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Abstract: Multipurpose small reservoirs are important for livelihoods in rural semi-arid 

regions. To manage and plan these reservoirs and to assess their hydrological impact at a river 

basin scale, it is important to monitor their water storage dynamics. This paper introduces 

a Bayesian approach for monitoring small reservoirs with radar satellite images. The 

newly developed growing Bayesian classifier has a high degree of automation, can readily 

be extended with auxiliary information and reduces the confusion error to the land-water 

boundary pixels. A case study has been performed in the Upper East Region of Ghana, based 

on Radarsat-2 data from November 2012 until April 2013. Results show that the growing 

Bayesian classifier can deal with the spatial and temporal variability in synthetic aperture 

radar (SAR) backscatter intensities from small reservoirs. Due to its ability to incorporate 

auxiliary information, the algorithm is able to delineate open water from SAR imagery with 

a low land-water contrast in the case of wind-induced Bragg scattering or limited vegetation 

on the land surrounding a small reservoir. 

Keywords: small reservoir; delineation; image classification; naive Bayesian classification; 

polarimetry; remote sensing; SAR; semi arid; backscatter analysis 
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1. Introduction 

To overcome droughts and ensure water availability, the rural population in many semi-arid areas 

of the world relies on small reservoirs [1]. In this context, small reservoirs are defined as reservoirs 

with a surface area smaller than 100 hectares. Typically, these reservoirs are embanked streams that 

capture water in the wet season, to be made available during the dry season. Small reservoirs are used 

for year-round irrigation, fishery, cattle and domestic purposes. 

Currently, the cumulative impact of small reservoirs on water resources at a river basin scale is 

still debated [2], and the sustainability of small reservoirs under climate change is unknown [3]. In 

order to plan, manage and improve our understanding of small reservoirs, it is important to monitor 

the water storage dynamics. Ground-based surveys are both labor intensive and time consuming. 

Alternatively, small reservoir storage can be measured from space, based on remotely sensed surface 

area measurements in combination with regional area-volume equations, which can be derived from in 

situ bathymetric measurements [4- 6]. For large lakes and reservoirs, water stage measurements from 

space have recently become available [7,8], which enable the estimation of water storage changes using 

only remote sensing observations. 

Water surface areas can be delineated through optical imagery (e.g., MODIS, SPOTand Landsat), 

as well as synthetic aperture radar (SAR) imagery (e.g., Envisat, ALOSand Radarsat). A common 

practice for optical-based water surface delineation is to put a threshold on a vegetation [9] or water 

index [10,11 ] for decision making. For large water bodies, MODIS yields good results, but the 

spatial resolution is too low for small reservoirs. Instead Landsat imagery (30-m spatial resolution) 

has successfully been applied using various techniques in Ghana [5], Zimbabwe [6], India [12] and 

Brazil [13]. A strong limitation of optical imagery is its dependence on cloud- and smoke-free day 

acquisitions, which makes its application for operational monitoring very limited. For the detection and 

the creation of a base map, optical imagery is, however, very suitable [14]. 

The application of SAR imagery for small reservoir monitoring has recently been studied based on 

Envisat ASARimages [4,14]. Smooth open water acts as a specular reflector, reflecting most of the 

radar signal away from the sensor. Radar backscatter intensities from open water are therefore generally 

lower than backscatter intensities from the surrounding land, which enables the delineation of open 

water. The roughness of the water is very variable and influences backscatter intensities over time and 

space. Difficulties arise when wind-induced Bragg scattering enhances backscatter from the open water 

or when the contrast between land and water deteriorates, due to the absence of vegetation on the land 

surrounding a small reservoir at the end of the dry season [14]. Vegetation in the tail-end of small 

reservoirs has a different signature from open water, which may result in an error in the delineation [4]. 

Based on an earlier study [14], SAR imagery is found to be suitable for the delineation of small reservoirs 

in the wet season, but to be affected by wind and a low land-water contrast in the dry season. To date, no 

weather-independent method that yields good year-round results has been developed for remotely sensed 

areal measurements of small reservoirs. 

In this paper, we propose a new Bayesian algorithm to delineate small reservoirs. The algorithm can 

deal with a large variability in backscatter intensities from open water, exploits information contained 

in multi-polarized SAR imagery and readily allows for the input of auxiliary information, e.g., temporal 
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information about the small reservoir area. For this study, Radarsat-2 SAR images of the Upper East 

Region (UER), Ghana, were acquired. The Radarsat-2 has an improved resolution compared to Envisat 

ASAR imagery and offers full polarimetric data. 

