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Abstract: Accurate information on urban building types plays a crucial role for urban 

development, planning, and management. In this paper, we apply Object-Based Image 

Analysis (OBIA) methods to extract buildings from Airborne Laser Scanner (ALS) data 

and investigate the possibility of classifying detected buildings into ―Residential/Small 

Buildings‖, ―Apartment Buildings‖, and ―Industrial and Factory Building‖ classes by 

means of domain ontology and machine learning techniques. The buildings objects are 

classified using exclusively the information computed from the ALS data. To select the 

relevant features for predicting the classes of interest, the Random Forest classifier has 

been applied. The ontology-based classification yielded convincing results for the 

―Residential/Small Buildings‖ class (F-Measure 97.7%), whereas the ―Apartment Buildings‖ 

and ―Industrial and Factory Buildings‖ classes achieved less accurate results (F-Measure 

60% and 51%, respectively). 
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1. Introduction 

Reliable information on urban building types plays an important role for a wide range of 

applications, such as urban planning, disaster management [1], or energy consumption modeling in 

urban environments [2]. Buildings extraction has been traditionally accomplished using tedious and 

time-intensive techniques, such as manual digitization of the aerial images. With the increasing 

availability of very-high resolution imagery (VHR), important research efforts have focused on 

developing automatic methods for buildings extraction. However, the level of automation is still low 

due to the increasing complexity of the urban scenes [3,4].  

The emergence of Airborne Laser Scanning (ALS) marked a major breakthrough for improving the 

level of automation and accuracy of buildings mapping using solely laser scanning data [5,6], or by 

fusing ALS data with digital imagery [7–9]. The ALS data have the potential to overcome some of the 

challenges posed by VHR in providing accurate information about buildings in urban environments [10]. 

Such challenges include occlusions caused by trees, shadowing [11], or confusion between buildings, 

roads, and bare soil [12]. Furthermore, descriptive information (features) derived from ALS data might 

be further used to extract ―higher-level geographic information‖ [13], including building types. 

Unfortunately, only few studies have focused on evaluating the potential of ALS data for classifying 

the buildings into various classes [10,14]. Wurm et al. [10] developed a fuzzy logic classification to 

assign the buildings delineated from a Digital Surface Model (DSM) into five building classes: 

Building Blocks, High-rise, Non-Residential/Industrial, Semi-Detached Houses and Terraced Houses. 

Gonzalez-Aguilera et al. [14] analyzed urban areas in the city of Avila, Spain by means of buildings 

density calculated using auxiliary data and geometric information (height, area, and volume) of 

individual buildings extracted from ALS data. 

The derivation of higher-level information, such as building types, is not a trivial task. It relies 

primarily on the knowledge of the experts about the semantics of target real world objects and their 

representation in the evaluated data [15]. The expert knowledge (a priori knowledge) is seldom 

organized into consistent knowledge bases dedicated to increase the reusability and the objectivity of 

the target objects classification [15]. Furthermore, given the large number of features that can be 

calculated for the objects extracted from ALS data (shape features, height, or slope), the selection of 

the relevant features for the target classes remains mainly a trail-and-error attempt [16]. As with the 

image classification task, a semantic gap arises between the high-level semantics of the experts and the 

low-level information extracted from data [17]. To address this problem, methods are required to 

identify optimal features to discriminate between evaluated classes [18] and to explicitly specify the 

knowledge of the experts on the evaluated classes [19]. Ontologies offer considerable potential to 

conceptualize and formalize the a priori knowledge about evaluated domain categories [20]. In the 

Artificial Intelligence (AI) domain, ontology is defined as ―formal, explicit specification of a shared 

conceptualization‖ [21]. It is used as solution to organize and to express the domain knowledge into a 

machine-readable format. Although ontologies have been successfully used to infer semantically-richer 

concepts, such as terraced houses from geo-databases [20], or to formalize the image interpretation 

knowledge for developing automated image classification procedures [19] (see Section 2.2 for a 

detailed discussion about ontologies and their applications in GIS and remote sensing), there is no 

study that uses ontology to assign the buildings delineated from ALS to various building categories.  
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In this paper we evaluate the use of ontology to distinguish between different building types. The 

developed ontology accounts for the description of the evaluated building types elicited from literature 

and the building features extracted from ALS data. The relevance of the ALS-based features for the 

followed classification goal was assessed by applying the Random Forest (RF) classifier. Relevant 

features refer to the smallest possible set of building characteristics that allow reliable classification 

results and optimize the time required to develop the classification model. We restricted our analysis to 

the following building classes: ―Residential/Small Buildings‖, ―Apartment Buildings‖ (or Buildings 

Blocks), and ―Industrial and Factory Buildings‖. The following hypothesis was tested: evaluated 

building types can be modeled relying exclusively on the information extracted from the ALS data.  

