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Abstract: Land surface temperature (LST) retrieval is a key issue in infrared quantitative 

remote sensing. In this paper, a split window algorithm is proposed to estimate LST with 

daytime data in two mid-infrared channels (channel 66 (3.746~4.084 μm) and channel 68 

(4.418~4.785 μm)) from Airborne Hyperspectral Scanner (AHS). The estimation is 

conducted after eliminating reflected direct solar radiance with the aid of water vapor content 

(WVC), the view zenith angle (VZA), and the solar zenith angle (SZA). The results 

demonstrate that the LST can be well estimated with a root mean square error (RMSE) less 

than 1.0 K. Furthermore, an error analysis for the proposed method is also performed in 

terms of the uncertainty of LSE and WVC, as well as the Noise Equivalent Difference 

Temperature (NEΔT). The results show that the LST errors caused by a LSE uncertainty of 

0.01, a NEΔT of 0.33 K, and a WVC uncertainty of 10% are 0.4~2.8 K, 0.6 K, and 0.2 K, 

respectively. Finally, the proposed method is applied to the AHS data of 4 July 2008. The 
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results show that the differences between the estimated and the ground measured LST for 

water, bare soil and vegetation areas are approximately 0.7 K, 0.9 K and 2.3K, respectively.  

Keywords: mid-infrared data; land surface temperature; split-window; AHS data  

 

1. Introduction 

Land surface temperature (LST) is an important indicator for monitoring the changing of earth 

resources and one of the most critical parameters in the physical process of surface energy and water 

balance at local and global scales [1–6]. The knowledge of LST plays a valuable role in urban climate, 

evapotranspiration, vegetation assessment, heat flux estimation, hydrological cycle, and environment 

studies [7–15]. Therefore, it is necessary to find a reliable way to acquire LST in regional and global 

scales. With the development of remote sensing, infrared sensors, such as Moderate Resolution Imaging 

Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Spinning 

Enhanced Visible and Infrared Imager (SEVIRI), provide a valuable way for measuring LST over the 

entire globe. 

To date, different methods have been proposed to retrieve LST from Thermal Infrared (TIR) remotely 

sensed data, such as the single channel algorithm and the split-window algorithm [16–20]. By 

comparison, the study on LST retrieval from Mid-Infrared (MIR) data is under-developed because the 

radiance measured during daytime in the MIR spectrum contains both the surface emitted thermal 

radiance and the reflected solar radiance, which are equal in magnitude [21,22]. Moreover, it is difficult 

to eliminate solar effects in the MIR spectrum during daytime because the separation of solar radiance 

from the total energy requires the accurate atmospheric information and the knowledge of the surface 

bidirectional reflectivity. However, the MIR data has its own advantages, such as higher detection 

sensitivity for high temperatures, higher atmospheric transmittance in the atmospheric window, and less 

sensitive to water vapor content (WVC) [22,23]. Therefore, Sun and Pinker proposed a split algorithm, 

with three TIR channels and one MIR channel, to retrieve LST from SEVIRI data [24]. The Visible 

Infrared Imaging Radiometer Suite (VIIRS) workgroup developed a dual split window day/night LST 

algorithm for 17 IGBP surface types by using two TIR bands (10.8 μm and 12 μm) and two MIR bands 

(3.75 μm and 4.005 μm), with a solar zenith angle cosine correction during the daytime [25]. Still, LST 

retrieval only from the Airborne Hyperspectral Scanner (AHS) daytime MIR data has not been studied. 

In this paper, a new method is proposed to retrieve LST from AHS daytime data in two MIR channels 

(channel 66: 3.746~4.084 μm and channel 68: 4.418~4.785 μm) after reducing/eliminating the effect of 

direct solar radiance. 

