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Abstract: Historical perspective images have been proved to be very useful to properly 

provide a dimensional analysis of buildings façades or even to generate a pseudo-3D 

reconstruction based on rectified images of the whole structure. In this paper, the case of 

Gobierna Tower (Zamora, Spain) is analyzed from a historical single image-based modeling 

approach. In particular, a bottom-up approach, which takes advantage from the perspective 

of the image, the existence of the three vanishing points and the usual geometric constraints 

(i.e., planarity, orthogonality, and parallelism) is applied for the dimensional analysis of a 

destroyed historical building. Results were compared with ground truth measurements 

existing in a historical topographical surveying obtaining deviations of about 1%. 

Keywords: historical photographs; single image; vanishing points; demolished 

buildings; perspective 
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1. Introduction 

Despite the high proliferation of three-dimensional scanning systems, which have revolutionized 

the data acquisition fashion, photogrammetry, and computer vision techniques, have evolved to offer 

powerful and friendly tools that can render virtual worlds that meet the most demanding expectations: 

high geometric accuracy on the points, high radiometric quality on the surfaces of the object, and an 

integrated environment where the user can interact and even play with the model or demand from its 

data base sophisticated information. In addition, historical buildings modeling through laser scanner 

become impossible when the structure does not exist or the whole building has been destroyed.  

In these cases, the problem increases since the building cannot be reconstructed from two or more 

images [1–3]. Trying to find a solution to these situations, several authors have proposed approaches 

and methods based on the single view geometry [4–8]. However, only a few have been focused on the 

case of demolished buildings modeling from historical photography [9–11]. This last aspect represents 

a hard task as the type and geometry of the camera is completely unknown and the accuracy 

assessment of the results is, sometimes, impossible due to the nonexistence of the building. In this 

sense, some authors have developed approaches for obtaining internal camera parameters from a single 

view [12,13] and to provide a quality control of the resulting model or dimensional analysis based on a 

controlled virtual camera embedded into a CAD (Computer Aided Design) environment [14].  

This contribution relies on software, sv3DVision, developed in 2005 [4,15] at the University of 

Salamanca. The main aim that inspired the design of the program was to join the strength of the 

simplicity involved in the geometry-that guarantees that the user can easily get involved in the task-and 

the high performance expected on every highly automated approach. As a result, the hybrid method 

enables to extract and exploit the image information that leads to the determination of the object 

structure (through its vanishing points), besides the reliability provided by the application of robust 

estimators, M-type and RANSAC (see infra). Last but not least, the program provides a twofold 

aspiration: a technical one that should prove to be efficient on modeling different structures under a 

diversity of circumstances; and a pedagogical one based on a simulation background that should 

motivate students or researchers to keep going deeper on the topic.  

Through the years, the software has been successfully tested on a variety of environments, such as 

architecture, forensic sciences, traffic scenes and engineering; it has been awarded by the ISPRS 

Organization and has been used in the teaching/learning of Cartographic Engineering. However, this is 

not the main motivation that has decided us to present this contribution, but rather the importance of using 

our work to preserve, enhance, and highlight the historical heritage of our community, Castilla-Leon.  

This paper addresses the problem of single historical photography dimensional analysis and  

pseudo-3D modeling (see infra for an explanation of this term) of demolished buildings, focusing the 

case of study on the emblematic “Gobierna Tower” located in Zamora (Spain). The proposed method 

is suitable for those regular structures, which contain several geometric constraints, such as planarity, 

orthogonality, and parallelism, and hold the three orthogonal principal directions (i.e., three vanishing 

points). In fact, the key to success relies on a robust approach for vanishing points computation, which 

allows us to obtain more accurate results. To this end the paper has been organized as follows: after 

this introduction, Section 2 remarks the historical background around the “Gobierna Tower” and its 

importance for the city of Zamora; Section 3 depicts briefly some basic theory about projective 
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geometry and vanishing points; Section 4 describes the method applied to the “Gobierna Tower” 

putting special emphasis in the vanishing points computation method; a final section is devoted to put 

across the concluding remarks. 

