC-PIXEL underestimates the “Burned” class inside the fire 

perimeter to some extent, but this effect is much milder than the overestimation one of the  

former classification. 
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Figure 7. SVM pixel-based burned area maps for the Rhodes dataset: (a) reference map,  

(b) SVMRGBNIR-PIXEL classication, and (c) SVMFuzCoC-PIXEL classification. 

 

 

4.4. SVM Object-Based Classifications for the Rhodes Dataset 

This final subsection presents the application of the object-based approach to the Rhodes dataset.  

The quantitative results are reported in Table 9. It is evident that the application of the FuzCoC FS 

resulted in substantially increased classification accuracy compared to the initial feature space, 

especially inside the burned area. More specifically, an OA of 79.26% (KIA = 0.477) was achieved by 

the SVM classification in the full space and an OA of 92.39% (KIA = 0.830) for the classification in the 

reduced space. All class-specific accuracies are substantially increased in the latter case, with the 

difference being greater for the “Unburned” class. This is attributed to the fact that a higher number of 

unburned areas inside the fire perimeter have been erroneously characterized as burned ones. The latter 

is also verified by the respective Pf values, which in the case of the SVMFuzCoC-OBJECT is approximately 

two times smaller than the SVMOBJECT one, indicating that the former classification model is less prone 

in misclassifying unburned areas than the respective SVMOBJECT model. 
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Table 9. Accuracy measures for Rhodes SVM object-based classifications 

Classification Class PA UA OA KIA Pf

SVMOBJECT 
Burned 87.24 84.30 

79.26 0.477 0.114 
Unburned 59.30 64.90 

SVMFuzCoC-OBJECT 
Burned 92.88 95.67 

92.39 0.830 0.051 
Unburned 91.43 86.30

In addition to the numerical results presented above, a visual inspection of the classification maps has 

also been conducted (Figure 8). The two maps differ in terms of the location and the pattern of their 

respective omission and commission errors. Specifically, the map produced based on the dataset with 

the FuzCoC selected features (Figure 8b) misclassified relatively small areas across the whole scene, 

especially outside the fire perimeter. Inside the fire perimeter the classifier succeed in accurately 

differentiating the burned from the unburned areas. On the other hand, a visual inspection of the map 

derived from the SVMOBJECT model (Figure 8a) revealed that the SVM classifier exhibited the tendency 

to overestimate the class “Burned” against “Unburned” class. In the SVMOBJECT case the salt-and-pepper 

effect was minimized compared to the SVMFuzCoC-OBJECT one, but at the expense of misclassifying a 

substantially higher number of unburned objects within the fire perimeter (patches of healthy vegetation, 

bare soil, low vegetation areas and roads) as burned ones (Figure 8a). 

According to the above, the classification quality of the map derived from the SVMFuzCoC-OBJECT is 

higher compared to the respective one derived from the SVMOBJECT model. The land cover types which 

are typically incorrectly classified in burned area mapping (e.g., shadows, bare soils, etc.) were still 

misclassified in both cases. 

Figure 8. SVM object based burned area maps for the Rhodes dataset (a) SVMOBJECT 

classification (b) SVMFuzCoC-OBJECT classification. 

 

5. Discussion 

A collateral aim of this work is to examine and compare the developed methodologies with respect 

to their potential use on an operational basis. In general, any developed burned area mapping 

methodology should meet the following criteria in order to be applicable on operational basis: it should 
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be rapid, reliable and automated [9]. Hence, the evaluation of the developed burned area mapping 

methods of the current study should also take into account the aforementioned criteria. 

Beginning with the pixel-based classification schemes, it is important to note that the whole  

pre-processing procedure until the stage of the classification was very time-consuming. During the 

procedure, the generation of a large volume of data required considerable storage capacity. The 

manipulation of such high-volume data was very time-consuming and the computational demands were 

extremely high. Specifically in the case of the full space pixel-based classifications, the aforementioned 

difficulties were immense. The process of the production of the thematic maps from the datasets with 

all the available features (172) required special treatment, using advanced programming tools. For this 

case, the images were split into multiple parts (over 250 pieces in each different case) and each different 

part was classified separately. To formulate the final thematic maps, the various parts of the initial 

datasets were merged back together. These processes are not easily applicable by typical remote sensing 

users and it is practically impossible to be conducted using common remote sensing software. To this 

end, the use of a FS method is considered of great importance when additional information is added on 

the original dataset and the whole classification process must be carried out using the simplest, easiest 

and fastest way. Even for the original or the reduced spaces, though, the computational and storage 

requirements of the pixel-based approach was still very high, due the large size of the VHR image. 