2. Datasets 

2.1. Ground Truth 

The study area is located in the Upper East Region (UER) of Ghana; see Figure 1. The UER has 

a semi-arid climate, characterized by a five month, mono-modal wet season and an average rainfall of 

1,044 mm/yr over the past 40 years. 

Figure 1. The study area in the Upper East Region of Ghana, overlaid with a base map of 

small reservoirs in the region. 
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Fieldwork was conducted in November 2012. This period is at the start of the dry season, when the 

water levels in the small reservoirs are still around their upper limits. In total, 29 small reservoirs in the 

Kasena Nankana West, Kasena Nankana East, Bongo and Bolgatanga districts were visited, of which 

26 are covered by all acquired images. All reservoirs were delineated in the field using a Garmin eTrex 

Hex handheld GPS, with an accuracy of 10 m (95% typical). With a simple walk around the reservoir, 

waypoints were taken at the land-water boundary in such a way that interpolating between the points 

yielded a good delineation of the reservoir. The boundary of the reservoir at the tail-end streams was 

defined as the point of a lO-m stream width. The area of the visited small reservoirs varied from 2.5 ha 

to 22.6 ha. 
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2.2. Precipitation Data 

Rainfall series with a I5-min temporal resolution were obtained from a meteorological station in 

Navrongo (UER, Ghana) for the period from January until April 2013. The rainfall series were converted 

to daily rainfall and are presented in Section 4.3 . 

2.3. Radarsat-2 SAR Data 

In this study, the small reservoir delineation is based on one or more polarizations from full 

polarimetric fine resolution Radarsat-2 data. First, two fine quad-pol images covering the study area 

were acquired at the start of the dry season in November 2012, followed by a time series of Wide fine 

quad-pol images from January until April 2013. The 2012 acquisitions allow for comparison with the 

ground truth data, while the time series allows for a temporal analysis and covers different dry season 

backscatter scenarios. Details about the acquired images are given in Table 1. 

Table 1. Radarsat-2 imagery acquired for this study. 

Date Year Time/Pass Beam Incidence Angle Pixel Spacing 

Mode (degree) (rg x ax) (m) 

18 November 2012 05:44: 13/desc FQ31 48.3--49.4 5.14 x 6.28 

21 November 2012 05:56:37/desc FQlO 29.1-30.9 5.19 x 9.26 

15 January 2013 05:52:27/desc FQ17W 35.7-8.6 5.6 x 7.83 

25 January 2013 06:00:44/desc FQ4W 21.3-24.8 4.6 x 1l.94 

8 February 2013 05:52:27/desc FQ17W 35.7-38.6 5.6 x 7.83 

18 February 2013 06:00:43/desc FQ4W 21.3-24.8 4.6 x 1l.94 

4 March 2013 05:52:27/desc FQ17W 35.7-38.6 5.6 x 7.83 

14 March 2013 06:00:43/desc FQ4W 21.3-24.8 4.6 x 1l.94 

28 March 2013 05:52:27/desc FQ17W 35.7-38.6 5.6 x 7.83 

7 April 2013 06:00:44/desc FQ4W 21.3-24.8 4.6 x 1l.94 

21 April 2013 05:52:27/desc FQ17W 35.7-38.6 5.6 x 7.83 

3. Methods 

3.1. Pre-Processing SAR Imagery 

All images of one beam mode were co-registered and resampled to a grid of 5 m x 5 m using the 

open source Next ESA SAR Toolbox (NEST) software by the European Space Agency. Some additional 

dedicated effort in MATLAB was required to co-register the stacks from different beam modes. This was 

done in two steps. Firstly, absolute verification of image geolocation was carried out on the November 

acquisitions (FQ 10 and FQ3I ), hereby referred to as the reference, which showed consistent agreement 

with the GPS ground-truth data. Secondly, the residual shifts between the FQ04W and FQI7W datasets 

and the reference acquisitions were retrieved by incoherent speckle correlation [15] procedures between 

the reference images and the first image of each dataset. Cross-correlation of intensities performed 

block-wise throughout the image returned almost uniform patterns of a few pixel shifts, due also to the 
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relatively small elevation dynamics (100 m) of the scene. The shifts were averaged and used to achieve 

stack co-registration. A simple moving average filter (3 x 3 pixels) was applied on backscatter intensities 

to remove speckle by increasing the number of looks. 

From the literature [16], it was found that the delineation is best performed within a reservoir mask 

in which the reservoir area and total area of the surrounding land are of a similar size. Here, the masks 

were created by manually selecting a rectangular area around a small reservoir at full capacity, in such a 

way that it contained a similar number of water and land pixels. 