This paper is organized as follows: After a short introduction of the previous work dedicated to the 

buildings extraction from ALS data and ontology engineering methods in Section 2, the paper 

continues with the methodology in Section 3, results and discussion in Section 4. This study is 

summarized in Section 5. 

2. Previous Work 

2.1. Buildings Extraction from ALS Data 

Approaches, which deal with the delineation and detection of buildings from ALS data, 

are mentioned in literature as early as the 1990s. In [22], one of the earliest descriptions of the 

extraction process based only on ALS data was provided. Their method employed edge detection on a 

Digital Elevation Model (DEM) in order to define candidate buildings objects. A predefined shape 

assumption (I, T, or L shape) was applied in order to extract building type objects. This procedure is 

one of the earliest approaches that combined image-based techniques on 3D data. Following that study, 

a number of additional research studies were conducted investigating the usage of ALS point cloud 

data in order to detect and delineate buildings boundaries. For example, Alharthy et al. [23] used a 

raster of the height difference between first and last return of each laser shot along with local statistical 

interpretations to segment the analyzed ALS data. The object extraction relies on Digital Terrain 

Model/Digital Surface Model (DTM/DSM) subtraction, height threshold and dominant direction 

determination. A method for building extraction in urban areas from high-resolution ALS data was 

developed in [5]. Their approach consisted of a normalized DSM calculation, the application of a 

height threshold, and the usage of binary morphological operators in order to isolate building candidate 

regions. The isolated areas were then clustered via a plane segmentation method, based on the analysis 

of the variations of the DSM normal vectors to define the planar patches. Such patches are later 

expanded with region growing algorithms. In [24], a building extraction process using only ALS data 

was also focused on. Their approach was based on the minimum filtering of ALS DEM, region-growing, 

linear least square estimation and the application of a method for wireframe extraction [25]. In [26], 

a knowledge-based building detection methodology, based on ALS data, was generated. Their 

approach applied bottom-up region merging segmentation in order to generate clusters. Their 

classification process was based on attribute values assigned to clustered forms (mean value and 

standard deviation of the aspect, slope and Laplacian image along with shape attributes). In [27], 

a pseudo-grid-based building extraction approach via ALS data was presented. This approach utilized 
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pseudo-grid generation and local maxima filtering to segment the data. In order to extract buildings, 

they applied a grouping method based on pseudo-grid and building boundary extraction—linearization 

and simplification. In [28], a segmentation and object-based classification methodology for the 

extraction of building classes from ALS DEMs was provided. Their segmentation process was 

performed using the procedure described by [29] followed by the cluster-based classification. 

A method for the area-wide roof plane segmentation in ALS point clouds was developed in [30]. They 

applied region growing, constrained with a normal vector to segment the point cloud, and slope 

adaptive Echo-Ratio (sER), along with the minimum height criterion to detect roof areas. In other 

research approaches, ALS data were fused with multi-spectral imagery for automatic building 

detection and delineation [8]. Most of the above mentioned studies delineate the buildings from the 

DSM. The rasterized DMS extracted from ALS or other sources proved to be an appropriate solution 

to delineate accurate building footprints [31]. 

2.2. Ontology Approaches in GIScience and Remote Sensing 

In the last decade, ontology became a widely accepted solution to deal with the semantic 

heterogeneity problems that prevent information discovery and integration in a distributed way [32]. 

The GIS community uses ontology to explicitly specify and formalise the meaning of the domain 

concepts into a machine-readable language that enables spatial information retrieval on a semantic 

level [33]. There are studies that investigate the ontologies as solution to infer new knowledge from the 

(geo-) databases. For example, Lüscher et al. [20] and Lüscher et al. [34] described an ontology-driven 

approach to infer the terraced houses category from the spatial database. The focus of this study [20] 

was to model explicitly the terraced house concept and to use a supervised Bayesian inference 

mechanism for low-level pattern recognition from data stored in the databases.  

Ontologies have also been used to guide and automate the image analysis and interpretation 

procedures [15,35,36]. A knowledge base of urban objects was developed in [15] and used to label the 

image objects delineated from high-resolution satellite imagery by means of segmentation techniques. 

The authors developed a local and global matching algorithm to map the observations 

(Digital Numbers extracted from remote sensing imagery) with the domain nomenclature (linguistic 

notions). Hudelot et al. [37] proposed an ontology-based image classification procedure where the 

domain concepts, described by means of visual properties such as texture, color (e.g., red), geometry 

(e.g., rectangular), are matched with the quantitative information extracted from the imagery. 

