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Abstract: Crop phenology is essential for evaluating crop production in the food insecure 

regions of West Africa. The aim of the paper is to study whether satellite observation of 

plant phenology are consistent with ground knowledge of crop cycles as expressed in  

agro-simulations. We used phenological variables from a MODIS Land Cover Dynamics 

(MCD12Q2) product and examined whether they reproduced the spatio-temporal 

variability of crop phenological stages in Southern Mali. Furthermore, a validated  

cereal crop growth model for this region, SARRA-H (System for Regional Analysis of 

Agro-Climatic Risks), provided precise agronomic information. Remotely-sensed  

green-up, maturity, senescence and dormancy MODIS dates were extracted for areas 

previously identified as crops and were compared with simulated leaf area indices (LAI) 

temporal profiles generated using the SARRA-H crop model, which considered the main 

cropping practices. We studied both spatial (eight sites throughout South Mali during 

2007) and temporal (two sites from 2002 to 2008) differences between simulated crop 

cycles and determined how the differences were indicated in satellite-derived 

phenometrics. The spatial comparison of the phenological indicator observations and 

simulations showed mainly that (i) the satellite-derived start-of-season (SOS) was detected 

approximately 30 days before the model-derived SOS; and (ii) the satellite-derived  

end-of-season (EOS) was typically detected 40 days after the model-derived EOS. 
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Studying the inter-annual difference, we verified that the mean bias was globally consistent 

for different climatic conditions. Therefore, the land cover dynamics derived from the 

MODIS time series can reproduce the spatial and temporal variability of different  

start-of-season and end-of-season crop species. In particular, we recommend 

simultaneously using start-of-season phenometrics with crop models for yield forecasting 

to complement commonly used climate data and provide a better estimate of vegetation 

phenological changes that integrate rainfall variability, land cover diversity, and the main 

farmer practices. 

Keywords: phenology; crops; MODIS; SARRA-H model; practices; Mali 

 

1. Introduction 

Crop phenological dynamics should be essential for evaluating crop production [1], especially in 

the West African food-insecure regions. Vegetation conditions must be carefully monitored using early 

warning systems during the critical growth stages when estimating year-end crop yields in these 

regions. There, millet and sorghum, like other cereals, are cultivated under rainfed conditions. Thus, 

the timing of the photoperiodic phenological stages for these crops varies from year to year due to 

variable sowing dates, which are farm-level management decisions that depend on soil moisture and 

temperature conditions following the onset of rainfall [2]. 

Over the last two decades, global remote sensing dataset availability has provided new means  

for studying global vegetation patterns and dynamics [3,4]. With the ability to detect surface 

phenology objectively on a uniform timescale and global scale, time series composed of low- and 

medium-resolution satellite images have been used to study the phenological patterns that relate to 

climate variability and human actions (e.g., [5–9]). A variety of methods has been developed to detect 

vegetation phenology timing from satellite time series. White et al. [10], Schwartz and Hanes [11],  

and Hmimina et al. [12] reviewed these methods, and Atkinson et al. [13] discussed the very large 

differences one finds when using different phonological extraction techniques. For example,  

start-of-season vegetation may be derived from the seasonal NDVI curve [14–16] or precipitation data 

characteristics [17–19]. As vegetation phenology in arid and semiarid ecosystems is primarily 

controlled by water availability, a number of field studies have attempted to quantitatively link 

phenology to precipitation forcing. For example, Zhang et al. [3] examined how phenology changed 

with latitude, and how it was related to the timing of seasonal rainfall in Sahelian and Sudanese 

regions; they concluded that well-defined thresholds exist in cumulative rainfall for stimulating 

vegetation green-up in arid and semiarid regions of Africa. 

However, where weather stations are sparse and data access is difficult, climatic data are either 

aggregated, extrapolated from weather stations, or estimated from low spatial resolution satellite  

data [20]. To run agro-meteorological models, GCM or satellite-derived rainfall data are not 

satisfactory due to aggregation issues [21,22]. Using interpolated ground data, the model output 

uncertainty can be high where rainfall displays strong spatial variability because agricultural 

production is also sensitive to rainfall levels and temporal distribution. Moreover, on a regional scale, 
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vegetation phenology also depends on soil, micro-climates, regional climates, land use and 

management, for which complex spatio-temporal phenology patterns can be observed [23]. Thus, 

remotely sensed vegetation index (VI) data should include the main intra-seasonal vegetation 

dynamics and integrate both rainfall variability and land cover status. This is the reason why without 

field observations on a large scale, satellite-derived phenological indicators could be relevant for food 

security early warning systems, which may indicate risky situations in the region due to delayed  

crop growth. 