Section 2 describes the theory associated with the LST retrieval and the procedures for AHS data 

simulation. The details of direct solar radiance estimation and LST retrieval, as well as the sensitivity 

analyses, are presented in Sections 3 and 4, respectively. In Section 5, the proposed method is applied to 

AHS data, and the results are validated with in situ measurements. The conclusion is drawn in Section 6. 
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2. Methodology and Data Simulation  

2.1. Basic Theory  

Under local thermodynamic equilibrium during a clear-sky day, the radiative transfer equation (RTE) 

in the MIR region (3~5 μm) can be written as [15,26]: 

_ _ _ _( ) ( ) (1- )( )s s s
i i i i i s i atm i atm i bi i atm i atm iB T B T R R R R R               (1)

where Bi is the Planck function. Bi(Ti) is the radiance measured at the top of the atmosphere (TOA) 

in channel i, and Ti is the brightness temperature. εi and Ts are the surface emissivity and surface 

temperature, respectively. τi is the transmittance of the atmosphere from the ground to the TOA along 
the viewing angle. _

↑  and _
↓  are the upward and downward atmospheric thermal radiances, 

respectively. _
↑  and _

↓  are the upward and downward solar diffusion radiances, respectively, 

which result from atmospheric scattering of the solar radiance. ρbi is the surface bidirectional reflectivity. 

 is solar radiance at ground level. In addition, 	 , ⁄ , where Ei is the solar 

irradiance at TOA, ,  is the transmittance of the atmosphere from TOA to the ground along the 

solar angle, and  and  are the solar zenith and azimuth angle, respectively. 

Equation (1) can be rewritten as follows: 

'
_ _ _ _( ) ( ) = ( ) (1- )( )s s s

i i i i i bi i i i i s i atm i atm i atm i atm iB T B T R B T R R R R                 (2)

where  is the radiance after extracting the reflected solar direct radiance, and  is the equivalent 

brightness temperature.  

2.2. Data  

To develop the LST retrieval method, the at-sensor radiances should be simulated. For this purpose, 

the MODTRAN 4.0 radiative transfer code has been used to predict the radiances for the AHS MIR 

channels (CH66 and CH68) in terms of the channel filter functions [27]. In total, 705 atmospheric 

profiles, with the atmospheric bottom temperature (Ta) of 250~310 K and the WVC of 0.06~5.39 g/cm2, 

extracted from the TOVS Initial Guess Retrieval (TIGR) database [28,29], are used to analyse 

atmospheric effects. The attenuation of the surface radiance has been considered by adding the uniformly 

mixed gases (CO2, N2O, CO and CH4) and ozone, included in the standard atmospheres of the 

MODTRAN 4.0 code, to the water vapor taken from profiles in the TIGR radiosoundings [30]. To 

accomplish this, a previous classification of the surface temperature is made with the rule that the surface 

temperatures are from Ta − 5 K to Ta + 15 K with a step of 5 K. Furthermore, the VZAs are set to be 0°, 

33.56°, 44.42°, 51.32°, 56.25°, and 60° (corresponding values of 1/cos(VZAs) are 1, 1.2, 1.4, 1.6, 1.8, 

and 2.0), respectively, so that 1/cos(VZAs) could be sampled with a step of 0.2. The SZAs are set as 0°, 

25.84°, 36.87°, 45.57°, 53.13°, and 60° (cos(SZAs) are 1, 0.9, 0.8, 0.7, 0.6, and 0.5), respectively, so 

that the cos(SZAs) could be sampled with a step of 0.1. Also, 70 different emissivities obtained from the 

Johns Hopkins University (JHU) Spectral library (soils, vegetation, and water, etc.) are considered. Once 

the simulations are made, TOA radiance could be determined according to Equation (1). In total, for the 

TIGR database and the JHU Spectral library, 8,883,000 different situations are simulated for retrieval. 
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2.3. LST Retrieval Method from Two AHS MIR Channels 

The daytime MIR radiance contains not only the radiance emitted by the land surface and atmosphere 

but also the solar radiance reflected by the land surface and scatted by the atmosphere. To retrieve LST 

from MIR data, the direct solar radiance should be estimated first to eliminate the effect of solar radiance, 

and then a split window method should be developed to estimate the LST using the radiance ( ) 

after extracting the reflected solar direct radiance.  

2.3.1. Estimation of Direct Solar Radiance 

For the daytime MIR data, estimation of direct solar radiance is premise for LST retrieval because 

the radiance measured during daytime is strongly affected by the reflected direct solar radiance, which 

is coupled by the bi-directional reflectivity of the surface (ρbi), the solar radiance at ground level ( ), 

and the transmittance from ground to sensor ( ). As we all know,  is related to WVC and VZA, while 

 is related to WVC and SZA. Therefore, the relationship between direct solar radiance ( ) 

and WVC, VZA and SZA is investigated to estimate the direct solar radiance by assuming that the 

surface is Lambertian and the LSE is known. 