2. Historical Background 

One of the most highlighted cases in lost buildings, that belonged to the architectural heritage of the 

city of Zamora (Spain) [16], is the demolition of the towers that characterized the Stone Bridge on the 

river Duero. 

During its long-term presence, the Stone Bridge has undergone continuous transformations, 

transformations that have been necessary to reduce the devastating effects of the endemic swellings 

that knocked down the city slums. 

At the end of the 19th century, its state was so worrisome that it was closed to the traffic and 

replaced upstream by another viaduct. Once the local authorities dealt with the construction of a new 

metallic bridge, also decided to recover the battered Stone Bridge. Between 1905 and 1908, Luis de 

Justo, Civil Engineer, designed and executed eleven projects that modified radically the appearance of 

the medieval bridge of Zamora, in addition to repairing it. Up to then, the Stone Bridge of Zamora 

displayed a similar configuration to the original one. Several documents show this fact, such as the 

View of Zamora by Anton van Wyngaerde (1570) (Figure 1), the plan by Blas de Vega (1820) [17], 

the photography of J. Laurent (c. 1870) (Figure 2), and, finally, the 1905 previous state plans by Luis 

de Justo. Sixteen pointed arches -one more than nowadays- laid out a 280-meter-long bridge, which 

leaned in fifteen foundations, finished off by cutwaters and lightened by spillways. Two towers 

controlled bridge crossing. The deck, straight guidelined and double downgrade ended, angled sharply 

towards the east to make difficult enemy assault, once surpassed the exit tower. The deck was finished 

off by 0.40 m wide parapets. At that moment, it was crowned by more than 300 battlements. 

Over the cutwater of the previous tympanum to the angle, rose the tower of La Gobierna, popularly 

known due the weather vane that topped it. Moreover, in Wyngaerde’s View or in Blas de Vega’s 

elevation, an initial door prevented parking on the deck during the night. In the other extreme, over the 

northern pier, an arc rose that opened the bridge by to the city. 

Figure 1. Detail of the Stone Bridge of the Zamora city drawn by Antón van den 

Wyngaerden, in 1570. 
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Figure 2. Bridge over the Duero river in Zamora, photograph acquired by J. Laurent, in 

1870. Photograph of the southern half (arcs 7–3). 

 

Nothing remains today. After Luis de Justo rehabilitation, the slopes were modified and the 

spillways were extended, and even new ones were added. The works undertaken by the Department of 

Public Work between 1905 and 1907 [18] consisted of the demolition of towers, parapets, and 

tympanums to facilitate the later integral repair of the bridge. Thus, vaults were reviewed, tympanums 

were reconstructed, and new asphalt paved the existing surface. In the northern part, the arc was 

replaced with one roundabout, and, in the southern, in the angled stretch, the previous arc to the 

“Gobierna Tower” was totally recovered. Fortunately, before disappearing, some of these architectures 

were documented with building survey, while others did so with photography. This is the case of the 

Stone Bridge that appears with its towers and doors, in several documents. 

3. Theoretical Basis: Single View Photogrammetry 

The vanishing points, (VPx, VPy, VPz, see Figure 3) related to the perspective image of a box-like 

shape (like a building) contain information, both of the camera and of the image pose. Thus, the 

determination of these vanishing points can lead, firstly, to the determination of the interior and 

exterior orientation of the image and secondly, to the computation of the metric properties of any 

element pertaining to the faces of such a solid. 

As can be seen from Figure 3, the intersections, from the point of view (S), of the three directions 

(XYZ) of the box with the image plane give the three vanishing points: VPx, VPy, and VPz, conforming 

a so-called perspective pyramid, The location of these points depends on: the focal length SP, with P, 

the principal point (the intersection of the image axis with the image plane), the horizontal angle 

QSVPx (horizontal angle of the camera axis with the main façade), and the vertical angle PSQ (angle 

of the camera axis with the vertical direction). As will be seen later, the angle that renders the rotation 

of the camera around its own axis (swing angle) can be derived from the angle of the horizon line with 

the edge of the image. 