In this study, the objectives were to (i) qualify MODIS MCD12Q2 product, which increasingly 

interest the agricultural community and should grow in the future to monitor crops on a regional or 

global scale and (ii) test whether phenology variables (phenometrics) derived from a MODIS Land 

Cover Dynamics Yearly (MCD12Q2) product express the spatio-temporal variability of crop 

phenological stages in Southern Mali. The few ground phenology and/or cropping practice 

observations on the local scale for several years prohibits data validation from the ground and a deeper 

analysis of the phenology. However, a validated crop growth model for the sub-Saharan regions 

(SARRA-H, System for Regional Analysis of Agro-Climatic Risks) [24] provides precise agronomic 

information, which was well-documented using local varieties that are mainly cultivated by farmers in 

this area [24–26]. The model can reproduce the evolution of phenological stages and leaf area indices 

(LAI) of different tropical cereal species and varieties with mainly rainfall, temperature, global 

radiation, and evapotranspiration as input data. However, this model requires local information, such 

as the main practices (e.g., species, varieties, intense or extensive practices, and early sowing date 

strategies), and must be forced using climate data that are relevant on a local scale. 

Thus, the methodology consisted in examining whether the satellite observations and crop 

phenology agro-simulations are consistent. Phenometrics derived from the MODIS time series were 

compared to crop model simulations for sites throughout South Mali and located near synoptic stations 

with available rainfall and climatic data. Both the spatial (north-south gradient) and temporal  

(inter-annual) differences between the satellite- and model-derived phenological indicators were 

analyzed; we conclude on the potential for combining satellite- and model-derived indicators of crop 

phenology to improve agricultural production estimates on a national scale in West Africa. 

2. Material 

2.1. Study Area 

Mali is a land-locked West African country between the latitudes 10°N and 24°N (Figure 1 [27]). 

Mali exhibits a latitudinal climatic gradient that ranges from sub-humid to semi-arid and extends 

further north to arid and desert regions. Similar to other West African countries along the same 

latitudinal belt, food security requires adequate rainfall during the cropping season. Farming is the 

main source of income for many people in this region; rainfed millet and sorghum are the major food 

crops. The vast majority of the population (80%) includes subsistence farmers. A few larger farms 

produce crops for sale (cash crops), mainly cotton and peanuts. In this study, we do not consider the 

Saharan zone in the northern areas of the country with sparse rainfall of less than 300 mm per year. 

- Food-producing agriculture: area dedicated to millet and sorghum (>50%) as well as cotton 

(<10%); 
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- Intensive agriculture: area dedicated to maize and cotton (>40%); 

- Mixed agriculture: area dedicated to sorghum (>20%) and cotton (between 5% and 40%). 

Figure 1. The synoptic station locations and a map of the crop production systems in 

South Mali [27]. 

 

2.2. Satellite Data 

2.2.1. The MODIS Land Cover Dynamics Product (MCD12Q2) 

Two MCD12Q2 tiles that cover Mali were downloaded for 2002 to 2008. The yearly MODIS Land 

Cover Dynamics product (MCD12Q2; [28]) was developed to support seasonal phenology and  

inter-annual variation studies on land surface and ecosystem properties. The Collection 5 land cover 

dynamics product is described in Ganguly et al. [29] and available online for 2000 to 2010 (accessible 

from [30]) at a 500-m spatial resolution. This product was generated each year using the eight-day 

vegetation index EVI (Enhanced Vegetation Index) calculated from the NBAR reflectance (Nadir 

Bidirectional Reflectance Distribution Function—Adjusted Reflectance). Two full years of NBAR 

EVI observations were assembled using a window with six months of data before and after the  

12-month period of interest. The EVI was used because it provides a greater dynamic range than the 

normalized difference vegetation index [31]. 