For example, the ―rectangular‖ qualitative information is instantiated using shape metrics, whose 

thresholds are empirically determined from the data at hand. A comprehensive review of the role of 

ontology to content-based image retrieval and classification of VHR data can be found here [19,38].  

The ontology was classified into four categories [39]: top-level, domain, task, and application 

ontologies. The top-level ontologies, such as DOLCE [40] or Semantic Web for Earth and 

Environmental Terminology (SWEET) [41], formalize the generic categories such as space, process, 

event [42], whereas the domain ontology knowledge formalizes explicitly the domain specific 

knowledge. The task and application ontologies refer to the formalization of the application concepts: 

e.g., earthquake monitoring systems. The conceptualization of the domain ontology together with the 

task and application ontologies need to be aligned to the semantics of the generic categories specified 
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on the top-level ontology [43]. The ontologies alignment assures domain ontology matching and, 

hence, information retrieval and exchange across different application domains.  

Ontologies can be expressed using different knowledge representation languages, such as Simple 

Knowledge Organization System (SKOS), Resource Description Framework (RDF), or Web Ontology 

Language 2 (OWL2) specifications [44]. These languages differ in terms of the supported 

expressivity. The SKOS specification, for instance, is widely used to develop multi-lingual thesauri, 

embedded in the searching capabilities of the existing spatial data repositories. The OWL2 ontology 

language is based on the Description Logics (DL) for the species of the language called OWL-DL. DL 

thereby provides the formal theory on which statements in OWL are based and through which the 

statements can be automatically tested by a reasoner. The OWL semantics comprises three main 

constructs: classes, individuals and properties. Classes are sets of individuals, whereas properties 

define relationships between two individuals (Object Properties) or an individual and a data type 

(Data Properties). 

Despite the fact that there are several works dedicated to ontology-based classifications of the real 

world entities, the ontologies developed so far are rarely integrated with the measurements data 

(physical data) [43]. To address this problem, Janowicz [43] emphasized the need to develop 

observation-driven ontologies that account for the so-called ontological primitives automatically 

identified in the analyzed data by means of geostatististics, machine-learning, or data mining 

techniques. The author gave the example of spectral signature as ontological primitives used to 

identify the targeted objects in the remote sensing data. Spectral signatures represented the basis for 

(semi-)automatic pixel-based image analysis. The signatures are organized into libraries that can be 

easily re-used in different image analysis applications. With VHR data, it is difficult to develop robust 

spectral (and/or geometric) signatures of objects to be identified in the imagery, due to the increasing 

complexity of the scenes and spectral responses variability. In this study, we use ALS data to extract 

building footprints to avoid the challenges posed by VHR imagery in extracting reliable objects. 

Further, we develop a domain ontology that accounts for the representation of the building categories 

in the ALS data.  

3. Methodology  

The applied workflow of buildings detection and classification is organized as follows: in the data 

pre-processing step, the buildings footprints are delineated from ALS data using the procedure 

described in Section 3.1 (Step 1, Figure 1). Subsequently, the extent, shape, height and slope features 

of the extracted buildings are computed (Step 2, Figure 1) and imported into the next classification 

procedure using a converter developed in this study (Step 3, Figure 1). In the last step, the building 

types are classified based on the features identified by the RF as relevant (Step 4, Figure 1) and which 

are formalized in the ontology (Step 5, Figure 1). 
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Figure 1. Overview of the methodology followed in this study. 

 

3.1. Preprocessing Step: Automatic Extraction of Buildings from ALS Data 

The ALS data used in this paper was provided by Trimble Germany GmbH—Biberach Branch. 

The data were recorded with the Trimble Harrier 68i system. The selected dataset represents an area of 

1.1 square kilometers and covers a part of the town of Biberach an der Riss, in Germany. The point 

cloud consists of multiple returns with recorded intensity, and a density of 4.8 points per square 

meters. The aircraft flew at the height of 600 m above ground, with a swath width of 693 m. 

The recorded data was pre-processed and corrected in terms of horizontal and absolute height shifts in 

relation to the reference data that was collected (GCPs and buildings’ polygons). Strips have been 

corrected in terms of roll, pitch and heading, and vertically aligned to each other. 