3.2. Growing Bayesian Classifier 

The newly developed growing Bayesian classifier (gBC) [17] is used for the delineation of small 

reservoirs. The gBC classifies a pixel based on the maximum a posteriori probability (MAP), which 

is calculated from a multivariate Gaussian likelihood function, multiplied by one or more conditional 

priors. The Gaussian model is justified by the application of the algorithm to logarithmic intensities. 

In previous work [18], it was outlined that the Gamma distribution, typical of homogeneous areas of 

fully developed speckle, tends toward a log-normal behavior for an increasing number of looks. The 

multivariate likelihood function exploits information contained in multi-polarized SAR imagery, while 

the conditional priors update the likelihood with auxiliary information. The basic gBC makes use of one 

conditional prior, the so-called growing prior, which includes information about neighboring pixels in the 

classification. The gBC can readily be extended with auxiliary information, e.g., temporal information, in 

the form of a conditional prior, according to the principle of naive Bayesian image classification [19,20]. 

Contrary to traditional maximum likelihood, the gBC does not require a priori training data to calculate 

the classes' signatures. Instead, signatures are developed during the iterative classification procedure 

based on the growing land and water seeds. The gBC flow scheme is given in Figure 2. 

3.2.1. Basic Growing Bayesian Classifier 

The gBC is automatically initiated within the reservoir mask. The land seed is initiated at the two 

outer rows and columns. The water seed at the area with the minimum average backscatter intensity, of 

a minimum of 3 x 3 pixels, is derived from a moving average filter. If a delineation at the previous time 

step is available, the potential water seed area is restricted to the small reservoir area from the previous 

time step. All other pixels are initially unclassified. The water seed and land seed are then iteratively 

grown, until both classes converge at the land-water boundary, according to the Bayesian decision rule: 

{ 
Wl ; q)i (Xi) > max ( q) :U (Xi), q): (Xi)) } 

X ' E 
t ww ; q) :U (Xi) > max (q)i(Xi ) , q): (Xi)) 

(1) 

where Wk is the class with k E l , W, u for the land, water and unclassified classes, respectively, and 

q)k(Xi) the likelihood, q)k(Xi), based on the pixel intensity vector, Xi, for pixel i multiplied with the 

growing prior, P(wklvj), which is proportional to the posterior probability, according to: 

q)k = q)k (Xi )P( Wk I Vj) (2) 

where Vj is a conditional variable of the growing prior with state j, which is based on the classification of 

neighboring pixels; see Table 2. Here, the assumption is made that the likelihood function is independent 
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of the state of the conditional variable, v. Note that a pixel is only classified if its probability of being 

a member of a class is larger than the probability of remaining unclassified. The likelihood, ~u (Xi )' for 

a pixel to remain unclassified is defined as the minimum of the land and water likelihood for that pixel. 

The classification is therefore not governed by the priors alone, but based on the likelihood computed 

from the pixel intensity vector. 

Figure 2. Flow diagram for the growing Bayesian classifier: first, the seeds are initialized 

(top right) for which a SAR reservoir image is required (top left); then, the iterative 

Bayesian classification is performed (right middle); finally, a growing filter is applied (right 

bottom); the algorithm can readily be extended with additional information (left middle). 
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Table 2. Growing conditional pnor probabilities based on the classification of 

neighboring pixels. 

Growing Prior VI V2 V3 V4 

land pixels >=1 >=1 0 0 
water pixels 0 >=1 >=1 0 

P(Wland ) 0.5 0.5 0 0 

P(wwater ) 0 0.5 0.5 0 

P(Wun classijied) 0.5 0 0.5 l.0 

The growing conditional variable, v (see Table 2), is based on the assumption that, within the reservoir 

mask, all water pixels are one connected area, i. e., the small reservoir. The state of the variable is defined 

according to the number of neighboring land and water pixels. The prior only allows for a new water 

pixel next to an already classified water pixel (the water seed) and for a new land pixel next to an already 
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classified land pixel (the land seed). The growing prior reduces the confusion error (the error from 

incorrect classification of pixels within the spectral area of overlap between two classes) to the land 

water boundary, where both classes have an equal prior probability. 

After the classification, a growing filter is applied to classify the pixels that remained unclassified 

after convergence of the land and water seeds. Starting from the seeds, all unclassified pixels connected 

to the water seed by water pixels are classified as water and all pixels connected to the land seed by land 

pixels are classified as land. Land and water pixels that are not connected to the seed are then reclassified 

using the same method. 

3.2.2. Extended Growing Bayesian Classifier 

The gBC can readily be extended with auxiliary information in the form of conditional priors 

according to the principle of naive Bayesian classification. In the general case that the basic gBC is 

extended with P prior probabilities, Equation (2) becomes: 
p 

q): = q)k((Xi))P(Wklvj) II P(wklen (3) 
p= l 

where P (w k I en is prior probability p with conditional variable er determined by its state, j. 