The Land Cover Dynamic product is based on Zhang et al.’s [23] algorithm that models the  

annual vegetation index increase and decrease through a series of logistic functions developed  

using 24 months of input data (i.e., data for the 12 months of interest bracketed by six months of 

earlier and later data). This algorithm, also used in Beck et al. [32], characterizes vegetation growth 

cycles using four transition dates based on the EVI curvature-change rate from the MODIS data time 

series: (1) green-up: the date of onset for the EVI increase, typically referred to as start-of-season 

(SOS); (2) maturity: the date of onset for the EVI maximum, typically referred to as start-of-maximum 

(SMAX); (3) senescence: the date of onset for the EVI decrease, typically referred to as  

end-of-maximum (EMAX); and (4) dormancy: the date of onset for the EVI minimum, typically 
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referred to as end-of-season (EOS) [29] (Figure 2). Each variable is encoded on two distinct layers  

(n and n + 1) to include two growing seasons per year. 

Figure 2. Four transition dates based on the EVI curvature-change rate from the MODIS 

data time series. The solid line is an ideal time series for the vegetation index data, and the 

dashed line is the rate of change in the VI data curvature. The circles indicate transition 

dates: 1: start-of-season (SOS); 2: start-of-maximum (SMAX); 3: end-of-maximum 

(EMAX); and 4: end-of-season (EOS), adapted from Figure 2 in [23]. 

 

2.2.2. MCD12Q2 Product Pre-Processing 

Previous studies showed that the MODIS MCD12Q2 product displayed inconsistencies in certain 

pixel values [33,34]. For the Southern Mali images, Vintrou et al. [34] showed that only 70% of the 

cropped pixels had complete phenology information on the full vegetation cycle (four phenometrics 

values), and a large part of the pixels displayed unrealistically late start-of-season (SOS) values. The 

SOS frequency histogram displayed two peaks of high frequency, and Vintrou et al. [34] showed that 

the second peak was due to data gaps in the increasing part of the EVI time profiles, that conducted to 

a bad fit of Zhang’s model. To eliminate these outliers, we modeled the SOS value distribution using 

two Gaussian functions and removed the pixels that corresponded to the second peak. 

2.3. Cropland and Agricultural System Maps 

A cultivated domain map for Mali (2 classes: “crop” and “non-crop”) was produced at a 250-m 

spatial resolution by Vintrou et al. [35] using the 2007 MODIS time series. 

A map of the agricultural systems was also produced for South Mali using spectral, spatial, 

temporal and textural indicators extracted from the 2007 MODIS images combined with ground  

data [27]. For this map, each of the 4,000 villages in the studied area were assigned to one of the three 

agricultural system classes, as shown in Figure 1. The food-producing agriculture class corresponds to 

villages with agricultural area with millet and sorghum (>50%) as well as cotton (<10%). Villages with 

an intensive agricultural system essentially grow maize and cotton (>40%), and the mixed agriculture 

class corresponds to agricultural area with both sorghum (>20%) and cotton (between 5% and 40%). 
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2.4. Climate Data 

The Agro-Hydro-Meteo Regional Center (AGRHYMET) provided daily climatic data (rainfall, 

temperature, and insolation) from eight synoptic stations in Mali for 2007 (Table 1). For two stations 

among the eight, one in Sahelian (Segou) and the other in the Sudano-Guinean zone (Sikasso), the data 

covered the seven-year period between 2002 and 2008 (Table 2). 

Table 1. Synoptic station characteristics from north to south. 

Station Latitude (dd) Longitude (dd) 2007 Rainfall (mm) Cropping System 

Nara 15.17 −7.29 441 Food-producing agriculture 

Segou 13.4 −6.16 521 Food-producing agriculture 

San 13.29 −4.91 748 Food-producing agriculture 

Kita 13.07 −9.46 883 Mixed agriculture 

Bamako 12.53 −7.95 856 Mixed agriculture 

Koutiala 12.4 −5.47 962 Intensive agriculture 

Bougouni 11.41 −7.51 1,330 Mixed agriculture 

Sikasso 11.35 −5.69 1,357 Intensive agriculture 

Table 2. Segou and Sikasso annual rainfall (mm) from 2002 to 2008. 

