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Abstract: Vegetation structure, including forest canopy height, is an important input 

variable to fire behavior modeling systems for simulating wildfire behavior. As such, forest 

canopy height is one of a nationwide suite of products generated by the LANDFIRE 

program. In the past, LANDFIRE has relied on a combination of field observations and 

Landsat imagery to develop existing vegetation structure products. The paucity of field data 

in the remote Alaskan forests has led to a very simple forest canopy height classification for 

the original LANDFIRE forest height map. To better meet the needs of data users and refine 

the map legend, LANDFIRE incorporated ICESat Geoscience Laser Altimeter System 

(GLAS) data into the updating process when developing the LANDFIRE 2010 product. The 

high latitude of this region enabled dense coverage of discrete GLAS samples, from which 

forest height was calculated. Different methods for deriving height from the GLAS 

waveform data were applied, including an attempt to correct for slope. These methods were 

then evaluated and integrated into the final map according to predefined criteria. The 

resulting map of forest canopy height includes more height classes than the original map, 

thereby better depicting the heterogeneity of the landscape, and provides seamless data for 

fire behavior analysts and other users of LANDFIRE data.  
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1. Introduction 

Recognizing a need for nationally comprehensive and consistent geospatial data describing wildfire 

fuels and fire regimes, the Landscape Fire and Resource Management Planning Tools (LANDFIRE) 

program was chartered in 2004 as a joint effort between the US Department of Agriculture and the US 

Department of the Interior [1]. LANDFIRE has produced maps of vegetation and fuels for the entire US, 

at 30 m resolution, which are used for both tactical and strategic decision-making by incident 

commanders and land managers, along with many other ecological research applications [2].  

Currently there exist various versions of LANDFIRE data products for all of the conterminous US 

(CONUS), Hawai’i, and Alaska (see [3] for more information regarding the LANDFIRE product 

versions). The first LANDFIRE National data products in Alaska were released in 2009, including maps 

of existing canopy height. The LANDFIRE mapping methods typically make use of available field 

observations to inform the mapping process. Various field datasets contributed by federal and state 

agencies, universities and other programs have been incorporated into the LANDFIRE reference 

database. For example, data from the US Forest Service’s Forest Inventory and Analysis (FIA) program 

are relied on for different aspects of forest mapping. The FIA data are consistently high quality and 

provide information about vegetation composition and structure [4]. In Alaska, FIA data are available 

only for the southeastern part of the state, leaving vast portions of the state, especially the boreal forests 

of interior Alaska, un-inventoried. Furthermore, field observations from other sources in Alaska are also 

sparse or lack the type of information required by the LANDFIRE mapping methods to be useful.  

The lack of abundant, high-quality field data affected the mapping strategies used in Alaska and led 

to modifications of the forest canopy height legend used in the LANDFIRE National existing vegetation 

height (EVH) product for Alaska. EVH is a composite of forest, shrub, and herbaceous height maps 

based on the dominant lifeform of the existing vegetation type (EVT) product for each 30 m pixel. 

Specifically, it was necessary to reduce the number of mapped canopy height classes to reflect the 

limitations imposed by the paucity of training data. While the standard LANDFIRE forest canopy height 

product consists of five height classes (0–5 m, 5–10 m, 10–25 m, 25–50 m, and >50 m), in Alaska the 

same map represented only two classes (≤ 10 m and > 10 m, Figure 1).  

Collecting field data in Alaska is expensive and time consuming because of the remoteness of much 

of the area. Therefore, exploring the utility of remote sensing data for structure mapping in Alaska is 

particularly intriguing for assessing Alaskan forest structure. The total area of Alaska is just under 

1,700,000 km2, of which approximately 380,000 km2, or 22%, is forested, according to the 2001 National 

Land Cover Dataset (NLCD) [5]. LiDAR is especially suited for deriving forest canopy structure because 

of its ability to capture vertical information about the canopy. Airborne LiDAR data have been collected 

in several locations in Alaska and have been used for measuring aspects of canopy structure. These 

include studies focused on forest stand condition characterization in the Kenai Peninsula [6], biomass 

assessment in the Upper Tanana Valley near Tok [7], forest canopy height and fuels estimation in the 

Yukon Flats Ecoregion [8,9], and biomass change in the Yukon River Basin [10].  