Overall, despite the rapid advent of computation systems technology, the high computational demand of 

these approaches will remain a deterrent factor on a long term basis, especially if we consider the need 

for regional-wide or nation-wide burned area mapping at multiple time points. 

Considering the object-based classification schemes, the whole process of object extraction, FS and 

subsequent classification was less complicated, labor-intensive, and time-consuming than the  

pixel-based pre-processing counterparts. It should be noted that in any case examined (pixel and object), 

the FS process greatly decreased the volume of data that had to be processed, both in terms of storage 

requirements and computational demands with respect to the full area classification. Although these 

requirements are much less for the object-based approach than the pixel-based one, the relative gains 

from the application of the FS procedure are still substantial. 

Currently, neither of the classification approaches are fully automated and rapid. To this end, none of 

the developed methodologies meet the operational criteria described above. However, the comparison 

between the pixel and the object-based approaches indicate that the latter fulfills these criteria to a higher 

degree. Thus, if it becomes possible to incorporate all the processes required for the implementation of 

the proposed object-based classification scheme into a single software in the near future, then it will be 

possible to conduct the classifications in a semi-automated way. The procedure cannot be fully 

automated since several parameters need to be adjusted. 

The discussion presented so far indicates that the object-based classification scheme is more 

appropriate than the pixel-based one, in mapping recently burned areas using VHR imagery.  

The previous findings are further reinforced by the results of the numerical and visual comparison of the 

derived thematic maps. Generally, the maps produced from both approaches were more or less very 

accurate. In particular, all the classifications in the case of Parnitha exceeded 95% OA, whereas the 

accuracy of the produced thematic maps in the case Rhodes exceeded 87% percent when considering 

the additional features. The experimental analysis presented above reveals that the use of advanced 
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features along with the FuzCoC FS had a positive effect with respect to classifications accuracy in both 

pixel-based and object-based classifications. 

The experimental results from the pixel-based classifications shows that in both cases examined 

(Parnitha and Rhodes), the SVM classifier performed better in the datasets were additional features were 

included (with and without FS). The implementation of the SVM classifier in the full space (172 features) 

resulted in all cases in slightly higher classification accuracy compared to the reduced space (FS selected 

features) classification. Despite that, the gains from the implementation of the FS method in terms of 

computational demands and data manipulation equalizes the slight loss in the classification accuracy. 

Moreover, the visual inspection of the pixel-based derived maps reveals two more gains from the 

addition of higher-order features. The first one is the reduction of the salt-and-pepper effect and the 

second one is the increase of homogeneity inside the classes of interest. The depiction of the reality in 

the produced maps based on the reduced space was always higher in comparison to the maps based on 

the original datasets. 

Focusing on the SVM object-based classification schemes, it becomes apparent that the application 

of the FuzCoC FS resulted in increased accuracies compared to the full feature space, for both the 

Parnitha and the Rhodes object-based classifications. The difference in the former case is practically 

negligent (0.68% difference in OA), whereas in the latter case a substantial difference of more than 13% 

in OA is observed. The magnitude of the increase in classification accuracy is problem-dependent. The 

Parnitha dataset defines a much simpler classification task, since both object-based classification exhibit 

OA higher than 97%. However, Rhodes’ study area is characterized by a far more heterogeneous terrain 

and the gains from the FS procedure are much higher. 

A comparison of the numerical results between the pixel-based and the object-based approaches 

reveals that the latter compares favorably to the former, exhibiting higher overall accuracy. The gains in 

accuracy after the implementation of the SVM object-based classification appear to be marginal for the 

Parnitha case. However, in the case of Rhodes the gains in accuracy are quite substantial  

(4.8% difference in OA). Regarding the visual inspection of the pixel and object classifications, the 

classes in the object-based classifications were more homogeneous and the classes’ depiction was more 

realistic. An example is given in Figure 9, which depicts a detail of the thematic maps obtained from the 

SVMFuzCoC-OBJECT and the SVMFuzCoC-PIXEL classifications in Parnitha. It can be easily observed that the 

object-based classification resulted in a much more homogeneous “Burned” area characterization. 

Taking also into consideration the practical inefficiencies of the pixel-based approach, the object-based 

approach is deemed more appropriate for the production of accurate and realistic burned area maps. 

The land cover types which are usually incorrectly classified in burned area mapping (e.g., shadows, 

bare soils, etc.) were still misclassified in both SVM approaches for all cases (full, reduced, and original 

space). However, the number of the erroneously classified areas was significantly diminished using the 

object-based approach. Particularly for the case of shadowed areas, the application of SVM on objects 

exhibits higher discriminating ability comparatively to the SVM on pixels. Figure 10 presents an 

illustrative example of such a case. 