Year Segou Sikasso 

2002 500 780 

2003 610 1,160 

2004 500 1,140 

2005 480 1,010 

2006 560 970 

2007 520 1,360 

2008 680 950 

2.5. The SARRA-H Crop Model 

SARRA-H (System for Regional Analysis of Agro-Climatic Risks) is a simple, deterministic crop 

model for cereals that operates using daily time steps and was implemented on the Ecotrop platform of 

the Centre International de Recherche Agronomique pour le Développement (CIRAD) [36–38]. This 

platform facilitates managing different models (versions), data and simulation scenarios. The model 

used herein was SARRA-H version 3.2 to simulate the biomass dynamics (root, stem, leaves, and 

grains), especially in several select millet, maize, and sorghum varieties. The model reproduces three 

major processes: evolution of the phenological stages for the varieties (cycle length and 

photoperiodism) and carbon (biomass and distribution changes) and water balance [36]. The simulated 

biomass production is constrained by the availability of two main resources: light energy and soil 

water; AGRHYMET is currently adapting its crop yield forecasting system to provide information on 

productivity for different crops, crop varieties or intensification levels. 

The model uses daily climate data (rainfall, global radiation or insolation, temperature, and 

evapotranspiration), soil type, agricultural practices information, and crop variety. Furthermore, 

a number of empirical constants were used for the soil moisture and crop state criteria to initiate 
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sowing, the automatic test modalities during the seedling stage for stress-induced crop failure, and the 

automatic replanting option in case of failure [39]. Depending on whether the crop is traditional 

(photo-period sensitive) or improved (insensitive), it will mature either on a relatively stable calendar 

date or after a genotype-specific growth duration [40]. During that period, the crop will undergo 

variable levels of drought with variable effects on crop growth dynamics and yield as the phenological 

phases change with stress sensitivity [25,41]. 

3. Methods 

3.1. Satellite-Derived Phenometrics 

A 250-m resolution map of the cultivated domain was used to select the 500-m resolution MODIS 

MCD12Q2 pixels with a high proportion of crops covered. We used a two-stage filter ensure the 

selection of pure crop pixels phenology. We first applied a 3 × 3 sum filter to the 250-m crop mask and 

retained the pixels with a score greater or equal to 7 (out of 9). The crop mask spatial resolution 

remained unchanged (250 m), but the crop pixels surrounded by non-crop pixels were not rejected 

from the phenology study. This was our “filtered crop mask”. Second, to facilitate a high proportion of 

crops at a 500-m resolution, we applied the crop mask to the MODIS MCD12Q2 product with 

a majority filter (one pixel MODIS MCD12Q2 corresponds to four pixels of the crop mask) and kept the 

pure crop pixels only. The product is, hereafter, referred to as the crop phenology product (Figure 3). 

We calculated the summary statistics (median and standard deviation) for the four phenometrics 

(SOS, SMAX, EMAX, and EOS) of the crop phenology product for a 10 km × 10 km window 

centered on each synoptic station. 

Figure 3. An example of start-of-season extraction on a national scale (averaged on  

a 20 × 20 km grid) and Bougouni- and Segou-station scale (defined by a 10 × 10 km 

polygon) and masked using a 2007 crop map [35]. 
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3.2. Model-Derived Phenometrics 

3.2.1. Model Simulation Set 

The SARRA-H model was used to predict crop behavior in their original environment (soil type) as 

a function of rainfall regimes and agricultural practices (crop species and variety, fertilization index, 

and sowing dates). For each synoptic station, we conducted 370 simulations using parameters from 

data in previous studies and expert knowledge (Table 3):  

Table 3. System for Regional Analysis of Agro-Climatic Risks (SARRA-H) simulation 

input for each synoptic station. 