While these airborne data sets provide detailed information for local areas, vast areas of Alaska 

remain unmapped by airborne LiDAR systems. To obtain LiDAR observations of structure, the 

LANDFIRE team decided to explore the use of spaceborne LiDAR data from the ICESat Geoscience 

Laser Altimeter System (GLAS). GLAS was a large-footprint, waveform-digitizing LiDAR system. 
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GLAS footprint size is nominally 60 m, although this can vary substantially for different laser 

campaigns, and footprints are spaced 172 m apart, center-to-center, along orbital tracks [11]. GLAS data 

represent samples rather than a spatially continuous data layer, and have been used to map various 

canopy structure elements including height [12,13], biomass [12,14], and wildfire fuels [9].  

Several limitations on the use of GLAS data for canopy structure exist. One major limitation is the 

error that can be introduced by high-relief topography. Steep slopes can impact height retrieval from 

GLAS data by elongating the waveform. Several methods have been proposed for correcting this issue 

such as demonstrated in [15,16].  

The classification of the forest height component (FHC) of the LANDFIRE National EVH product 

in Alaska imposed limits on other products that draw upon the height map and other applications of the 

data. Therefore, investing effort into an improved Alaska FHC was identified as a priority to better 

reflect actual landscape conditions. To maintain currency and account for changes within ecosystems, 

the LANDFIRE products are periodically updated, and as part of the 2010 update to LANDFIRE 

(LF2010) it was decided to include a remapping of forest height in Alaska using GLAS data [9]. In [9], 

GLAS data are used with airborne LiDAR and Landsat TM imagery to develop canopy height, canopy 

cover, canopy base height and canopy bulk density layers for the Yukon Flats Ecoregion Alaska. Here, 

while focused solely on mapping the forest height component (FHC), the incorporation of GLAS data 

is extended to the entire state of Alaska. The resulting product maps forest canopy height in Alaska using 

the five height classes defined for CONUS by utilizing available GLAS data with other data sources and 

represents an improvement over the initial Alaska EVH map released in 2009. 

2. Methods 

The Alaska FHC remapping effort focused on all lands in Alaska classified as forest in the LANDFIRE 

EVT map. These lands encompassed a range of forest types, including the tall, dense canopies of the 

temperate rainforests located in the southeastern part of the state and the open-canopy, short-stature forests 

more characteristic of the boreal interior. 

2.1. Data 

Datasets including GLAS waveform LiDAR data, an airborne LiDAR data collection, Landsat imagery, 

elevation data from the National Elevation Dataset (NED) and associated derivatives (including slope), the 

2001 NLCD land cover product, and field data collections were used to accomplish the objectives of this 

study. These data were used to develop a terrain correction model, build regression tree models to generate 

geospatial layers of forest height, and to conduct an accuracy assessment of the final map of FHC. 

2.1.1. ICEsat GLAS 

GLAS version 33 GLA01 and GLA14 products were downloaded from the National Snow and Ice 

Data Center [17]. The GLA01 product provides the waveforms while the GLA14 product delivers the 

footprint coordinates and numerous waveform metrics, including information about the background 

noise and a set of up to six Gaussian curves fit to the GLAS waveform. Data encompassing the whole 

GLAS archive including lasers 2 and 3 were downloaded. The data used in this study span the 2003–2009 
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timeframe. In total there were approximately 5.5 million GLAS footprints located within Alaska for this 

timeframe, of which over a million are located in forested lands (Figure 2).  

Figure 1. Original map of LANDFIRE National forest height component for Alaska mapped 

as two classes.  