Relationship between Direct Solar Radiance and WVC 

To investigate the relationship between Di and WVC with the aid of simulated data, a scatter plot 

between Di and ln(WVC) is shown in Figure 1. The data is shown for CH66 and CH68 with different 

VZAs and SZAs at the LST conditions of 250~310 K and WVC of 0~5.5 g/cm2. Figure 1a,b shows the 

relationships at the six different VZAs when SZA = 0°, while Figure 1c,d shows those at six different 

SZAs when VZA = 0°. It is noted that Di and ln(WVC) can be fitted using a quadratic polynomial with 

a formula as Equation (3) with a correlation coefficient of 0.985. Similar results also can be obtained for 

other combinations of SZAs and VZAs. 
2ln( ) [ln( )]iD a b WVC c WVC      (3)

where a, b and c are the fitting coefficients. Di is the direct solar radiance. 

Figure 1. Relationships between direct solar radiance (Di) and ln(WVC). (a) AHS CH66 

(SZA = 0°, VZA = 0~60°). (b) AHS CH68 (SZA = 0°, VZA = 0~60°). (c) AHS CH66 (VZA 

= 0°, SZA = 0~60°). (d) AHS CH68 (VZA = 0°, SZA = 0~60°). 
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Figure 1. Cont. 
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Figure 1. Cont. 

 
(d) 

Direct Solar Radiance at Different VZAs 

To analyse the effect of VZA on Di, Figure 2a,b express the relationships between coefficients a, b, 

c and 1/cos(VZA) at SZA = 0° and SZA = 60°, respectively. It is found that the coefficients a, b, and c 

can be fitted using the formulations of a = a1/cos(VZA) + a2, b = b1/cos(VZA) + b2, and  

c = c1/cos(VZA) + c2. The direct solar radiance can be described as a function of WVC and VZA as 

Equation (4) with a correlation coefficient of 0.992. 

   
 

 
  22 2 2

1 1 1ln ln
cos cos cos

i

a b c
D a b WVC c WVC

VZA VZA VZA
       
     
     
       

(4)

where a1, a2, b1, b2, c1, and c2 are unknown coefficients. 

Figure 2. Relationships between coefficients a, b, c and 1/cos(VZA). (a) SZA = 0°. (b) SZA = 60°. 
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(b) 

Direct Solar Radiance at Different SZAs 

To acquire Di at other SZAs, Figure 3a,b shows the relationships between coefficients a1, a2, b1, b2, 

c1, c2 and cos(SZA) in CH66 and CH68, respectively. It can be found that these coefficients a1, a2, b1, b2, 

c1, and c2 can be expressed as a linear relationship of the cosine of SZA, i.e., a1 = a11 cos(SZA) + a10,  

a2 = a21 cos(SZA) + a20, b1 = b11 cos(SZA) + b10, b2 = b21 cos(SZA) + b20, c1 = c11 cos(SZA) + c10, and 

c2 = c21 cos(SZA) + c20. Di can be described as a function of WVC, VZA, and SZA as Equation (5) with 

a correlation coefficient of 0.994. 
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where a11, a10, a21, a20, b11, b10, b21, b20, c11, c10, c21, and c20 are fitting coefficients. 

2.3.2. Estimation of LST  

Based on the differential absorption (especially for WVC) in two TIR channels in 10~12.5 μm, a  

split-window method was improved for LST retrieval from TIR data by expressing LST as a linear 

function of the brightness temperatures Ti and Tj measured in the two adjacent TIR channels [14,15]. In 

consideration of the similar RTEs in MIR and TIR without the influence of solar direct radiance, this 

paper extends the split-window method to the MIR spectral region for LST retrieval after eliminating 

the effect of direct solar radiance. The new method is expressed as follows: 
' ' ' '
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where ε = (εi + εj)/2, Δε = εi − εj, and k0, k1, k2, k3, k4, k5, and k6 are unknown coefficients, which can 
be derived from simulated AHS data.  and  are the TOA equivalent brightness temperatures in two 

MIR channels. εi and εj are the LSEs in channel i and j, respectively. ε is the averaged emissivity, and Δε 

is the emissivity difference between the two MIR channels. 