It can be seen that the principal point, P, is the orthocenter of the triangle VPx, VPy, VPz, and that 

the position of the point of view can be derived easily once the previous parameters have been 

computed and a restriction from the object is provided (e.g., a known distance).  
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Figure 3. Vanishing point geometry: S, point of view; P, principal point; (VPx, VPy, VPz), 

vanishing points; VPx, VPy, horizon line; PVPz, maximum slope line; Q, intersection of the 

maximum slope and horizon lines.  

 

In any case, it can be seen that the first step is always to determine the position of the three 

vanishing points related to a certain building and this relies heavily on both the robustness of the pose 

configuration and on the ability of extracting straight lines from the image that intersect on each of the 

vanishing points. The quality of the process, as will be discussed later, thus, depends on the definition 

of the image lines and on the angle that each bundle of vanishing lines spans. From this, it can be seen 

that when the perspective angles are poor, the vanishing point are far away from the center of the 

image, decreasing, therefore, the reliability of the process.  

4. A Case Study: The Historical and Demolished “Gobierna Tower” 

The “Gobierna Tower” together with its bridge was documented through several drawings, 

historical photographs and even with a topographical surveying performed by the engineer Luis de Justo 

in 1905. In particular, the most relevant documents correspond to Wygaerden [19] who performed some 

perspective drawings of the bridge with its tower, or the historical photographs of Laurent  

in 1870. In our case, different documents and perspective historical images have been analyzed in 

order to test the historical single image-based modeling approach (Figure 4). In addition, the topographical 

surveying, which contains a dimensional analysis of the tower has been considered as “ground truth” 

to assess the accuracy of the process.  

The following figure (Figure 4) outlines the workflow developed:  

 



Remote Sens. 2014, 6 1090 

 

 

Figure 4. Workflow developed for the historical single image-based modeling applied to 

the case study of the “Gobierna Tower”.  

 

4.1. Data Processing 

There are two ways of retrieving the metric information of the object from a single image: 

automatic and manual. The first one is always preferable when the image exhibits high quality  

(high-resolution and definition of the vanishing lines), when the ratio between correct observations 

(automatically extracted line segments) and mistaken observations (blunders derived from shadows, 

scars on the image, reflections, etc.) is above 4 (environ) and when the perspective geometry is strong 

enough. The second one is the alternative to weak cases in which these drawbacks are combined: low 

number of vanishing lines, poor quality image, high number of blunders, and poor perspective geometry.  

The automatic approach is structured in three steps:  

(a) Extracting edge pixels by means of the Canny filter [20]. 

(b) Clustering pixels into raster segments according to neighboring criteria and with length 

restrictions in a fashion very similar to the Burns Method [21].  

(c) Determining vector lines (first and last points) from raster segments according to a plane 

collinearity condition.  

The output from these processes is the input in the following one: the determination of the 

vanishing points. Several methods of approaching this have been implemented [15]: minimization of 

the area of the triangle, modified Gaussian sphere, Tales theorem, modified Hough Transform, etc. 

In all of them, a central role is played by the RANSAC (RANdom SAmple Consensus) robust 

estimator [22] and its ability of determining and erasing blunders.  
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A whole set of possibilities have been applied to automatically process the target image but none of 

them has been successful due to the reasons outlined above. Thus, finally, the manual procedure was 

applied and even though there is really a very small set of lines, an acceptable result has been reached 

and this have been possible by the application of the modified Hough Transform Method, which is 

briefly described in the following lines: 

Figure 5. Interpretation of several cases of the Hough Transform applied to straight lines. 

For each of the four cases, the Image Space is represented at the left and the Parameter 

Space is represented at the right. In the Image space, there can be seen: (1) A straight line; 

(2) A point; (3) A set of collinear points; (4) A vanishing point.  

 

As is well known, the Hough Transform [23] deals with the relation between the space representation 

of some geometric feature (points, straight lines, circles, etc.) and the representation of its geometric 

parameters under the same Cartesian principles. For the following, we will focus on the problem we 

are trying to overcome: determining lines from pixels extracted on the image and determining vanishing 

points from these lines. The strength of the Hough Transform relies on the complete symmetry 

between points and lines. According to the conventional expression of a 2D straight line y = ax + b, 

the parameters to render a point (x,y) are exchangeable with the parameters to describe a line (a,b). 