Due to the high costs involved in the acquisition of VHR images, the analysis of the current study 

was unfortunately confined in two study areas only. The experiments in these two study areas were 

conducted independently from each another. To this end, we cannot infer any further about the 

transferability of the proposed methodology. Taking a closer look at the features selected by FuzCoC 
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for the two test areas (Tables 3 and 4), we can observe that certain features are selected in both cases 

(apart perhaps from the size of the window). Nevertheless, an analysis of this sort would require a much 

larger number of test cases, so that the intersection of the most frequently selected features could be 

identified in a statistically robust manner. In any case, the investigation of the herein proposed 

methodology’s transferability properties—or the discussion of whether this is possible altogether—is 

outside the scope of the present study and constitutes the subject of a future work. 

Presently, acquiring a large number of VHR imagery seems very difficult, either due to their high 

purchase cost or due to their limited availability within a very short time framework. Satellite imaging 

start-ups such as Skybox and Planet Labs are expected to considerably alleviate these difficulties, by 

providing low cost high resolution imagery in a timely manner. The aim of these two start-up 

companies—and similar ones—is to set to launch a large number of small imaging satellites which will 

be able to revisit and photograph huge areas of the planet several times each day. The provision of high 

spatial- and temporal-resolution images in low prices is expected to pave the way for new innovations 

in many scientific fields, including the field of burned area mapping. 

Figure 9. The enhanced quality of the burned area maps (Parnitha) after the implementation 

of the object-based approach. (a) The homogeneous “Burned” class (yellow color)  

in the SVMFuzCoC-OBJECT classification. (b) The overestimated “Burned” class in the  

SVMFuzCoC-PIXEL classification.  
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Figure 10. The enhanced quality of the burned area maps (Parnitha) in the shadowed areas 

after the implementation of the object-based approach: (a) Unburned areas in the  

SVMFuzCoC-OBJECT classification. (b) SVMFuzCoC-PIXEL classification. (Red color: shadowed 

areas wrongly classified as burned. Yellow color: Unburned areas). 

  

6. Conclusions  

In this paper, we investigated the influence of the higher order spectral and spatial features for 

accurately mapping recently burned areas, using IKONOS imagery. Our analysis considers both  

pixel-based and object-based approaches, using two advanced image analysis techniques: an efficient 

filtering method based on FuzCoC and the SVM classifier. In both cases the implementation of SVM on 

VHR imagery resulted in the production of burned area maps of very high classification accuracies. 

However, a closer examination of the results revealed that the quality of the burned area maps derived 

from the object-based image analysis is higher compared to the respective maps from the pixel-based  

image analysis. 

The results from the SVM pixel-based classifications indicate that the use of the additional features 

(with and without feature selection) instead of the original spectral bands improves the accuracy and 

reliability of the produced burned area map. However, SVM’s performance inside the class “Burned” 

was higher in the case of the FuzCoC selected feature space in both areas examined (Parnitha and 

Rhodes). Moreover, the application of the FuzCoC FS methodology substantially reduced the  

salt-and-pepper effect and improved class homogeneity inside the main class of interest, that is, the 

“Burned area” class. Nevertheless, the classification using the dataset with all the available features is 

practically almost impossible to be conducted using the common remote sensing software. Therefore, 

the use of an efficient dimensionality reduction method should be regarded as a perquisite step when 

additional information is added in the classification process. 
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The experimental results from the SVM object-based classifications in the full space (119 extracted 

features) and in the reduced space (FuzCoC selected features), showed that the latter results in increased 

classification accuracies. The absolute gains in accuracy were marginal for the easier classification task 

of the Parnitha dataset, but the difference was substantial for the more challenging Rhodes dataset.  

These findings support the argument that an efficient feature selection pre-filtering procedure is always 

beneficial in conjunction with the object-based image analysis. 

The examination and comparison of the two developed classification schemes regarding their use on 

an operational basis shows that the proposed methodologies present some implementation challenges. 

Nevertheless, the object-based classification schemes meet the requirements for operational burned area 

mapping to a higher degree compared to the pixel-based approaches. More specifically, the object-based 

approach is less labor-intensive and time-consuming than the pixel-based one. Additionally, the burned 

area maps derived from the SVM object-based classification scheme are more accurate and reliable than 

the pixel-based burned area maps. Presently, the main drawback of the object-oriented SVM methods is 

the fact that they are not implemented in a single software interface. Overall, our paper makes a strong 

case over the use of advanced image analysis techniques in burned area mapping. Future incorporation 

of those techniques in a commercial software will open perspectives in operational burned area mapping. 
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