Station 
Species and 

Variety 
Sowing Date Fertilization Soil Type 

Soil 

Depth 

Number of 

Simulations 

Nara 
Sorghum caudatum 

Intermediate No 
Sandy and 

sandy clay 

80 cm and 

180 cm 
8 

Millet souna 

Segou 

Sorghum guinea 

Late and intermediate No 
Sandy and 

sandy clay 

80 cm and 

180 cm 
24 Sorghum kenikeba 

Millet choho 

San 

Sorghum guinea 

Late and intermediate No 
Sandy and 

sandy clay 

80 cm and 

180 cm 
24 Sorghum kenikeba 

Millet choho 

Kita 

Sorghum guinea Intermediate for 

millet and sorghum, 

and intermediate  

and late for maize 

Yes/No 
Sandy and 

sandy clay 

80 cm and 

180 cm 
42 

Sorghum kenikeba 

Millet choho 

Maize 

Bamako 

Sorghum guinea 

Late, intermediate Yes/No 
Sandy and 

sandy clay 

80 cm and 

180 cm 
64 

Sorghum kenikeba 

Millet choho 

Maize 

Koutiala 

Sorghum guinea 

Late and intermediate Yes 
Sandy and 

sandy clay 

80 cm and 

180 cm 
32 Millet choho 

Maize 

Bougouni 

Sorghum guinea Early, late, 

intermediate  

(except for maize: 

intermediate  

and late only) 

Yes/No 
Sandy and 

sandy clay 

80 cm and 

180 cm 
88 

Sorghum kenikeba 

Millet choho 

Maize 

Sikasso 

Sorghum guinea Early, late, 

intermediate for 

millet and sorghum, 

and intermediate and 

late for maize 

Yes/No 
Sandy and 

sandy clay 

80 cm and 

180 cm 
88 

Sorghum kenikeba 

Millet choho 

Maize 

- Species composition and intensification mode: the species and intensification options were 

derived from the crop production systems map (Figure 1); the intensive and auto-subsistence 
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food-producing system crops were simulated using higher and lower fertilization  

levels, respectively. 

- Species variety: the variety used was based on previous studies and expert knowledge; it mainly 

depends on the cropping season length and sowing strategies. Early and intermediate sowing 

dates imply photoperiodic varieties, and species adapted to the end of the rainy season were 

necessary; thus, we used photoperiodic (sorghum and pearl millet) and non-photoperiodic 

varieties (sorghum and maize). 

- Soil type: soils in this region are mainly sandy [42]. The soil layer available for the rooting zone 

mainly depends on topography; it may be absent or may vary up to more than 2 m thick. Two 

types of soils (sandy and sandy clay) and two maximum root depths (80 cm and 180 cm) were 

examined to include the variability. 

- Sowing date: the model automatically generated a sowing date that was the day when the 

available soil water was greater than 10 mm at the end of the day followed by a 20-day period, 

during which we monitored crop establishment [39]. If the daily simulated total biomass 

decreases 11 out of 20 days, the juvenile stage of the crop is considered a failure, which triggers 

automatic re-sowing. While the beginning of the growth cycle depends on the crop species, the 

sowing strategy is decided at the plot management level and considers the available labor and 

rainfall hazards. We use the most common strategy, wherein the end of the crop cycle (EOS) 

coincides with the end of the rainy season. Local photoperiodic millet and sorghum varieties 

were sown either as soon as the first rains began or later, depending on the growing season 

length. However, for maize and non-photoperiodic sorghum, the sowing dates depend on cycle 

length and the date the season typically ends, which varies from north to south. 

Thus, in addition to rainfall parameters, the beginning of the crop cycle is based on previous  

studies [24,39] for pearl millet in Niger and sorghum in Mali [43]. For pearl millet and sorghum, the 

simulation starting dates were 1 March (to simulate early sowing), 1 May (to simulate intermediate 

sowing), and 1 July (to simulate late sowing). For maize, the simulation starting dates were, 

respectively, mid-June, 1 July, and mid-July. On average, and related to the beginning of the rainy 

season, the windows for the probable sowing dates also vary from north to south. 