For this study, an additional conditional variable based on temporal information was developed. The 

classification from a previous or subsequent time step is used to update the delineation at the current time 

step. This can be very useful information, especially when the land-water contrast deteriorates. Two 

temporal conditional variables, T i
t
-

1 and Trl, were developed based on the strong seasonal behavior of 

small reservoirs, i.e. , small reservoirs are replenished in the wet season, and the water is released for use 

in the dry season. The states of the temporal variables are based on the classification of a pixel, i , in the 

previous and subsequent time step, respectively; see Tables 3 and 4. Equation (3) then becomes: 

Table 3. Temporal conditional prior probabilities based on the classification of a pixel in the 

previous time step. 

Prior 7 t - 1 

Classification in Time Step t-l 

P(Wland) 

P(wwater ) 

P(Wunclassij ied) 

t - l 
71 

Land 

0.6 
0.2 
0.2 

t - l 
72 

t - l 
73 

Water Unclassified 

0.25 1/3 

0.5 1/3 

0.25 1/3 

(4) 

The temporal priors increase the posterior probability for a pixel of being a member of the same class 

as in the previous and/or subsequent time step. If the previous and subsequent classification of a pixel are 

equal, the pixel is given a relatively high prior probability of being a member of the same class. Similar 

prior probabilities are given for land and water if the class changes from the previous to the subsequent 

time step. One exception is formed by pixels classified as water in the subsequent time step during the 

dry season. Small reservoir areas do not increase, as long as there is no rain during the dry season. Based 
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on this knowledge, a prior probability of being a member of the water class 1 is given to pixels that are 

classified as water in the subsequent time step. The temporal priors allow for the delineation of images 

with a very low land-water contrast if the previous and/or subsequent images are correctly classified. 

Table 4. Temporal conditional prior probabilities based on the classification of a pixel in the 

subsequent time step. 

Prior Tt+l Tt+l 
1 

Tt+l 
2 

Tt+l 
3 

Classification in time step t + 1 Land Water Unclassified 

prior T t+1 dry season 

P(Wland) 0.5 0 1/3 

P(wwater) 0.25 1 1/3 

P(Wunclassijied ) 0.25 0 1/3 

prior T t+1 rainy season/after rain 

P(Wland) 0.5 0.25 1/3 

P(wwater ) 0.25 0.5 1/3 

P(Wunclassijied) 0.25 0.25 1/3 

In an operational setting, reserVOIrs at the current time step, t, can be delineated usmg pnor 

P(wkIT~- l) based on the classification from the previous time step. Then, the delineation at time step 

t-l can be updated with temporal priors P(wkIT~- l) and P(wkIT~+l) based on the classified images at 

time step t and t-2 The classifications at time step t until t-3 could then further be updated with the same 

procedure. However, this only yields a small improvement and would allow for a classification error to 

propagate back in time. 

4. Results and Discussion 

4.1. Polarimetric SAR Remote Sensing of Small Reservoirs for Different Backscatter Scenarios 

Four distinct backscatter scenarios for backscatter from small reservoirs are found within the acquired 

data series of SAR imagery, i.e. , Smooth open water, water with vegetation, wind-induced Bragg scatter 

and backscatter during a rain-event. For every backscatter scenario, a sample of land and water pixels 

was taken from different reservoirs and its backscatter intensity distribution plotted (Figure 3). The 

backscatter intensities, as well as the contrast between land and water are different for every scenario. 

This calls for a flexible classification method (a method without fixed thresholds) and optimal use of the 

available polarizations. 

The optimal combinations of polarizations were evaluated based on the separability between the land 

and water class. The separability was calculated from the Jeffries-Matusita (JM) distance [21 ], based 

on the land and water samples for the different scenarios. A JM distance of two indicates that there 

is no confusion area (i.e. , the spectral area of overlap between two classes) and can thus perfectly 

be separated based on backscatter intensity alone. A JM distance of zero means that the backscatter 

distributions for both classes completely overlap. The presented combinations (see Figure 4) are chosen 

for comparability and based on operational considerations. Depending on the choice of SAR mission, 
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single, dual or full polarimetric images can be acquired. In total, 12 combinations were presented: three 

single polarizations, eight combinations from dual polarization modes, of which five use polarization 

intensity ratios, and one full polarimetric combination, in which the average of the cross-polarizations is 

used to increase radiometric resolution. The presented tests were applied on indicators based on channel 

intensities or intensity ratios only. Further research should address the use of the coherent polarimetric 

information for decompositions, such as alpha-entropy [22] and refined polarization synthesis [23- 25], 

to achieve optimal contrast. 