Our approach for building extraction relies on the slope calculation and edge extraction with added 

object reshaping based on predefined thresholds. We used the Object Based Image Analysis (OBIA) 

method to delineate the building footprints. OBIA is based on the segmentation of the used data into 

homogeneous objects which are further assigned to the target classes. The ALS data processing was 

implemented using the Cognition Network Language (CNL), available within the eCognition software 

package (version 8.8—64 bit) [45]. In this study, raster data were derived from the point cloud. This 

approach was chosen due to the different representations of objects in remotely sensed data than e.g., 

in the cadaster. For example, the cadaster data represents the building walls and not the roof outlines, 

as it is most commonly the case in remote sensing data. Based on this observation, deriving object 

features from ALS data for cadaster footprints most probably leads to unsatisfactory results. As 

Rutzinger et al. [46] stated, the temporal shift between two building datasets is a further issue when 

evaluating or combining different datasets. Thus, performing building detection, feature derivation, 

and classification within one consistent dataset is to be preferred and, as such, has been applied in this 
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paper. Data processing starts with the generation of DEM from the minimum values of last returns, and 

is followed by a slope calculation based on method proposed by [47], object refinements techniques 

such as pixel resizing, and the object reclassification based on the height difference between the object 

and its surrounding area. The final reclassification of the delineated objects is based on two distinct 

measures: area and recorded intensity. The first separates small objects from the rest of the group 

based on the initial presumption that elevated objects with an area smaller than 40 pixels represent 

vegetation left overs, noise, or other solid artifacts (car, truck, statue, etc.). The second measure utilizes 

the intensity value of the return signal in order to further refine our results and discard remaining 

artifacts. Based on a trial and error approach, a threshold value of 5900 digital number (DN) ([48,49]) 

was used to separate final building polygons (vector format) from the pre-classified, building 

candidates. The accuracy of the extracted buildings polygons was assessed by means of data 

completeness and correctness measures. The ground truth dataset was created using the DSM raster 

generated from the minimum values of last returns as a reference dataset. Visual inspection was 

performed and point features were added to each recognized building on the DSM raster. Spatial 

analysis of point-in-polygon was calculated, and based on this analysis the completeness and 

correctness indicators were derived for building object detection.  

Once the building objects have been identified in the ALS data, various features can be computed 

and used for the classification task (Table 1). 

Table 1. Buildings characteristics computed from Airborne Laser Scanner (ALS) data.  

Variables Variables Feature Value Range Explanations Provided by [45] 

Extent Area [0, scene size] The area of the identified object 

Shape 

Features 

Radius 1 [0, ∞] 
Similarity of an object to an ellipse (totally enclosing the 

image object) 

Radius 2 [0, ∞] 
Similarity of an object to an ellipse (totally enclosed by 

the image object) 

Rectangular Fit [0, 1] Objects squareness 

Elliptic Fit [0, 1] Explains how well an object fits an ellipse 

Asymmetry [0, 1] 
Relative length of an object compared to a regular 

polygon 

Border Index * [1, ∞] 
Describes how jagged an object is; the more jagged, the 

higher its border index 

Main Direction [0, 180] 
Defined as the direction of the eigenvector belonging to 

the larger of the two eigenvalues 

Shape Index [1, ∞] 

Describes the smoothness of buildings boundaries the 

smoother the border of an image object, the lower its 

shape index 

Compactness [0, ∞] 
The more compact, the smaller its border appears. 

Similar to Border Index, but it is based on area 

Roundness [0, ∞] 
How similar an image is to an ellipse by the difference 

of enclosing and the enclosed ellipse 

Density 
[0, depending on the shape 

of image object] 
The most dense shape is a square 

Height Mean Height 2–25 m Calculated from nDSM 

Slope Slope [0, 80°] Calculated from nDSM 

* Border Index is similar to the Shape Index feature, but it uses a rectangular approximation instead of a square. 
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Four groups of buildings features were extracted from ALS data: extent features, shape features, 

height, and the slope of the buildings’ roof (Table 1). The extent features define the size of the 

buildings objects, whereas the shape features describe the complexity of the buildings’ boundaries. 

The classification model relies exclusively on the features computed from ALS data as we wanted to 

assess the potential of this data to discriminate between different building types. The building objects 

extracted from the ALS are stored as a Geographic JavaScript Object Notation (GeoJSON) file, and 

automatically parsed in the OWL2 ontology language format using a developed JSON to OWL2 

converter. This converter transforms the GeoJSON objects into OWL2 Individuals.  