 

2.1.2. Kenai Airborne LiDAR 

LiDAR data from an airborne laser scanner (ALS) for the Kenai Peninsula were used to derive the 

terrain correction coefficients used to address slope-induced error (see section 2.2.2 below). These data 

were collected in 2008 during leaf-on conditions and covered approximately 11,750 km2 of the Kenai 

Peninsula (Figure 2) including forested areas with high relief. The nominal point spacing was 2.7 m and 

the reported horizontal accuracy was 1.3 m. The specifications of the data collection are listed in Table 1. 

Table 1. Specifications of Kenai airborne LiDAR data acquisition. 

LiDAR System Optech ALTM Gemini 

Ground Speed 180 kts 

Pulse Rate Frequency 33 kHz 

Mirror Scan Frequency  17 Hz 

Scan Angle (+/−) 15° 

Beam Divergence Narrow (0.25 rad) 

Scan Cutoff 0.25° 
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Figure 2. Map of Alaska showing the distribution of the GLAS spaceborne LiDAR, airborne 

LiDAR collected over the Kenai Peninsula, and various field observations used for the 

accuracy assessment of the final forest canopy height product.  

 

2.1.3. Landsat Imagery 

Landsat imagery were obtained from the Web-Enabled Landsat Data (WELD) project [18]. WELD 

provides seasonal and annual composites for the CONUS and Alaska built from Landsat 7 ETM+ 

imagery. The ETM+ scan-line corrector (SLC) failed in 2003 leaving gaps along the edges of each scene, 

rendering approximately 22% of each scene as missing data [19]. The WELD composites effectively fill 

these gaps with imagery from overlapping paths and other acquisition dates, though often some artifacts 

remain in the gap areas caused by differences in phenology, illumination, landscape disturbance, etc. 
between the various scenes used to create the composite. To minimize the artifacts in the WELD data, 

annual composites were acquired for each year between 2003 and 2012. These layers were then combined 

into a “super-composite” by selecting the pixel with the maximum Normalized Difference Vegetation 

Index value from among the available images at each pixel location [20]. The resultant combination of ten 

years of imagery provided a statewide composite with noticeably fewer SLC-related artifacts, though some 

still were apparent, mostly in the southeastern portion of the state (Figure 3). 

2.1.4. Field Data 

Field sampled data from three different programs were used to conduct an accuracy assessment of the 

final FHC map (Figure 2). First, data from 1106 FIA plots available in the southeastern part of the state 

were used to calculate a height metric for validation. These data were collected using FIA protocols [21] 

and were collected between 1995 and 2006. Second, data from 29 plots located in the Yukon Flats 

Ecoregion [22] of interior Alaska were used to calculate mean and maximum heights of the trees sampled 

at each plot. The plot design is described in [9] and height observations were made at 2 m intervals along 
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14 m subtransects of the main transect which had a total length of 90 m. These data were collected in 

2010. In 2012, 37 plots were established at various locations in the Yukon River Basin that were 

accessible by road. These plots spanned a range of forest types, stand conditions, and slope. These 

circular plots were centered on GLAS footprints, and were 15 m in diameter. The heights of all tree 

stems >2 m tall were measured using a laser range finder. These data were used to calculate mean and 

maximum canopy height in each of the plots. Collectively, the field data from the Yukon River Basin 

are referenced as the YRBFD. The field data for both study areas are summarized in Table 2. 

Table 2. Summarized field plot data. 

 
Number of  

Plots 

Minimum Plot Height 

(m) 

Maximum Plot 

Height (m) 

Mean Plot 

Height (m) 

YFRDB 66 4.2 29.3 14.0 

FIA 1106 2.4 53.1 18.2 

Figure 3. Alaska WELD super-composite with insets (A) showing an area where  

noticeable artifact is visible in the individual annual composites but substantially reduced in the 

super-composite, and (B) showing an area where substantial artifact remains in the  

super-composite. 
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2.2. Analysis 

2.2.1. Waveform Quality Control 

The GLAS waveforms were quality checked and eliminated based on the following criteria: High 

standard deviation in the background noise (>160 millivolts), low amplitude of the maximum peak  

(<60 millivolts), and extent of waveform signal (the portion above a background noise threshold) <2. 