Figure 3. Backscatter intensity distributions and scatter plots for the land and water classes 

from the samples of four distinct small reservoir backscatter scenarios, i. e., smooth open 

water, water with vegetation, Bragg scattering and backscatter during a rain event. 
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Compared to land, smooth open water shows lower backscatter intensities, as it acts as a specular 

reflector, reflecting most of the radar signal away from the sensor. The high dielectric constant of 

water also decreases the penetration depth of the signal, which results in low volume scattering and, 

thus, predominantly co-polarized reflection [26]. The discrimination of smooth open water from land 

is therefore a simple task [27]. This is in agreement with the results presented here. The lowest 

backscatter intensities and smallest confusion area are found in the co-polarized 'HH'polarization, while 

the cross-polarized 'HV'shows the largest confusion area; see the top row in Figure 3. The JM distances 

for open water show that a high separability can be obtained from single co-polarized polarizations (1.6 

on average in 'HH'), and only a small improvement (up to 1.8 for 'HH, VV, HH/VV') is found from 

adding more polarizations; see also Figure 4. The contrast is optimal in the case of reeds on the water 

boundary and land with vegetation, which enhances the delineation accuracy [14]. 
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Figure 4. Jeffries-Matusita OM) distances for the samples of three distinct backscatter 

scenarios from small reservoirs, where the error bars show the mean, minimum and 

maximum JM distances from the different samples. 
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4.1.2. Water With Vegetation 

1200 

This backscatter scenario refers to vegetation within the small reservoir, mainly at the tail-ends, 

where grasses and other weeds increase the local surface roughness. This results in higher backscatter 

intensities; see the second row in Figure 3. Depending on the type of the vegetation, the double bounce 

scattering can also be enhanced. The mean backscatter intensities from these areas are similar to land in 

the cross-polarized 'HV' and higher than land in the co-polarized 'HH' and 'VV'. Water with vegetation 

is therefore difficult to include in the small reservoir delineation [4]. 

4.1.3. Wind-Induced Bragg Scatter 

Bragg scattering occurs when the position of scatterers are aligned parallel with the line of flight 

with regular spacing. In this case, the radar backscatter is coherently reinforced depending on the 

incidence angle, wavelength and spacing of the scatterers [27,28]. This type of scattering can be induced 

by wind waves on the surface of the water, depending on the wind direction and speed. According 

to [14,29], Bragg scattering from open water is significant with wind velocities over 9-10 km/h and in 

specific combinations of wind direction and polarization. Bragg scatter is most apparent in co-polarized 

polarizations and small in cross-polarized polarizations, which is in agreement with the histograms in 

the third row of Figure 3. Compared to smooth open water, the water distribution shows a long tail 

with high back scatter intensities and, thus, a larger confusion area between the land and water class. 

The scatterplot shows the decreased separability between the land and water class in the case of dual 

polarization, when the water surface shows patches with Bragg scattering. The separability in the 

single co-polarized 'HH' deteriorates compared to smooth open water (0.72). The separability for the 

cross-polarized polarization is similar to open water; see Figure 4. The value of a second polarization 

and polarization combinations becomes visible here, as a clear improvement in separability is found (up 

to 1.27 for 'HH, HV, HH/HV'). 
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4.1.4. Rain Event 

Backscatter intensities from the surface show a significant change during rain events, due to increased 

surface wetness. For bare soil, where the dominant backscatter mechanism is surface scattering, 

increased backscatter intensities are expected, due to the increased surface wetness. However, if pools of 

water start to form, backscatter intensities will decrease, as a larger portion of the signal will be scattered 

away. The effect of rainfall on vegetation is smaller, as vegetation already contains 'a layer of water' , 

and there are different operating scattering mechanism on which rainfall has different effects. If volume 

scattering is the dominant mechanism, backscatter intensities can be reduced. Wetness of the top layer 

increases the portion scattered away from the sensor, and reduced power is available for the volume 

scattering mechanism. Areas where surface scattering is the dominant mechanism show an increase in 

backscatter intensities [30]. As surface scattering is the dominant mechanism in the land surrounding 

small reservoirs, a small increase in backscatter is observed. These effects are most significant during 

the rain event, when no evaporation has occurred yet. At the water surface, rain droplets can cause 

an increase in surface roughness, which results in increased backscatter intensities [28]. This is also 

observed in the sampled reservoirs; see the bottom row in Figure 3. Since no ground truth is available for 

the March 28 acquisition, the land sample is taken from the land outside the known maximum boundaries 

of the small reservoir, where vegetation is present. The bare soil surrounding the small reservoirs at this 

date is not included in the land sample. Larger confusion areas and, thus, lower JM distances for all 

polarization combinations are measured; see Figure 4. This is caused by a larger increase in backscatter 

intensities from open water compared to the land with vegetation. The separability between the open 

water and the surrounding bare land mainly depends on whether pools of water are formed, in which 

case, the contrast can strongly decrease. 