Thus a straight line in the image space is transformed to a point in the parameter space and vice versa, 

a point in the image space is transformed to a straight line in the parameter space (Figure 5).  

This leads (at least) to the following series of consequences (Table 1): 

Table 1. Different cases between image and parameter spaces for the Hough transform. 

Case Image Space  Parameter Space 

1 A straight line A point 

2 
A point (family of straight lines that 

intersect on a point) 
A straight line (family of points that belong to a line) 

3 
A set of collinear points  

(that belong to the same line) 
A set of lines that intersect on the same point 

4 
A vanishing point  

(set of lines that intersect on a point) 

A set of collinear points (the straight line to which 

they belong represents the vanishing point) 
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The Hough procedure works by quantizing the image space, then extracting all information for 

every discrete cell, translating this information to the equivalent parameter space, and, finally, proceeding 

to some voting scrutiny to find out the relevant feature that meets the target criteria (The drawback 

related to the singularity of the parameter a when lines are close to verticality is overcome by tuning 

from the Cartesian (a,b) representation of the line to its polar (r,α) expression). 

To determine a vanishing point the procedure is as follows: 

(a) For every start and end point of every line segment rendered by the automatic or manual 

extraction, the correspondent line in the parameter space is computed and represented. Every 

cell that lies on the line receives one vote.  

(b) A voting procedure is undertaken so that the most visited cells give the lines that form 

families of lines that pass through each of the vanishing points.  

(c) For all these lines the correspondent parameters (a,b)i are computed. 

(d) The best coordinates of each of the vanishing points are computed by applying a least 

squares criteria to the equation: y0 = aix0 + bi in which (x0,y0) are the coordinates of a 

vanishing point. 

(e) In order to avoid residual outliers, a weighting procedure is applied to the above task, so that 

a robust M-estimator, modified Danish estimator [24] can be implemented and, thus, the 

blunders may be expelled from the computation and the reliability can be improved.  

Once the coordinates of the three vanishing points are computed the interior and exterior orientation 

parameters are addressed from the perspective pyramid, built from these points plus the point of view 

(Figure 6c): 

(a) The orthocenter of the triangle formed by the three vanishing points (VPx, VPy, VPz) yields the 

principal point (P) (Figure 6c). 

(b) The rotation angles (θ,ν) and the focal length (f) can be derived from the following relations 

(Figure 6).  

On the horizontal triangle (Figure 6a) formed by the point of view, S, and the horizontal vanishing 

points, VPx and VPy, the following relations hold Equation (1): 

tan

tan

QVPx SQ
SQ QVPy

QVPx
QVPy





 



 (1) 

with 2SQ QVPx QVPy  (in the horizontal triangle). 

On the vertical triangle (Figure 6b) formed by the point of view, S, the vertical vanishing point VPz 

and the intersection of the horizon and maximum slope lines, Q, the following relations hold Equation (2): 

tan
PQ

PVPz
   (2) 

with 2f PQ PVPz   (in the vertical triangle). 
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Figure 6. (a) Horizontal triangle formed by the point of view, S, and the horizontal 

vanishing points VPx and VPy ,with the azimuth angle (θ); (b) Vertical triangle formed by 

the point of view, S, the vertical vanishing point, VPz, and the intersection of the horizon 

and maximum slope lines, Q, with the tilt angle (ν); (c) Perspective triangle formed by the 

three vanishing points (VPx, VPy, VPz) that contains the principal point (P) as the 

intersection of the heights of the triangle and image showing the swing angle (χ) around the 

camera axis: the horizon line and the width image edges are not parallel (in addition, 

the maximum slope line and the height image edges are not parallel).  