The cloud multiple scattering warning and medium resolution cloud availability flags from the GLA14 

product were also used to screen for waveform quality. Additionally, to implement the slope correction 

described in [15], two additional waveform characteristics were derived from the waveforms: Trailing 

edge length, and leading edge length. The trailing edge is defined as the absolute difference between the 

elevation of the signal end and the elevation at which the signal strength of the trailing edge is half the 

maximum amplitude of the waveform above the background noise. The leading edge is the corollary to 

this, replacing the elevation of the signal beginning with the signal end. These concepts are described 

and illustrated in [15]. If the absolute difference of either the leading or training edge was 0, the 

waveform was discarded. This happened in cases where the waveform beginning or end did not return 

back down to the background noise threshold. This resulted in 1,080,620 waveforms being used for 

canopy height estimation throughout Alaska. 

2.2.2. Height Estimation 

Different methods for deriving height from the GLAS waveforms were used in this analysis and then 

compared to determine which would provide the best estimates of FHC. These methods are described in 

detail below. 

Because slope can distort the GLAS waveform and thereby lead to incorrect canopy height derivations, 

the first height-finding method attempted to correct for slope. In this study, the slope correction method 

presented in [15] was adapted. The coefficients as listed in [15] were not used because they were derived 

using a canopy weighted average height rather than a height metric that reflected the top of the canopy. 

Additionally, the [15] study incorporated data from study sites spanning a variety of biomes, whereas the 

focus of this effort was solely on high-latitude forests. The Kenai ALS data were used to derive estimates 

of canopy height for input into MPFIT [23], which performs a Levenberg-Marquardt least-squares 

minimization. First, a Digital Elevation Model (DEM) was derived for the whole Kenai area using 

returns in the point cloud identified as ground. Next, intersections between the Kenai ALS data and the 

GLAS footprints were identified (n = 2444) and the ALS data within each footprint were extracted. 

Height above ground for each non-ground return within each footprint was calculated by differencing 

the elevation of each non-ground return in the ALS point cloud and the corresponding DEM cell value. 

For each footprint, three estimates of canopy height were calculated from the height above ground data: 

Maximum height, and the heights at which 99% and 95% of the total canopy returns were located (99th 

and 95th percentile height, respectively).  

Following [15], the GLAS waveforms were split into waveform extent, trailing edge length, and 

leading edge length components. These three waveform components were then used as independent 

variables in MPFIT, with the three ALS-derived canopy height metrics as the dependent variable, to 

determine coefficients to be used in the slope-correction algorithm. The MPFIT modeling was done 
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iteratively using the different ALS-derived canopy height metrics and several data filters. The data used 

in the MPFIT process were further filtered according to two criteria: First, to ensure that the area 

encompassed by the GLAS footprint was relatively homogenous, the majority (>75%) fraction of land 

cover within GLAS footprint was used to indicate land cover homogeneity. Second, the NLCD land 

cover type at the center of the footprint was used to identify and retain only those footprints classified 

as forested. The inclusion of these filters reduced the sample size to 1044 for input into the MPFIT 

model. Once the MPFIT model results could no longer be improved, the final set of model coefficients 

was identified and applied in the slope correction equation (Equation (1)) as presented in [15] to derive 

terrain-corrected canopy height (tcht) from the GLAS waveforms. 

tcht = b0 × waveform_extent – [b1(waveform_lead + waveform_tail)]b2 (1)

The second version of canopy height was calculated from the GLAS waveforms using the methods 

described in [24]. Here, the fitted Gaussians from the GLA14 product were used to determine the ground 

elevation. This algorithm examined the lowest two Gaussians (if there were more than three fit) and 

assumed that the one with the higher amplitude was the ground return. The elevation of the centroid of the 

ground peak was differenced with the elevation of the signal beginning as defined in the GLA14 product, 

which was assumed to be the canopy top. The differenced value was the estimated Gaussian-derived 

canopy height (ght). 