4.2. Comparison with Ground Truth 

All small reservoirs that were visited during the fieldwork are delineated from the 'HH, HV' 

polarization combination from two Radarsat-2 images, which were acquired within three days from the 

ground truth. Since substantial areas of grass and weed vegetation were found inside the small reservoirs 

during the fieldwork, the reservoirs were divided into three vegetation content classes: 'low vegetation' , 

'tail-end vegetation' and 'all boundary vegetation'. This classification was based on photos of the small 

reservoirs taken during the fieldwork. The delineation (red line) and ground truth (yellow line) of two 

typical reservoirs from each category are projected on Pauli RGBcolor composite images (Figure 5). 

Open water (dark areas, low backscatter intensities) are very clear in the images and easily delineated 

from the surrounding land (blue and green areas, higher single bounce and volume scattering). Patches of 

Bragg scatter (dark blue areas, increased surface scattering) are also classified as small reservoir, because 

of the dual polarization combination. The second and third row show the reservoirs with vegetation in 

the tail-end and at all boundaries, respectively. The small reservoir areas with vegetation (red and bright 

areas, high backscatter intensities and double bounce scattering) are not classified as small reservoir, 

because of their very different polarimetric signature. In all the reservoir images, the open water areas 

are well delineated by the gBC based on visual inspection. 
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Figure 5. Ground truth (yellow line) and delineation (red line) based on the 'HH, HV' 

polarization combination overlaid on Pauli RGB-images, with red colors for double bounce, 

green for volume scatter and blue for single bounce; note that the different color scales are 

used for the different Pauli components to enhance the image contrast. 
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The results are summarized in Figure 6 with the Differential Area Index (DAI), as used by [6], 

and the JM distance based on the ground truth. The figure shows an overall underestimation of the 

classified small reservoir area. Compared to the ground truth, an underestimation of 12.8% to 14.8%, 

depending on the polarization combination, of the small reservoir area is found for small reservoirs with 

low vegetation. This underestimation is larger for the classes with more vegetation. The error made for 

delineating open water is expected to be smaller than suggested by these numbers, as the underestimation 

is due to different classification errors and a bias towards the land in the ground truth. First of all, there 

is an error due to vegetation in the small reservoirs, even in the reservoirs with 'low vegetation'; see, 

e.g., SR141 in Figure 5, where some trees within the reservoir cause an incorrect classification at the 

tail-ends. A smaller error is due to the moving average filter, which reduces noise, but might also cause 

some boundary pixels to be classified as land instead of water. Furthermore, there is an error in the 

ground truth from the inaccuracy of the GPS device. The ground truth also shows a bias towards the 

land, due to the fact that the measurements were all taken while walking around the reservoir as close 

to the land-water boundary as possible, but on the land side. The JM distances show a clear trend 
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between the increase in vegetation in the small reservoir and a decrease in separability. This is due to the 

increasing confusion area with an increasing vegetation area in the small reservoir. 

Figure 6. Comparison between classified and ground truth areas of all 29 small reservoir 

from November 2012, based on the Differential Area Index (DAI) and the Jeffries Matusita 

OM) distance. 

x low vegetation x tail-end veg . x all border veg. 

2 

III III It! til 0.4 

III III III jll 
+-' 
.~ « -0 

0 0.2 
I 

:2: -, 

0 
-0~-00~\~ 0~\ \-0~\ 

0 

-0~-0~~~ ~~-0\-0~\ \'0 • ~ • 0-0 
\-0-0. 0~' ~ \-0-0. 0~~ 

\-0-0. \-0-0. 

4.3. Image Quality 

The quality of the images is determined based on the contrast between the land and water class, 

which is calculated from the JM distance based on the classified images. This method for determining 

image quality is similar to the numbers of peaks in the backscatter intensity histogram of an image, as 

used by [14]. Two quality classes were used, with a threshold for high image quality images set to 1.5. 