   

(a) (b) (c) 

Finally, the swing angle (Figure 6c) can be computed from Equation (3):  

( )
tan

( )
VPx VPy

VPx VPy

Y Y

X X






 (3) 

(c) Once these parameters are known, the coordinates of the point of view, S, can be easily derived 

by applying a certain restriction to the object (in addition to the point of view itself) and then 

solving from the collinearity equations (Figure 7). An example case is measuring a horizontal 

distance in the object and setting the origin of the Datum at one of these points. We can, thus, 

write six equations for five unknowns: (XYZ)S and the two scale factors for each collinearity 

condition [25] Equation (4). 

a p A S S

a p aA A S aA S

A S S

b p B S S AB

b p bB B S bB S

B S S

x x X X X

y y R Y Y R Y

f Z Z Z

x x X X X D

y y R Y Y R Y

f Z Z Z

 

 

 

        

 

  

        

 

     
     
     
          

     
     
     
          

 
(4) 

where xa, ya, xb, yb are the image coordinates of the ground points A and B, respectively, which 

define the Datum and the known horizontal distance DAB; xp, yp are the principal point, P, 

coordinates; R is the rotation matrix and Xs, Ys, Zs and λaA, λbB are the unknowns corresponding 

to the point of view, S, and the two scale factors, respectively. 
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Figure 7. The coordinates of the point of view, S, can be computed once the principal point 

(P), focal length (f), and rotation angles (θ,ν,χ) are known by proceeding to a Datum 

definition by which two imaged points (a and b) receive two object coordinates: A(0,0,0) 

and B(DAB,0,0) and by means of the collinearity equations. In this case, the X coordinate of 

point B, that lies on X axis, is the measured distance between A and B.  

 

Figure 8. Dimensional analysis on a plane (in this case Y = 0) of the object and  

pseudo-3D modeling based on the rectification of the whole plane. The coordinates of any 

object point T can be computed from its image t, and the constraint YT = 0, by means of the 

collinearity equations.  

 

Finally, once the interior and the exterior orientations are solved, the dimensional analysis process 

and the pseudo-3D modeling process are available (Figure 8). By pseudo-3D modeling we mean that 

the object facades can be rectified, that is, digitally transformed to eliminate any perspective effect 

and, furthermore, if two facades are related by a orthogonality condition, as is usually the case, 

a double rectification step can be applied, that is, from the two 2D documents linked to each other a 3D 
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document can be obtained by an orthogonality relation. If more photographs, containing other pair of 

(orthogonal) facades are available, this process could be extended to complete the four (orthogonal and 

parallel) faces of the object. Both the dimensional analysis and the pseudo-3D modeling procedures are 

based on the collinearity equations and both require the definition of a geometric constraint 

(i.e., working plane) on the object. For example, we can work with the XZ plane for which  

the-planarity, verticality, and parallelism with XZ plane-constraint Y = 0 is applied. Furthermore, 

we can also work with YZ plane for which the-planarity, verticality, and parallelism with YZ  

plane-constraint X = 0 is applied. Obviously, both constraints imply an orthogonality relation between 

them. If more photographs, depicting other facades, were available, similar constraints could be applied 

to complete the whole building. Note that the scale factor could be propagated from the first image to 

the others although it would be highly convenient to measure more distances on the facades. 

For any object point T (with YT = 0), which is imaged on the photograph as t, we have Equation (5):  

1
;

t p T S t p T S

T

t p T S t p S

T S T S

x x X X x x X X

y y R Y Y R y y Y

f Z Z f Z Z

 


   

         

   

       
       
       
              

 (5) 

In addition, dividing the first and third equations by the second one and rearranging we get 

Equation (6):  

fryyrxxr

fryyrxxr
YZZ

fryyrxxr

fryyrxxr
YXX

ptp

ptp

SST

ptp

ptp

SST

132212

332313

132212

312111

)()(

)()(

)()(

)()(











 (6) 

where all the terms at the right side of the equation are known. This can be applied to discrete points or 

in a scanning fashion to all the pixels that lie in the face related to the XZ plane and therefore, obtain 

the pseudo-3D model of the façade. 