3.2. Classification of Building Types Data Using Ontology and Random Forest Classifier 

To classify the buildings delineated from ALS data into different building types, we developed a 

hybrid classification method that combines ontology with machine learning techniques. The definitions 

of the building types were acquired from textual descriptions of the urban environments, whereas the 

relevant low-level information (data-driven information) was selected by applying ensemble learning 

algorithms, i.e., the RF classifier. Thus, the RF classifier is used to adapt the developed ontologies to 

the representation of the targeted buildings category in the ALS data. This approach aligns with the 

vision proposed by [43], who recommends the development of geo-ontologies from empirical data. 

A similar approach was presented by [50] who initially developed a conceptual model to define 

Central Business Districts (CBD) within large cities and then assessed the predictive power of the 

identified physical and morphological parameters to delineate the CBD in the considered urban 

landscapes: London, Paris, and Istanbul.  

Ontology engineering relies on several steps: knowledge acquisition, conceptualization, ontology 

formalization, and the implementation of the developed ontology into computational model [39]. 

3.2.1. Knowledge Acquisition and Conceptualization 

The first step in designing the classification model consists of acquiring a priori knowledge of the 

evaluated building types. This knowledge is usually held by experts [15] and/or available in various 

text corpora. The building definitions summarized in Table 2 are based on the existing literature about 

the evaluated building types [51,52]. 

Table 2. The natural language description of the analyzed buildings classes, based on [51] 

and [52]. 

Buildings Class Natural Language Description 

Residential/Small Buildings 
High building density, small, rectangular building form 

(simple form) 

Apartments/Block Buildings 
Rectangular or elongated form, higher than industrial and 

factory buildings 

Industrial and Factory Buildings 
Low density building areas, larger dimensions, complex 

and compact building form, diverse main directions 
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The above-presented buildings descriptions are independent of any application [35,53] and data at 

hand. Yet, they comprise the characteristics of the buildings present in the considered urban 

environment. In the conceptualization phase, the acquired knowledge (building types concepts and 

their underlying semantics) is organized hierarchically in a semi-formal way (Figure 2). This phase is 

important for both domain experts and ontology engineers. The former can easily understand the 

underlying semantics of the domain concepts and, therefore, they can easily extend and/or modify the 

acquired knowledge. On the other hand, this hierarchical, semi-formal representation of the domain 

knowledge guides the ontology engineers in their attempt to model the ontology using the 

OWL2 specifications. 

Figure 2. Excerpt of the buildings types hierarchy. The evaluated building classes are 

defined as subclasses of Urban-Features; The Properties of the buildings are related using 

the AND and OR operator (intersection and union of the selected properties). 

 

The qualitative descriptions of the buildings types are mapped to the quantitative information 

extracted from the ALS data. This procedure poses the following challenge: which features 

(i.e., buildings characteristics) are appropriate to instantiate the qualitative concepts descriptors: 

e.g., what metrics are relevant to identify the buildings that have complex form.  

3.2.2. Feature Selection—Rejecting Irrelevant Features and Ranking the Feature Relevance 

For the task of selecting relevant features for achieving optimal classification results, two main 

problems need to be addressed [54]: (i) ―the minimal-optimal problem‖, which refers to the challenge 

of eliminating the redundant features from a classification model, and (ii) ―the all-relevant problem‖ 

that refers to the identification of all relevant features for achieving optimal classification results. 

To address the above-mentioned problems, we used the RF classifier [55]. RF is a non-parametric 

ensemble learning classifier [55], successfully implemented in different application domains, including 

remote sensing [56–58] and data mining in life sciences [59]. For a detailed evaluation of the 

effectiveness of the RF classifier in the remote sensing domain, the readers might refer to [60]. 

RF relies on a large set of classification decision trees (ensemble of classification trees) [55]. Each 

of these decision trees votes for the class membership, the class being assigned according to the 

majority of the trees votes. To build the decision trees, bootstrapped samples (sampling training data 

randomly) of the original training data are created. The bootstrapped samples are separated into 

training sets, and out-of-bag (OOB) subset samples. Two-thirds of the samples in the original sample 

data are used for training and one third is used as OOB for assessing the performance of the trees [55]. 

A subset of features is then randomly selected at each tree node/split and tested for the best-splitting, 

based on the Gini impurity [55]. In this paper, the RF classifier is used to predict the explanatory 
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power of the input variables, also known as ―Variable Importance‖ (VI): (1) Mean Decrease in 

Accuracy (MDA), and (2) Mean Decrease in Gini (MDG) [55].  