Additionally, canopy height was calculated using the method described in [9] where the elevation of the 

maximum amplitude in the waveform is assumed to be the ground. This assumption is reasonable where the 

canopy is open and the terrain is flat, such as in the Yukon Flats Ecoregion of interior Alaska. Two estimates 

of canopy top elevation were used: The first being the highest return above a background noise threshold, 

the second being the height at which 90% of the waveform energy is reached. These ground and canopy top 

elevations are differenced, resulting in the r100 and r90 canopy height estimates, respectively.  

A final canopy height estimation was conducted using multiple linear regression to estimate canopy 

height from the waveform extent, leading edge, and trailing edge metrics defined by [15] using the same 

datasets that were used to run MPFIT. The coefficients of the resulting model were then applied to all 

waveforms to derive a canopy height estimate (mlrht). 

2.2.3. Extrapolation 

To spatially extrapolate the GLAS-based canopy height estimates and generate a continuous FHC 

layer, a regression tree (RT) approach was used. This approach is suited for working with non-parametric 

data and had been widely used within the LANDFIRE program for generating spatial products [1]. The 

GLAS-derived canopy height values were used as dependent variables while extracted values from the 

six WELD super-composite bands, the NED DEM and derived slope and aspect, as well as a lifeform 

mask, which classifies the vegetated landscape into forest, shrubland or grassland based on the 

LANDFIRE EVT product, were used as independent variables to build the RT models. These models 

were then applied to the input geospatial layers to generate spatially continuous maps of FHC for all of 

Alaska. Five separate maps were generated, one each for the different versions of the GLAS-derived 

canopy height. 
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2.2.4. Accuracy Assessment 

An accuracy assessment of the final FHC map was conducted using the field data collected at various 

locations in Alaska (Figure 2). Map values of FHC corresponding to the plot locations were extracted and 

the mapped values were compared to the field-based canopy height values using a confusion matrix and 

associated statistical metrics. Additionally, the thematic distributions of the mapped and field-observed 

forest heights were examined. 

3. Results and Discussion 

3.1. Modeling and Mapping Results 

The MPFIT processing resulted in the following values for the coefficients: b0 = 0.645, b1 = 0.000, 

and b2 = 0.500. The model run using the 95th percentile height produced a better fit according to the 

RMSE (5.4 m) and correlation (0.56) values reported by MPFIT and that was the algorithm selected. 

The b1 value cancels out the slope correction that relies on the integration of the trailing-edge and 

leading-edge extents so that the tcht value equals the waveform extent. Although not slope-corrected, 

the tcht approach was still retained as a mapping method and was used to calculate canopy height for all 

GLAS waveforms to use with the RT modeling.  

The 2012 field data that were co-located with GLAS footprints were used to assess the GLAS-based 

canopy heights derived from the different methods. When the plots were originally located in the field, 

waveform quality control had not yet been implemented. Therefore, of the 37 plots collected, only  

20 plots had a co-located GLAS footprint for which canopy height was calculated and used for mapping. 

The Pearson’s correlation coefficients are shown in Table 3. Initially the quality control filters consisted 

only of screening for high background noise and low amplitude of the maximum peak, resulting in the 

20 plots having co-located footprints. As analysis proceeded the additional quality filters were applied, 

further reducing the number of plots with co-located footprints used for mapping to 14. Overall, the 

increased levels of data quality control improved the correlation between field observed height and 

GLAS-derived height. Despite the small sample size available for comparison, these results suggest that 

data quality filtering of the GLAS waveforms is necessary to achieve meaningful results. The 14 plots 

spanned a geographic area of 450 km east-to-west and 200 km north-to-south, and represented a diverse 

group of forest types. They spanned a range of slopes from 0°–23°.  

Table 3. Pearson’s correlation coefficients between field-observed canopy height and 

canopy height calculated from GLAS waveforms using different methods. 

r R90 R100 mlrht tcht ght 

Maximum field 

height (n = 20) 
0.62 0.43 0.38 0.17 0.43 

Maximum field 

height (n = 14) 
0.67 0.67 0.74 0.73 0.71 

The correlation coefficients for the RT models are listed in Table 4. These five models were then 

applied to the full set of geospatial data layers to produce five different FHC maps for Alaska. These 
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were compared and assessed for their suitability for integration into the final Alaska EVH product. 