4.2. Results  

After analyzing more than ten images, the only historical photograph that properly worked presents 

a size of 7.7 × 12.18 cm and is scanned with a pixel resolution of 150 dpi providing an image  

of 455 × 719 pixels (Figure 9). The secret to success remains in the distance to the object (very close, 

around 70 m), as well as the well-defined perspective of the photograph towards the main three 

orthogonal directions. Furthermore, the selected photograph is based on the following hypotheses, as 

far as the building’s geometry is concerned: (i) façades are planar geometric structures; (ii) lens 

distortion is not considered; (iii) façade edges are straight and constitute the input data of the described 

method; and (iv) the existence of constraints (parallelism, perpendicularity, and coplanarity) of 

building’s edges and facades. 
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Figure 9. Historical photograph (1900) used for the single image-based modeling approach. 

 

According to the proposed approach, the photograph is manually vectorized with lines clustered along 

the three main object directions (X,Y,Z). As a result, the three main vanishing points (VPx, VPy, VPz) are 

computed, based on the robust Hough approach described above. The coordinates of these relevant 

points together with its RMSE (Root Mean Square Error), in pixel units, are outlined in Table 2. 

It should be noted the subpixel precision obtained. 

Table 2. Vanishing points coordinates and its errors. 

Hough Transform + Danish Estimator: (units: pixels)  VPx VPy VPz 

x 2,253.8 −587.42 283.55 

y 504.79 582.40 −7,425.58 

RMSE 0.057 0.046 0.318 

Computed the main structural components of the process, the geometric internal camera parameters, 

i.e., focal length and principal point, are estimated based on the perspective pyramid construction 

(Figure 10) taking the three vanishing points as vertices. The principal point of the image (P) is the 

orthocenter of this triangle, whereas the height of the pyramid corresponds to the focal length (f). The 

solved internal geometry of the camera, the camera pose (i.e. orientation and position) is computed. 

The orientation of the camera (θ,ν,χ) is computed, based on the geometric relations developed in 

Equations (1–3), which establish a relationship between the orthogonal directions (X,Y,Z) and the 

corresponding vanishing points (VPx,VPy,VPz), assuming the intrinsic geometric parameters of the 

camera known. For the spatial position (X,Y,Z)S, the user must introduce some known measurement of 

the building together with some geometric constraint in order to overcome the indetermination problem 

i.e., it is not possible to compute indirectly the camera position only with one image. In our case, a known 
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horizontal distance (8.70 m) together with a coplanarity constraint (Y = 0) was defined. This measure 

was extracted from the topographical surveying performed by the engineer Luis de Justo in 1905. 

Figure 10. Perspective pyramid computed for the single image-based modeling approach. 

The vanishing points (VPx, VPy, VPz) constitute the base of the pyramid, whereas the point 

of view, S, and the focal length, f, are the vertex of the pyramid and its height, respectively. 

 

The following table (Table 3) outlines the intrinsic and extrinsic parameters estimated for the 

unknown camera. 

Table 3. Internal and external parameters of the unknown camera. 

Internal Parameters (units: millimetres) External Parameters (units: degrees, meters) 

P [x] (mm) 25.29 θ: 38.114° XS: −29.71 

P [y] (mm) 65.40 ν: 105.5167° YS: −60.18 

f (mm) 44.86 χ: 177.5282° ZS: −13.66 

It should be noted, the more weakness along the Z axis in the vanishing points computations as the 

parallelism of the lines renders an intersection that is close to the infinite (Figure 10). This situation 

provides a weakness in this direction as the vanishing lines intersection contains more uncertainty 

along this vertical direction. This is confirmed in Table 2 with the worst RMSE obtained for the VPz. 

Again, from Table 3, it could be analyzed the weakness along Z direction since the vertical angle, v, 

does not provide enough perspective, only 5° above the horizontal. The swing angle reflects that the 

image has been taken in vertical position since the horizontal one is 90°. However, this angle does not 

provide perspective and, thus, is not relevant for the vanishing points computation. The spatial camera 

position is relative with relation to the known horizontal distance defined by the user. 