This roughly corresponds to the minimum JM distance found for smooth open water for the 'HH, HV' 

polarization combination; see Figure 4. Within the time series, 170 reservoir images with high quality 

and 64 with low quality, of which 18 had substantial Bragg scatter, were found. Only two high quality 

images with substantial Bragg scatter were found. The images with Bragg scatter have an average JM 

distance of 1.22, while all other images have an average JM distance of 1.58. The acquisitions with 

Bragg scatter are 25 January, 14 March and 7 April, of which especially the last two have a significant 

amount of low quality reservoir images (Figure 7). The acquisitions with Bragg scatter show higher 

mean backscatter intensities, but also a larger variability in the 'HH' polarization and no significant 

change in the 'HV' polarization. A large variability in backscatter intensities from open water pixels 

within the same acquisition is typical for Bragg scattering. Most reservoir images from 28 March, the 

acquisition during a rain event (see the top graph), are of high quality. The delineations for this date 

are likely to be overestimated; see the next section. Part of the low backscatter area that is classified as 

small reservoir is from the bare soil with water pools surrounding the small reservoir. The presented JM 

distances are, therefore, also likely to overestimate the actual image quality. The rain event has a clear 

impact on the mean backscatter intensities. In both the 'HH' and 'HV' polarizations, the backscatter 

intensities are elevated, while the variation is similar. Acquisitions during a rainfall event can easily be 

detected based on its open water backscatter intensities alone. A substantial number of reservoir images 

on 21 April have a low quality, although no Bragg scatter is found in this date. Here, the contrast is 

low, due to reduced vegetation on the land surrounding the small reservoir at the end of the dry season. 

Visual inspection of the Pauli images from the time series in comparison to images from November 

indicated a strong decrease in vegetated area inside the small reservoir. Vegetation in the small reservoirs 
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is therefore expected to have a smaller influence on the classification accuracy compared to the start of the 

dry season. 

Figure 7. Rainfall time senes (top), the quality of an acquisition based on the Jeffries 

Matusita OM) distance (middle) and the mean backscatter intensity of the minimum 

delineated small reservoir area (bottom), where the boxplots show the median, first and 

second quartile boundaries and the red crosses are outliers; the error bars show the mean and 

one standard deviation boundaries. 
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To demonstrate the Bayesian approach, two temporal priors were introduced. The priors update the 

classification at the current time step based on temporal information from the previous and subsequent 

classifications. Because of the rain event on 19 March (Figure 7), the temporal prior probabilities for 

prior Tt+l change as well as from the 14 March acquisition; see Table 4. 
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Figure 8. Time series of small reservoir delineation based on the 'HH, HV' polarization 

combination and the basic gBC (red line), the gBC updated with temporal prior T
t - 1 (blue 

line) and the gBC updated with both priors T t - 1 and TtH (green line) overlaid on HH 

backscatter intensity images; the bottom graphs show the areal variation in time for the 

same reservoirs, where the crosses show the filtered time series without the rain-affected 

March 28 acquisition. 
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Figure 8 shows the delineations based on the gBC with (blue and green lines) and without temporal 

priors (red line) for small reservoirs SR120 and SR154. From the delineations of both reservoirs, it 

can be seen that the classifications with and without temporal priors are similar for high quality images. 

Temporal priors improve the classification when the image has a low quality. A relative difference in the 

classified area between the delineations with and without temporal priors of more than 5% is found for 

42 (55%) of the low quality reservoir images and only for 34 (22%) of the high quality reservoir images. 

Depending on the location within the small reservoir and the change of the polarimetric signature, 

some areas with Bragg scatter are classified as small reservoir, even without the temporal priors. This 

is because of the multi-polarized input data; see, e.g., SR154 on 25 January. The Bragg scatter at 14 

March is not captured without the temporal priors in both reservoirs. The graphs in Figure 8 show that 

most of the water patches with Bragg scatter are delineated based on the classification at the previous 

time step (prior T t- 1). Additional updating based on the subsequent classification (prior Tt H ) only 

improves the classification in some cases. An extreme case of Bragg scatter is found in the 7 April image 

for SR120, where the full reservoir is affected and the contrast with the surrounding land significantly 

deteriorates . Here, the classification is mostly governed by the temporal priors, as can be seen from the 

large difference in the delineations with and without temporal priors. The classification at the previous 

time step is affected by rainfall; see the next paragraph. In the case that the delineation is updated with 

the classification from this time step, the small reservoir area is still overestimated. When updated with 

the classification from the subsequent time step, the overestimation is further limited. The discrepancy 

between the normal and the filtered time series (the 28 March acquisition is filtered out) of small reservoir 

areas for 7 April shows that the temporal priors are less effective when two low quality images follow 

each other (Figure 8). 

The classified small reservoir areas from images acquired during a rain event are likely to be 

overestimated. The 28 March acquisition shows increased average backscatter intensities from the full 

images, but low backscatter intensities from land area within the maximum small reservoir boundary. 