Histograms of the canopy height values within the five maps were generated, evaluated, and compared 

(Figure 4). These histograms show that the mlrht and r90 estimates of canopy height do not extend beyond 

the 25 m height range and therefore do not capture the higher end of the range of height measured in the field 

(Table 2). The histogram of r100 height estimates shows an unexplained bi-modality in height distribution. 

Because of these issues, and because they had the highest RT model correlation values as well as high 

correlations values with the observed plot data, the ght and tcht estimates were identified as best capturing 

the range of expected canopy height for Alaska and used to generate the final FHC map (Figure 5). For the 

FHC map, the tcht and ght maps were integrated based on the slope layer. For slopes > 7°, the tcht data 

were used, because this method resulted in a slightly improved RMSE when compared to the plots located 

on steeper slopes than the ght data (7.1 m vs. 8.5 m). In the remaining areas the ght was used. Finally, all 

areas not designated as a forested system in the LANDFIRE EVT map were masked out. 

Table 4. Correlation coefficients for the RT models for the five GLAS-derived canopy 

height versions. 

 Correlation Coefficient 

ght 0.79 

mlrht 0.75 

tcht 0.82 

r90 0.66 

r100 0.72 

Figure 4. Plot showing the distributions of the five versions of GLAS-derived height: ght, 

tcht, mlrht, r90 and r100.  
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Figure 5. Updated map of LANDFIRE National forest height component for Alaska mapped 

as five classes.  

 

3.2. Error Assessment 

Two confusion matrices describing the relationship between the mapped and observed height values 

were generated, separating the FIA data from the YRBFD. The confusion matrices are shown in  

Tables 5 and 6. The mean user’s accuracy over the four classes was 0.26, the mean producer’s accuracy 

was 0.26, and the overall accuracy was 0.60 for the comparison between the YRBFD and the mapped 

values. The kappa value was 0.143. The mean user’s accuracy was 0.28, the mean producer’s accuracy 

was 0.26, and the overall accuracy was 0.54 for the comparison between the field observations obtained 

from FIA and the mapped values. The kappa value was 0.128.  

Table 5. Confusion matrix for LF2010 EVH and YRBFD.  

Table 6. Confusion matrix for LF2010 EVH and FIA data.  

  

YRBFD 
LF2010 EVH 

Producer’s Accuracy 
0–5 m 5–10 m 10–25 m 25–50 m Total 

0–5 m 0 2 0 0 2 0 

5–10 m 2 3 5 0 10 0.30 

10–25 m 0 9 26 0 35 0.74 

25–50 m 0 1 0 0 1 0 

Total 2 15 31 0   

User’s accuracy 0 0.2 0.84 0   

FIA 
LF2010 EVH  

Producer’s Accuracy 
0–5 m 5–10 m 10–25 m 25–50 m >50 m Total 

0–5 m 2 17 17 1 0 37 0.54 

5–10 m 3 18 81 4 0 106 0.17 

10–25 m 8 75 477 90 1 651 0.73 

25–50 m 3 7 198 100 2 310 0.32 
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Table 6. Cont. 

The histograms of the field vs. mapped data are shown in Figures 6 and 7 for the YRBFD and FIA data, 

respectively. Qualitatively, both histograms show good thematic agreement between the field-observed and 

mapped data values. However, given the misclassification of heights as indicated by the confusion 

matrices, this does not indicate that the correct height class was assigned to any given pixel. Still, though 

the accuracy of the maps is poor at the local scale, they may have good representation at the global scale.  

Figure 6. Histograms of binned FHC derived from the LF2010 mapped canopy height 

Yukon River Basin field data values. 

 

Figure 7. Histograms of binned FHC derived from the LF2010 mapped canopy height FIA 

field data values. 