Fixed the camera pose, a dimensional analysis was performed based on distances. This process was 

performed using the collinearity condition constrained with some geometric clues, such as coplanarity, 

parallelism, or perpendicularity Equations (5) and (6). This dimensional analysis is outlined in 

Figure 11a and Table 4 together with its accuracy assessment. This quality control was 

performed based on the measurements existing on the topographical surveying executed by the 

engineer Luis de Justo in 1905. The discrepancies show an average relative error around 1%, included 

metric data inaccuracy. 
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Figure 11. (a) Dimensional analysis based on distances for the accuracy assessment;  

(b) Pseudo-3D model of the “Gobierna Tower” obtained through the single image-based 

modeling approach; (c) Virtual 3D reconstruction that integrates the “Gobierna Tower” in 

the Zamora Stone Bridge.  

 

Table 4. Accuracy assessment: dimensional analysis of distances. 

Code Distances (m) Discrepancies (m) Code Distances (m) Discrepancies (m) 

L1 1.84 δL1 = 0.01 L6 4.66 δL6 = 0.04 

L2 4.08 δL2 = 0.02 L7 10.05 δL7 = 0.04 

L3 4.40 δL3 = 0.05 L8 5.18 δL8 = 0.02 

L4 4.45 δL4 = 0.05 L9 0.87 δL9 = 0.03 

L5 14.38 δL5 = 0.07 Known Distance 8.70 δKD = 0.00 

Finally, a pseudo-3D model was generated based on the rectified facades computed geometrically 

from vanishing points, that is, using the collinearity equations supported by a geometric constraint  

(i.e., working plane) on the object Equations (5) and (6). The result is showed in Figure 11b. 

Furthermore, in order to visualize this result integrated with its current state, a virtual recreation of the 

Stone Bridge with the “Gobierna Tower” has been generated (Figure 11c). 

5. Conclusions 

When the lack of information is clearly due to the non-existence of the object of interest, such as 

historical demolished buildings, classical but solid perspective geometry statements can be of great 

utility, instead of advanced image processing techniques, especially in those cases in which only 

individual or single images exist. The main goal of this study was to provide a dimensional analysis 



Remote Sens. 2014, 6 1099 

 

 

and even a pseudo-3D reconstruction of the demolished historical building “Gobierna Tower” using 

single historical photographs. To this end, a single image-based modeling method has been developed 

and adapted to this specific case. The accuracy assessment results come to confirm that from a single 

view we can measure distances and areas and even to provide a simple 3D model with enough quality. 

The results obtained could be useful for the authorities of Zamora’s Council as they have been 

considering reconstructing the “Gobierna Tower”. The monument would play an important touristic 

role but specially would meet a popular demand supported by social and cultural reasons which would 

be directly connected with the identity of Zamora’s society. 

With relation to the workflow developed and the results obtained the main conclusions are  

the following: 

(a) Manual processing permits achieve better results than automatic processing. This is due to the 

weakness related to low number of vanishing lines, poor quality image, high number of 

blunders and poor perspective geometry.  

(b) Although robust estimators (especially RANSAC) have proven largely its efficiency in filtering 

gross errors, this is not the case. As just stated, when the image is poor both in geometry and 

radiometry, the automatic approach leads to an excessive number of blunders and so, 

the manual identification of vanishing lines is better. 

(c) An original vanishing point method based on the Hough Transform, which guarantees 

efficiency and quality in the results, even with unfavorable cases (a three-point perspective 

getting close to two-point perspective), has been successfully applied. Other methods to 

compute the vanishing points, such as the triangle area minimization or the Gaussian sphere, 

have not provided good results.  

(d) A relative error of 1% has been obtained for the accuracy assessment of the results. This value 

can be considered very good since the single image-based modeling approach developed 

involves many steps and thus the corresponding error propagation. 

(e) Finally, it should be remarked that the method is only applicable in scenes with strong 

geometric contents (i.e., presence of structural planes and lines). In addition, the image must 

have perspective along the three main directions (X,Y,Z) in order to compute the corresponding 

three vanishing points (VPx,VPy,VPz). Obviously, if these vanishing points are well defined 

more precision and reliability can be reached for the single image-based modeling approach. 
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