The RF classifier was applied on a set of 45 training samples (Step 4, Figure 1). To avoid biases 

caused by the underrepresentation of the ―Apartment Buildings‖ and ―Industrial and Factory 

Buildings‖ classes, a balanced training set (15 per class) was selected. The training samples for the 

industrial buildings and residential buildings were compiled by visual interpretation of the cadastral 

data published online by the Biberach an der Riß Urban Planning Agency [61], whereas the samples 

for the apartment buildings were created through visual interpretation of Bing Maps Aerial 

(©2012 Nokia, ©2013 Microsoft Corporation) and Google Maps (GeoBasis-DE/BKG ©2009, 

Google Map data ©2012).  

The RF requires the definition of two parameters: (1) the number of classification trees, and (2) the 

number of input variables used at each node split. In this study we defined 500 trees and √m variables 

at each split, where m represents the number of input features. These are the recommended parameters 

for tuning the RF classifier [55]. The VI of each feature is then calculated from averaging the 

importance of the selected features over 500 trees. The RF classifier was applied by using the Random 

Forest package implemented in the R statistical programming environment [62]. The features 

identified as relevant by RF are used to instantiate the qualitative descriptions of buildings specified in 

the ontology. 

3.2.3. Ontology Formalization and Classification of the Building Types Using Fact++ Reasoner 

The ontology has been formalized using the OWL2 specifications. For example, the class hierarchy 

displayed in Figure 2 is formalized as follows:  

ResidentialSmall − Buildings ≡ Buildings∩hasRoofType.PitchedRoof∩hasArea.SmallArea 

Apartment Buildings ≡ Buildings∩hasRoof.FlatRoof∩hasHeight.Low 

Industrial and Factory Buildings ≡ Buildings∩hasRoof.FlatRoof∩hasArea.LargeArea∩hasHeight.Low 

These class definitions are similar to the IF/THEN rules. For example, if an object has a flat roof, 

is a high object and is in the subclass of the ―Buildings‖ class, then this object belongs to the 

―Apartment Buildings‖ class. The ―Buildings‖ class was already classified as the ALS analysis was 

targeted towards extracting only building footprints and neglecting the other classes. In the next step, 

we instantiate the qualitative description like ―Small Area‖ with the data driven features identified as 

relevant by the RF classifier, introduced in the previous section. Finally, the building types 

classification is carried out using the FaCT++ reasoner [63]. A reasoner is a software program that 

infers superclass/subclass relationships from the ontology and conducts consistency, equivalence and 

instantiation testing [63]. Thus, by running a class query, e.g., ―Residential/Small Buildings‖, the 

reasoner returns all individuals (buildings objects) that satisfy the ―Residential/Small Buildings‖ 

definition specified in the ontology.  

3.3. Accuracy Assessment 

The classification accuracy was assessed by means of precision (Equation (1)), recall (Equation (2)), 

and F-measure indicators (Equation (3)) [64]. Precision indicates the number of retrieved instances that 
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are relevant (identified in the reference data), whereas recall indicates the number of the relevant 

instances that are retrieved [64]. The validation data were generated using the procedure described 

above (Section 3.2.2). Given the reduced size of the analyzed area, we classified all buildings extracted 

from ALS into the classes of interest: 73 ―Apartment Buildings‖, 27 ―Industrial and Factory 

Buildings‖, and 687 ―Residential/Small Buildings‖.  

true positive 
precision=    

true positive + false positive
    

(1) 

true positives
recall=        

true positives + false negatives
 

 
(2) 

2  (precision recall)
F - measure=       

precision + recall

 

 
(3) 

4. Results and Discussion 

This paper explored the use of the ontology to classify building types relying exclusively on the 

information extracted from ALS data. 

4.1. Buildings Extraction from ALS Data 

The building polygons for the analyzed area have been extracted by applying the methodology 

described in Section 3.1. In order to provide an accuracy measure of the extracted building objects a 

measure of completeness and correctness has been applied. For the described data set, a completeness 

measure of 97.80% and correctness of 80.05% was achieved. We observed that some buildings were 

misclassified and discarded from the final building class, as uncorrected intensity data for the final 

classification was used. Due to the range-dependency and atmospheric influences, the recorded signal 

intensity did not show proper results, but rather a distorted value which was offset enough to appear as 

if it were vegetation. Some of the vegetation residuals were too dense, so that the extraction algorithm 

merged them together into polygons resembling buildings. 

4.2. Feature Importance Results 

The MDA and MDG measures used to predict the explanatory power of the input variables (VI) are 

depicted in Figure 3. The most relevant features for all evaluated classes are: Slope, Height, Area, and 

Asymmetry. Slope and height features were predicted as being the most important features for 

categorising the evaluated buildings types. This result emphasizes the potential of the ALS data to 

discriminate between different building types. The importance of height and area for classifying 

building classes was also emphasized in these studies [51,52].  