Figure 3. Relationship between coefficients a1, a2, b1, b2, c1, c2 and cos(SZA). (a) AHS 

CH66. (b) AHS CH68.  
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direct solar radiance retrieval, Figure 4a,b shows the histograms of the difference between the estimated 

and actual Di in CH66 and CH68, respectively. The root mean square errors (RMSEs) are  

0.0123 W/(m2·sr·μm) for CH66 and 0.007 W/(m2·sr·μm) for CH68. The correlation coefficients (R) are 

0.999 and 0.998, respectively.  

Table 1. Fitting coefficients for the direct solar radiance estimation. 

Channel 
Coefficient 

a11 a10 a21 a20 b11 b10 b21 b20 c11 c10 c21 c20 

AHS CH66 2.849 −0.325 −0.162 0.028 −0.037 −0.026 −0.020 0.005 −0.018 −0.007 −0.006 0.002 

AHS CH68 0.709 −0.163 −0.086 0.026 −0.080 −0.001 −0.010 0.004 −0.024 0.002 −0.001 0.001

Figure 4. Histogram of the difference between the estimated and actual direct solar radiance 

(Di) for CH66 (a) and CH68 (b). 

(a) (b) 

3.2. Coefficients of LST Retrieval Method  

After eliminating the effect of direct solar radiance, WVC and LST are divided into several tractable 

sub-ranges to improve the accuracy of LST retrieval. WVCs are divided into five sub-ranges: [0–1.5], 

[1–2.5], [2–3.5], [3–4.5], and [4–5.5] g/cm2, and LSTs are divided into three sub-ranges:  

265 K ≤ LST ≤ 295 K, 290 K ≤ LST ≤ 310 K, and 305 K ≤ LST ≤ 325 K [31]. Then, the coefficients in 

Equation (6) can be obtained through a statistical regression method for each sub-range under different 

VZAs. As an example, Figure 5 displays the coefficients as functions of the secant of VZAs at the  

sub-ranges of LSTs, which vary from 305 K to 325 K, for the two WVC groups. The coefficients k0~k6 

for other VZAs can be linearly interpolated as function of the secant of VZA. Similar results are obtained 

for the other sub-ranges. 
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Figure 5. Coefficients for the sub-range with LST varying from 305 K to 325 K.  

(a) Dry atmosphere (WVC = 0~1.5 g/cm2). (b) Humid atmosphere (WVC = 4~5.5 g/cm2). 

(a) (b) 

3.3. Result of LST Retrieval  

In practice, three steps are needed to retrieve LST. First, direct solar radiance is estimated with 

Equation (5). Second, approximate LSTs are estimated according to Equation (6) with the coefficients 

derived for the whole range of LST (provided that the sub-ranges of emissivity and WVC are known). 

Finally, more accurate LSTs are estimated using Equation (6) but with the coefficients k0~k6 of the LST 

sub-range that is determined according to the approximate LST. Figure 6 gives the RMSEs between the 

actual and estimated LST as functions of the secant of VZA for different sub-ranges. The RMSEs are 

shown to increase with the increase of VZAs. The RMSEs are less than 1 K for all sub-ranges; the 

minimum value is 0.16 K (LST = 305~325 K, WVC = 4~5.5 g/cm2, and VZA = 0°).  

Figure 6. RMSEs between the actual and estimated LST for different sub-ranges.  

(a) 305 K ≤ LST ≤ 325 K. (b) 290 K ≤ LST ≤ 310 K. (c) 265 K ≤ LST ≤ 295 K.  

(d) 265 K ≤ LST ≤ 325 K. 

(a) (b) 
WVC: ■0~1.5 ●1~2.5 ▲2~3.5 ▼3~4.5 ◆4~5.5 (Unit: g/cm2) 
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Figure 6. Cont. 