 
  

FIA 
LF2010 EVH  

Producer’s Accuracy 
0–5 m 5–10 m 10–25 m 25–50 m >50 m Total 

> 50 m 0 0 1 1 0 2 0 

Total 16 117 774 196 3   

User’s accuracy 0.13 0.15 0.62 0.51 0   
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Further work needs to be done to thoroughly understand and quantify the various sources of error 

underlying the lack of correspondence between the field observations and the mapped canopy height 

values. The low kappa statistics can in part be attributed to the relatively low sample size. Though the 

total number of plots included in the assessment is >1000, most of these are the FIA plots that were 

established in the southeastern part of the state, leaving many regions of the state un-sampled. 

Furthermore, the total area represented by the plots is very low as compared to the total area mapped. In 

total only 450 ha of forested lands were sampled of the total 38,000,000 ha. One source of potential error 

is the configuration represented by the 2010 YRBFD plots. The long, narrow transects represent small 

areas that can miss sampling taller trees that are actually near the vicinity of the plots. This could lead 

to an apparent over-estimation of height in the final mapped product assuming these taller stems were 

reflected in the remote sensing-derived height. Another source of error can be attributed to the low 

canopy densities in some of the plots. Spruce trees in the YRB often have very narrow,  

conically-shaped crowns. This represents a small area for LiDAR to reflect off of relative to the total 

area of the footprint. Substantial penetration of the LiDAR beam into the canopy could occur before a 

canopy signal can be detected. This would lead an apparent under-estimation of the canopy height 

relative to the field observation. The high slopes that occur in much of the area where the FIA data were 

sampled will impact the GLAS-based height estimation, given the reliance solely on waveform extent 

to map height. However, as LANDFIRE data are intended to be applied at a broader landscape scale, 

lack of correspondence between field observations and specific pixel values are expected and acceptable, 

provided regional trends and larger scale patterns align. If LANDFIRE data are being used for local 

scale analyses, further scrutiny is needed to determine their applicability and they may require editing 

to meet the needs of the analysis. 

There are several limitations to the LF2010 Alaska EVH map. The slope correction attempted here 

was parameterized using an airborne LiDAR data set that represented a relatively small portion of the 

state covering a small range of slope conditions. The timeframe for the completion of the Alaska LF2010 

map did not allow for the inclusion of LiDAR data sets that could have been used to develop more 

regionally tuned slope correction coefficients. The validation of the EVH map is incomplete and is limited 

by a lack of field observations for many of the forested lands within the state. Furthermore, though this 

process has helped eliminate seamlines caused by scene edges, the exclusive use of Landsat 7 ETM+ data 

by WELD resulted in scan-gap artifacts in the final product. While attempts were made to mitigate these 

through the development of the super-composite, minor artifacts are still present and must be accounted 

for when using the product for fire behavior simulation or other applications. Lastly, to ensure that as 

many GLAS footprints as possible were included in the analysis, data from all GLAS laser campaigns 

from September 2003 on were included and processed using the same algorithms. These data were 

collected over a 5+ year period, and therefore do not reflect a static moment in time, as would data from a 

single Landsat scene. Because vegetation disturbance is largely limited to wildland fire in Alaska, except 

in the southern Alaskan forests where insect infestation and timber harvesting also account for significant 

disturbance, using observations that span such a large timeframe is somewhat mitigated. 
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3.3. Relevancy and Impacts 

Several other studies have used GLAS data to derive canopy height over large regions, but have 

typically combined them with 250 m resolution MODIS data rather than 30 m resolution Landsat data. 

These studies typically developed products that are global assessments of canopy height [25–27] and do 

not provide the spatial resolution required by users of LANDFIRE data or do not cover the far northern 

latitudes. For the LF2010 product, the required resolution was 30 m to match the other datasets in the 

product suite.  