Despite the fact that shape metrics are recognized as important features for discriminating between 

different building types [18,50], the importance predicted by RF for these features in our study area is 

much lower than slope, height, or area (Figure 3). This can be also explained by the errors encountered 

during the ALS pre-processing step that altered the shape of the building polygons, or merged the 

adjacent buildings into the same building object. 
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Figure 3. The Variable Importance (VI) by Mean Decrease Accuracy (MDA) and Mean 

Decrease Gini (MDG) measures.  

 

We utilized the RF to predict the feature relevance (VI), because it is a non-parametric classifier [55], 

which proved ―computational efficiency and robustness to outliers and noises‖ [16]. Furthermore, 

this study [58] showed that the MDA criterion performs slightly better for feature selection than the 

Mean Discriminant Function Coefficient metric, corresponding to the Linear Discriminant Analysis 

(LDA). Steiniger et al. [18] used box-and-whisker plots to assess the importance of different features 

for discriminating between the evaluated urban areas. As the authors emphasized [18], this is not the 

best solution for testing the power of features to discriminate between target classes, as it only 

indicates ―whether classes are separable by a simple one-dimensional decision stump‖ [18]. 

4.3. Results of the Ontology-Based Classification of the Building Types 

The final classification model consists of the following Feature Vector (FV): FV = [Slope, Height 

and Area]. The thresholds of these features were empirically determined by the RF classifier. The 

relevant features together with the identified thresholds have been modeled in the ontology (Figure 1 

Step 3.2.3). For example, the ―Flat-Roof‖ concept is defined as an ontology class whose quantitative 

value is specified by defining restrictions on the ―Slope-Value‖ data property (see the code snippet on 

the next page). 

<EquivalentClasses> 

<Class IRI="#Flat-Roof"/> 

<DataSomeValuesFrom> 

<DataProperty IRI="#Slope-Value"/> 

<DatatypeRestriction> 

<Datatype abbreviatedIRI="xsd:double"/> 

<FacetRestriction facet="&xsd;maxExclusive"> 

<Literal datatypeIRI="&xsd;double"< 25.0</Literal> 

</FacetRestriction> 

</DatatypeRestriction> 

</DataSomeValuesFrom> 

</EquivalentClasses> 
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After modeling all relevant features in the ontology, the FaCT++ reasoner was used to allocate the 

buildings polygons to the defined buildings categories. The results are displayed on Figure 4. 

Figure 4. The results of the classification performed using ontology and Random Forest 

(RF) classifier. The buildings were extracted from ALS data.  

 

The ―Residential/Small Buildings‖ class yielded satisfactory classification results: precision (97.7%) 

and recall (98%), F-Measure: 97% (Table 3). Only 16 buildings from this class were confused with the 

other two classes. The highest overlap occurred with the apartment buildings, which have slope values 

higher than the average slope of this class: 30 degrees. 

Table 3. Classification results yielded for ―Residential/Small Buildings‖ class. 

Residential/Small Buildings Relevant Not Relevant 

Retrieved 551 16 

Not Retrieved 9 109 

Recall (%) 98.3  

Precision (%) 97.1  

F-Measure (%) 97.7  

Total 687  

The ―Apartment Buildings‖ class achieved a much lower accuracy: 50.6% recall, 74% precision and 

60% F-Measure (Table 4). The overlap with the other two classes was caused by the presence of 

―Residential/Small Buildings‖ with slope values lower than the defined threshold (>40 degrees) and 

due to the overlap with four ―Industrial and Factory Buildings‖ that are higher than the average height 

of this class: 6.3 m. The information about the buildings area could not be used to avoid the confusion 

with the industrial building, because of the buildings extraction errors: e.g., the adjacent apartment 

buildings were merged together into one larger building.  
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Table 4. Classification results yielded for ―Apartment Buildings‖ class. 

Apartment Buildings Relevant Not Relevant 

Retrieved 37 13 

Not Retrieved 36 711 

Recall (%) 50.6  

Precision (%) 74.0  

F-Measure (%) 60.1  

Total 73  

The ―Industrial and Factory Buildings‖ class achieved the lowest value of F-Measure: 51% 

(Table 5). The high misclassification rate of this class is due to the large number of ―Residential/Small 

Buildings‖ misclassified as industrial buildings. To avoid the confusion between these classes, 

additional information such as mean distance between buildings [52] and building density should be 

included in the class definitions [14,18]. While the OWL2 ontology language used in this work is well 

suited for inferring implicit taxonomic relationships between concepts, or between individuals and 

concepts, ―it can make limited assertions about the relationships between two individuals‖ [65]. In the 

future work, we plan to use the Semantic Web Rule Language (SWRL) formalism to model the spatial 

relations following the approach described in this study [35]. 