(c) (d) 
WVC: ■0~1.5 ●1~2.5 ▲2~3.5 ▼3~4.5 ◆4~5.5 (Unit: g/cm2) 

4. Sensitivity Analysis 

LST retrieval accuracy is affected by several factors such as the instrumental noises, uncertainties 

of LSEs and atmospheric properties, and the uncertainty of the method. In this study, the instrument 

noises (Noise Equivalent difference Temperature, NEΔT), the uncertainties of LSEs and WVCs are 

taken into account.  

4.1. Sensitivity Analysis to Instrumental Noises 

The expected NEΔT in AHS channels 66 and 68 is approximately 0.33 K [32]. To analyse the effect 

of NEΔT on the LST retrieval using Equation (6), a Gaussian random distribution error of 0.33 K is 

added to the TOA brightness temperatures in CH66 and CH68 in Equation (1). Also, the errors between 

the LSTs retrieved from the noise-added brightness temperatures and those determined from the  

noise-free brightness temperatures for the sub-ranges of LST varying from 305 K to 325 K in the five 

WVC sub-ranges are shown in Figure 7. The results show that the NEΔT of 0.33 K produces 

approximately an error within 0.63 K when LST is varying from 305 K to 325 K.  

Figure 7. LST retrieval error caused by NEΔT when LST is varying from 305 K to 325 K. 
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4.2. Sensitivity Analysis to LSEs 

To analyse the effect of the LSE uncertainty, a Gaussian random distribution error, where the mean 

of the distribution is 0 and the standard deviation is 0.01, is added to emissivities εi and εj in Equation 

(6). Table 2 shows the effect of emissivity on the accuracy of LST retrieval at the condition of VZA = 

0°. It is worth noting the LST retrieval errors (the LSTs retrieved from LSE-uncertainty-added conditions 

minus those determined from no-LSE-uncertainty conditions) vary from 0.4 K to 2.83 K by assuming 

that the uncertainty of the emissivity is 0.01; errors increase with the decrease of LSTs. The reason may 

be that the proportion of direct solar radiance is larger in the total radiance when the LST is lower, and 

the same emissivity error may produce a larger effect on TOA radiance with lower LSTs. Meanwhile, 

the retrieval accuracy will be increasing with the increase of WVC. The possible reason is that the impact 

of the atmosphere on LST retrieval is more significant when the WVC increases; thus, the same 

emissivity error would produce smaller errors when the WVC is larger. 

Table 2. Effect of the emissivity uncertainty (Δε = 0.01) on LST retrieval. 

WVC 

(g/cm2) 

305~325 (K) 

Error 

290~310 (K) 

Error 

265~295 (K) 

Error 

265~325 (K) 

Error 

0~1.5 0.50 1.04 2.83 2.71 

1~2.5 0.49 0.94 1.68 1.31 

2~3.5 0.44 0.84 1.37 0.92 

3~4.5 0.40 0.76 1.40 0.81 

4~5.5 0.40 0.74 1.26 0.73 

4.3. Sensitivity Analysis to WVC  

To investigate how significant is the effect of the uncertainty of the WVC on the retrieval of LST, a 

Gaussian random distribution error, where the mean of the distribution is 0 and the standard deviation is 

10%, is added to WVC. The WVC error will affect the accuracy of direct solar radiance estimation and 

cause the wrong selection of sub-range retrieval coefficients. Figure 8a,b shows the histograms of LST 

errors caused by a WVC uncertainty of 10% under the conditions of VZA = 0°, LST = 305~325 K, and 

atmospheric WVC = 0~1.5 g/cm2 (dry atmosphere) or 4~5.5 g/cm2 (wet atmosphere). It can be seen from 

Figure 8 that RMSE and Bias are 0.21 K and 0.02 K under dry atmosphere, respectively, and  

0.21 K and 0.047 K under wet atmosphere, respectively. 

Considering the instrument noises ( sin cos ∙ cos ∙ cos sin ∙ sin ), the 

uncertainties of LSEs ( ) and WVC ( ), and the accuracy of the algorithm ( ), 

the overall error on the LST ( ) can be described by the following:  

2 2 2 2( ) ( ) ( ) ( ) ( )r NE T WVCLST LST LST LST LST         (7)

Inserting the  values illustrated in Figure 6 for sub-ranges of LST = 305~325 K and  

LST = 265~295 K at all combinations of VZAs and WVCs, the overall  error is shown in  

Figure 9. Figure 9 shows that the biggest RMSE is approximately 3.39 K for the sub-range of  

LST = 265~295 K and WVC = 0~1.5 g/cm2 at VZA = 60°. The smallest RMSE is approximately  

0.72 K for the sub-range of LST = 305~325 K and WVC = 4~5.5 g/cm2 at VZA = 0°. 
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Figure 8. Histogram of the difference between the actual and estimated Ts caused by a WVC 

uncertainty of 10%. (a) WVC = 0~1.5 g/cm2. (b) WVC = 4~5.5 g/cm2. 