Re-mapping the FHC of the EVH layer has consequences for downstream LANDFIRE data products 

that rely on vegetation height as an input to their mapping processes. Most notably, the surface and 

canopy fuel layers are driven in part by the EVH layer. Surface fuel models are assigned using rulesets 

based on the EVT, EVH, existing vegetation cover, and potential vegetation [28]. The forest canopy 

height (CH) is a canopy fuel layer that is derived directly from the EVH for forested pixels, and masked 

for non-forested pixels. The EVH layer is also used for mapping canopy base height and canopy bulk 

density layers [28]. Therefore, the increased thematic resolution of the re-mapped FHC directly affects 

the assignments of surface fuel models and the mapping of canopy fuels, which has tangible effects on 

strategic and tactical fire behavior modeling, for which these layers are utilized. 

The new LF2010 EVH and CH maps for Alaska have several implications for LANDFIRE data users. 

Foremost, the refinement of the mapped height classes better reflects the heterogeneity of the landscape 

(Figure 8) and will lead to improved fire behavior simulations. The increased thematic detail in the forest 

height map will also lead to a better representation and quantification of the impacts of change and 

disturbance in the landscape (Figure 8). These will also be enhanced by the consistency of the data across 

the state as well as the lack of seamlines (Figure 8), compared to the earlier version of the EVH map, 

which was produced on a zonal basis. While the absolute FHC values indicated in the map need to 

undergo additional validation, the relative values showing where there are taller vs. shorter, or 

structurally complex vs. homogenous forests will also help in fire behavior and fuel assessments, fire 

effects monitoring, and other applications such as habitat assessment.  

More research needs to be done to address the impacts of slope on height recovery in Alaska using 

GLAS data. The approach used here did not account for the impacts of slope, possibly because of the 

range of slopes present in the area of the Kenai ALS data set that was intersected by usable GLAS 

footprints. Eighty-six percent of these footprints fell in areas that were ≤ 7° in slope. Of the remaining 

14%, over half fell onto slopes between 8° and 12°. The steepest slopes were not well represented in the 

data. Also, the canopy heights derived from the Kenai ALS data were not validated or field verified, so 

the training data may also have contained errors. 

Many of the high-latitude forest systems around the globe are remote and lack the infrastructure to 

support intense ground- or even air-based sampling and inventory. Space-based remote sensing is the 

only cost-effective alternative for gathering information about these systems for ecosystem assessment 

and monitoring. Thus far, the data provided by the GLAS mission represent the only source of consistent 

LiDAR observations of canopy structure with a sufficient sampling density to promote the mapping of 

these key variables. This study presents a method for integrating these data into a large-scale mapping 

effort that can also be applied in other high-latitude ecosystems. 
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Figure 8. Examples of qualitative improvements in the LF2010 FHC map vs. LANDFIRE 

National original. (A) shows an improved representation of a vegetation structure patterns 

associated with a riparian corridor, (B) shows a better representation of structural change 

resulting from a fire (burn perimeter shown in red), and (C) shows the mitigation of 

seamlines using the new method. 
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4. Conclusions  

The incorporation of GLAS data to supplement limited field observations available for mapping in 

Alaska has improved the utility of the LANDFIRE EVH product and addressed user needs. Specifically, 

the refinement of the forest height component of the EVH product from two classes to five allows better 

representation of landscape variability, a critical factor in fire behavior modeling and other ecosystem 

applications. GLAS data have been used in previous studies to map forest height, however typically 

globally at a coarser scale. In this study, we demonstrate that they are also useful in mapping more local 

scales at finer resolution, although subject to the limitations identified herein. This map provides a better 

understanding of the distribution of forest canopy height across the state of Alaska than was previously 

available. This increased understanding will enable more detailed fire behavior modeling. Furthermore, 

it will provide an updated baseline from which disturbance and growth modeling can be captured for 

assessing ecosystem change. With the end of the GLAS data collection in 2009 no new spaceborne 

LiDAR data are currently available for updating maps. This study has prepared LANDFIRE for when 

such data are again available in the future. The ICESat-2 mission, which will provide new spaceborne 

LiDAR data using the Advanced Topographic Laser Altimeter System, is slated for launch in 2017. 
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