Table 5. Classification results yielded for ―Industrial and Factory Buildings‖ class. 

Industrial and Factory Buildings Relevant Not Relevant 

Retrieved 22 47 

Not Retrieved 5 723 

Recall (%) 81.4  

Precision (%) 37.2  

F-Measure (%) 51.1  

Total 27  

4.4. Ontology Considerations 

The ontology developed in this study has been elicited from the textual descriptions of the building 

types found in the literature and adapted to the ALS data. As proven in this study [66], the literature 

can be used as surrogate for developing ontologies of objects to be identified in the analyzed data. 

Participatory methods such as experts interviewing represent another solution to develop domain 

ontologies [67].  

The buildings definitions specified in our ontology reflect the characteristics of the buildings in the 

considered urban landscape, i.e., Biberach an der Riss. As buildings characteristics manifest differently 

from one city to another [52], it is difficult to develop a generic ontology of building types. Therefore, 

different ontologies that account for building characteristics in different urban environments need to be 

developed and aligned to an upper-level ontology in order to enable domain knowledge integration. 

In the future work, the lightweight ontology developed in this study will be extended with 

additional classes and will be aligned to the SWEET ontology following the methodology described in 

this study [68]. 
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Classification of huge numbers of individuals using complex class definitions can present a challenging 

task for the reasoners in terms of computational resources and time consumption. Li et al. [69] and  

Bock et al. [70] reported about the time critical behaviour of various reasoners. In our particular case, 

the performance of the reasoner was reasonable with about 180 s for about 800 individuals.  

The ontology is foreseen to complement the existing algorithm dedicated to classification tasks and 

implemented in different software solutions. The added value of the ontology-based classification can 

be summarized as follows: 

(i) The logical consistency of the developed ontology can be automatically evaluated by the 

existing reasoner [19]. 

(ii) Ontology represents a declarative knowledge model that can be subject to community scrutiny 

and can be easily extended or adapted to new application scenarios [20].  

(iii) Data provenance can be easily identified [43] as the class definitions are explicitly formulated 

into a machine and human understandable format. Therefore, the users can assess whether the 

generated thematic information fits the purpose of their application. 

(iv) The semantics of the evaluated categories is explicitly specified and therefore, it is possible to 

infer implicit knowledge by running a reasoner.  

In this study, the buildings objects extracted from ALS data are allocated to the building categories 

using the FACT+++ reasoner. Since the processing time of reasoners increases with the numbers of 

modelled concepts and individuals [69,70], we plan to integrate the ontologies in other software 

environments, the remote sensing community is familiar with. We aim at developing an XML-based 

middleware tool that maps the ontology constructed in the OWL2 format to the class hierarchy 

formalism supported by the eCognition software program. The strength of this approach is the direct 

integration of ontologies into OBIA frameworks [71] in order to ease and to increase the transparency 

of the remotely sensed data classification.  

5. Summary 

This paper presents a methodological framework for classifying building types detected from ALS 

data using OBIA methods. The buildings were classified using a hybrid approach that accounts for 

both machine-learning techniques and the latest knowledge in engineering advances, i.e., ontology. 

The developed ontology modeled the domain knowledge about the evaluated buildings types, and 

mapped this knowledge to the quantitative information extracted from ALS data. The features 

(quantitative information extracted from ALS data) were selected by applying the RF classifier. 

The classification yielded convincing classification results for the ―Residential/Small Buildings‖ class 

(F-Measure = 97.7%), whereas, the ―Apartment Buildings‖ and ―Industrial and Factory Buildings‖ 

class achieves less accurate results: F-Measure = 60% and 51%, respectively. To avoid the high 

overlap between the analyzed classes, additional information such as spatial relations needs to be 

included in the class definition. The reliability of the classification results were also influenced by the 

quality of the buildings boundaries delineated from ALS data. In the future work, we plan to improve 

the developed ALS data analysis procedure by applying the laser scanning intensity correction 

proposed by [48], and fine tuning the extraction algorithm to better separate dense vegetation from 
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buildings. Despite the above-mentioned limitations, the presented methodology can be further 

extended and applied to the detection and classification of various building types in urban 

environments. The results of our work can be accessed from the web mapping application developed 

using the Esri ArcGIS Online cloud-based application: http://uia.maps.arcgis.com/apps/ 

OnePane/basicviewer/index.html?appid=6345994404284c879e103fb07bc6a88c. 
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