(a) (b) 

Figure 9. Total LST retrieval error caused by uncertainties of NEΔT, emissivity, and WVC. 

(a) High LST conditions (LST = 305~325 K). (b) Low LST conditions  

(LST = 265~295 K). 

        (a)        (b) 
WVC: ■0~1.5 ●1~2.5 ▲2~3.5 ▼3~4.5 ◆4~5.5 (Unit: g/cm2) 

5. Preliminary Application to AHS data 

5.1. Data Processing 

The AHS instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave 

infrared (SWIR), mid-infrared (MIR), and thermal infrared (TIR) spectral ranges. The instrument is 

operated by Instituto Nacional de Técnica Aerospacial (INTA) and it has been involved in several field 

campaigns since 2004. The arrangement of the AHS mid-infrared bands covered by 3.3~5.4 µm has 

seven bands (i.e., CH 64 ~CH 70), and its bandwidth is 35 nm with λ/∆λ (minimum) of 110 [33]. In this 

study, the proposed method is applied to AHS data collected on 4 July 2008 over a study area in the city 

and suburbs of Madrid covered by vegetation, water, buildings, roads, bare soil, etc.  
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Due to the influence of the attitude and speed of the spacecraft and the Earth’s rotation, the AHS 

image would emerge a certain degree of geometric distortions, such as compression, stretching and offset 

compared to the actual position of the ground target pixels. Hence, to obtain the accurate location of the 

image pixels, the image geometric correction is carried out using the module of IGM in ENVI 4.7 with 

the aid of the geographic coordinate of each pixel. Then, the SZA for every pixel can be calculated using 

Equation (8) with the information of latitude and longitude, while the VZA of each pixel can be acquired 

according to the field of view (FOV) of the AHS sensor (90°) and the pixel numbers.  

sin( ) cos( ) cos( ) cos( ) sin( ) sin( )h          (8)

where θ is the solar zenith angle. h is the hour angle at the local sidereal system. δ is the solar 

declination. φ is the local latitude. 

Because it is difficult to obtain the ground measured LSEs in practice, the LSEs are determined using 

the supervised classification methods with the VNIR hyperspectral data equipped on the AHS sensor. 

Five categories, i.e., grass, water, roads, houses and bare soil, have been classified. The LSEs in AHS 

CH 66 and CH 68 are obtained by integrating emissivity spectral curves extracted from the JHU library 

with the spectral response function. In addition, WVC is extracted from the radiosonde atmospheric 

profiles acquired at the imaging time (approximately 0.76 g/cm2). 

5.2. Results and Validation 

After data processing, the LSTs can be derived using Equation (6) from AHS MIR data on 4 July 

2008 (N-S data 11:32 and W-E data at 11:16, both are at 2497 m with scan-rate 18.7 rpt, see  

Figure 10a,b). The selected surfaces for validation were (see Figure 11): (i) Water body, as cold target, 

in the lake at “El Retiro” park (40°25'1.65"N, 3°41'2.65"W), (ii) Bare soil, as hot target, in the soccer 

field at UAM (40°32'52.44"N, 3°41'48.45"W), (iii) Green grass, as cold target, in the Rugby field at 

UAM (40°32'51.71"N, 3°41'54.33"W). The in situ measurements were carried out making transects at 

regular steps in representative and vast surfaces during the flight overpasses. Various instruments in the 

thermal infrared domain were used, including the CIMEL models CE312-1 and CE312-2, Heitronics KT 

19.85 and NEC TH9100, whose technical specifications are shown in Table 3 [33]. 

Table 3. Technical specifications of the thermal instruments [33]. 