This is probably because of the formation of water pools on the bare ground surrounding the small 

reservoirs. The delineation for both reservoirs on this date is not able to separate between the elevated 

backscatter intensities from the roughened water surface and the decreased backscatter intensities from 

the bare ground with water pools surrounding the small reservoir. This results in an overestimated small 

reservoir area. This hypothesis is strengthened by the total rainfall amount from these dates, which 

amounts to 18 mm (10 mm on 18 March and 8 mm on 19 March). Based on the regional area-volume 

equations [4] and the classified small reservoir areas, this total rainfall causes an increase of the water 

level of 94 mm in SR154 and 76 mm in SR120. This increase in the water level is unlikely, given that 

the first rains after a long dry spell in the region do not create much runoff [31 ]. The most accurate 

estimation of the small reservoir area for this date is found through interpolating between the areas from 

subsequent and previous time steps in a time series, where 28 March is filtered out (Figure 8). 

The results for the time series analysis of the gBC are summarized in Figure 9. The cumulative time 

series, as presented in the top graph in Figure 9, shows a strong decreasing trend of the total small 

reservoir area in the study area, which is expected during the dry season. The cumulative area on 28 

March is a clear outlier, because of rainfall during the acquisition; see the previous paragraph. The 

filtered time series (the 28 March acquisition is filtered out) is in agreement with the expected trend. 
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The largest influence of the temporal priors is, as expected, found for acquisitions with Bragg scatter 

(25 January, 14 March and 7 April) and the acquisition during a rain event (28 March). The bottom 

graph shows the effect of the chosen polarization combination on the delineated small reservoir areas. 

For acquisitions where most reservoir images are of good quality, the differences are minimal. The single 

polarization 'HH' tends to underestimate the small reservoir areas for all images with Bragg scatter. 

Multi-polarized combinations improve the delineation in some cases of Bragg scatter, e.g., the 25 January 

acquisition. The dual polarization combinations perform similar to the full polarized combination and 

are thus sufficient for small reservoir delineation. The combination with the backscatter intensity ratio 

in general results in the largest classified area for small reservoirs. During the 14 March, 28 March and 

7 April acquisitions, which have the most low quality reservoir images, the temporal priors are needed 

to improve the delineations regardless of the polarization combination. 

Figure 9. Time series of the cumulative classified area for 26 small reservoirs, based on 

the growing Bayesian classifier (gBC) with and without temporal priors (top) and the gBC 

without temporal priors for different polarization combinations (bottom). 

5. Conclusions 
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A Bayesian approach to monitoring small reservoirs was successfully applied. Despite temporal and 

spatial variation in backscatter intensities from small reservoirs, the newly developed algorithm is able 
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to delineate open water throughout the dry season. The algorithm has a high accuracy, as the confusion 

area is restricted to the land-water boundary. Due to auxiliary temporal information, images with a low 

land-water contrast are resolved, even in the case of wind-induced Bragg scattering. One exception 

was the images acquired during a rain event, when water pools started forming on the bare ground 

surrounding the small reservoirs in the dry season and the land-water contrast deteriorates. In such cases, 

the use of time-series was able to mitigate the segmentation error, but not to completely resolve the 

land-water ambiguity. 

The land-water contrast decreases with increasing roughness of the water surface or decreasing 

roughness of the surrounding land. The water surface roughness was found to increase due to 

wind-induced Bragg scattering and during rain events. The roughness of the land surrounding the small 

reservoir decreases towards the end of the dry season, when the water level in the small reservoirs is 

low and bare ground surrounds it. Areas with vegetation inside the small reservoir at the start of the dry 

season have a backscatter signature similar to land and were, therefore, not included in the delineation, 

causing an underestimation of the actual small reservoir area. 

Single co-polarized backscatter intensities are sufficient in the case of high quality images. The 

dual polarization combinations 'HH, HV' and 'HH, HV, HH/HV' improve the land-water contrast 

significantly in the case of Bragg scattering and are, therefore, the preferred combinations of backscatter 

intensities for small reservoir monitoring. This is also relevant in the light of the European Space 

Agency's (ESA) Sentinel 1 satellite, which does not produce full polarimetric images. Further research 

should address the exploitation of the coherent polarimetric information. 

The overall conclusion of the paper is that, due to a Bayesian approach, the dynamics of small 

reservoirs can be monitored from SAR data with a high level of automation and without the restriction 

of cloud-free days. The suggested approach is to create a base map of small reservoirs first, after which 

small reservoir dynamics can be monitored with SAR data using a Bayesian time series approach. The 

base map is best created at the onset of the dry season, when the reservoirs are at full capacity and the 

reservoir masks can be determined. 
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