Instrument Spectral Range (um) Temperature Range (°C) Accuracy (K) Resolution FOV 

Cimel CE312-1 

8~13 

−80 to 50 0.1 

8 mK 

10° 
11.5~12.5 50 mK 

10.5~11.5 50 mK 

8.2~9.2 50 mK 

Cimel CE312-2 

8~13 

−80 to 60 0.1 

8 mK 

10° 

11~11.7 50 mK 

10.3~11 50 mK 

8.9~9.3 50 mK 

8.5~8.9 50 mK 

8.1~8.5 50 mK 

Heitronics KT19 9.6~11.5 −50 to 200 0.1 0.05 K 2° 

NEC TH9100 8~14 −40 to 120 2 0.1 K  

(320 × 240) 

22° × 16° 
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Figure 10. LST retrieval for AHS data. (a) LST of AHS (N-S) (b) LST of AHS (W-E). 

(K)  (K) 

(a) (b) 

Figure 11. Three areas with different covering types. (a) Retiro Park (water). (b) Soccer 

field (bare soil). (c) Football field (grass) [33]. 

 
(a) (b) (c) 

For each validation area, the LSTs of the 2 × 2 pixels nearest to the geographic coordinate of the  

in situ measurement are selected. The estimated average LST of the four pixels is compared with the 

average of in situ measurements acquired within 5 minutes. The differences between estimated and 

measured LST for the three areas are approximately 0.7 K, 0.9 K, and 2.3 K (see Table 4). The vegetation 

area presents a larger LST retrieval error, which would be caused by its larger bias of measured LST 

(the bias is approximately 2 K, see Figure 12) due to the nonuniformity of the grass area covered by 

grass and soil; whereas, water and bare soil received better results because the compositions of water 

and bare soil are relatively uniform.  
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Table 4. Validation results over three areas. 

Coordinate 
Surface 

Type 

LSE 
Retrieved LST 

In situ  

Measurement 

In situ 

Bias ε66 ε68 

40°25′1.65″N, 3°41′2.65″W Water 0.976 0.979 297.6K 298.3K 0.3K 

40°32′52.44″N, 3°41′48.45″W Bare soil 0.769 0.799 314.8K 313.9K 0.6K 

40°32′51.71″N, 3°41′54.33″W Grass 0.984 0.987 306.3K 304.0K 2K 

Figure 12. Validation results over three areas. (a) Retiro Park (water). (b) Soccer field (bare 

soil). (c) Football field (grass). 

(a) (b) (c) 

6. Conclusions 

In this study, a new algorithm for LST retrieval from daytime AHS data in two MIR channels, CH66 

and CH68, is proposed. In this method, to retrieve LST more accurately, the atmospheric WVC and the 

LST are divided into several tractable sub-ranges. The coefficients of each sub-range in the algorithm 

are calculated using a statistical regression method from the numerical values simulated with the 

atmospheric radiative transfer model MODTRAN 4.0 under different atmospheric and surface 

conditions. The simulation analysis shows that the LST could be estimated by this algorithm with the 

RMSE less than 1 K for all of the sub-ranges with the knowledge of the LSEs. 

In addition, the sensitivity analysis is performed in terms of the instrumental noise, the uncertainty of 

the LSE and WVC. The results show that, for the sub-range with VZA = 0° and LST = 305~325 K, an 

instrumental error of 0.33 K would produce a LST retrieval error of 0.6 K; the LST error caused by an 

LSE uncertainty of 0.01 varies from 0.4 K to 2.8 K. A LST retrieval error of approximately 0.2 K is 

caused by the WVC uncertainty of 10%. The largest total uncertainty is approximately 3.39 K for the 

sub-range of LST = 265~295 K and WVC = 0~1.5 g/cm2 at VZA = 60°. The smallest one is 

approximately 0.72 K for the sub-range of LST = 305~325 K and WVC = 4~5.5 g/cm2 at VZA = 0°. 

Finally, the proposed LST retrieval algorithm is applied to the AHS data and is validated over three 

land surface types with in situ measurements. The validation results show that the differences between 

estimated and measured LST for water, bare soil and grass areas are approximately 0.7 K, 0.9 K, and  

2.3 K, respectively.  
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