3.2.2. Model-Derived Phenometric Calculations 

The four phenometrics of interest were derived from annual, temporal, LAI-simulated profiles using 

a daily time step for each station using the SARRA-H model (Table 3). The phenometrics calculations 

based on Zhang et al.’s [23] algorithm, using the R software version 2.9.1, were computed for each 

simulation of each station (e.g., 88 different SOS dates for Sikasso and Bougouni in 2007; Table 3) 

and the median was calculated for each phenometric, to generate a unique SOS, SMAX, EMAX,  

and EOS value for each synoptic station. The standard deviations were also calculated for each 

iteration to assess variability. The model sensitivity to varying soil types and fertilization modes was 

tested simultaneously. 
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3.3. Comparison between Satellite and Model-Derived Phenometrics 

The satellite and model-derived phenometrics (median values for SOS, SMAX, EMAX, and EOS) 

were compared for each synoptic station/year combination by calculating the mean signed difference 

(MSD; Equation (1)) and the root mean square error (RMSE; Equation (2)), which is reported in days. 
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where Oi is the satellite-derived phenometrics, Mi is the model-derived phenometric, Pi is the predicted 

phenometric, and N is the number of points (number of stations or years, for the spatial and temporal 

analysis respectively). The RMSE is a frequently used measure of the differences between values 

predicted by a model and the values actually observed. In our case, we considered that the predicted 

values were obtained from a “statistical model”, derived from the regression between model-derived 

and satellite-derived phenometrics (corresponding to the “ideal value” when the satellite and model  

fit perfectly). 

4. Results 

4.1. LAI Simulation Results 

The LAI profiles simulated for each synoptic station as the annual SARRA-H crop model output 

exhibit a typical vegetation growth shape, except at the end of the growing season, where the LAI 

profile drops sharply (Figure 4). 

Analyzing the model sensitivity to various soil types, fertilization modes and species composition, 

we observed the following: 

- The choice of different soil types has a limited impact on LAI dynamics, except for EMAX 

(Table 4). For SOS, SMAX, and EOS, the soil effect was insignificant (bias < 5 days, except for 

Sikasso). For EMAX, the standard deviation between the different phenometrics using different 

types of soils varied from four to 12 days. 

- The phenological indicators for fertilized crops appeared approximately five days earlier than for 

non-fertilized crops (Table 4). As an illustration, Figure 4 shows four LAI profiles for the Kita 

synoptic station in 2007 (one maize variety and one sorghum variety with two fertilizer 

treatments each). 

A detailed analysis of the simulation results indicates that the main drivers of crop dynamics were 

species composition, planting strategies (early, intermediate, and late) and rainfall regime. 
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Figure 4. Examples of model-derived phenometrics (dotted lines) calculated with Zhang’s 

non-linear functions for two sets of LAI simulations using the SARRA-H crop model for 

the Kita synoptic station in 2007. The green curve represents the maize LAI simulation 

(fertilized in the dark, non-fertilized in light); the orange curve represents the Guinea 

Sorghum LAI simulation (fertilized in the dark, non-fertilized in light). For each fertilized 

curve, the dotted lines correspond to the following from left to right: (i) start-of-season 

(SOS); (ii) start-of-maximum (SMAX) of season; (iii) end-of-maximum (EMAX) of 

season; and (iv) end-of-season (EOS). 

 

Table 4. The effect of soil type and fertilization mode on crop growth: standard  

deviations for the start-of-season, start-of-maximum of season, end-of-maximum of 

season, and end-of-season in days for each station, in 2007, with four soil types and two 

fertilization modes. 

Standard Deviation (days) Nara Segou San Kita Bamako Koutiala Bougouni Sikasso 

Soil type factor:         

SOS 0 1 1 1 1 0 2 10 

SMAX 1 1 1 3 3 0 3 6 

EMAX 7 12 10 9 6 4 7 7 

EOS 2 1 4 2 1 1 3 3 

Fertilization mode:         

SOS    4 2  5 4 

SMAX    5 7  10 5 

EMAX    6 3  0 2 

EOS    3 2  1 2 

  



Remote Sens. 2014, 6 1378 

 

 

4.2. Phenometrics Spatial Analysis 

4.2.1. North-South Gradient Analysis 

Figure 5 shows the four MCD12Q2 product phenometrics calculated for each synoptic station  

in 2007. The north-south gradient for the start-of-season (SOS) metric was confirmed with a growing 

season that began in April in Sikasso, May in Bougouni, the end of June in Koutiala and Bamako, and 

the first half of July in San, Segou, and Kita, except for Nara, wherein the season began surprisingly 

earlier (27 June). The start-of-maximum (SMAX) was concentrated in the second half of August, 

while the end-of-maximum (EMAX) was concentrated in the second half of September, and the  

end-of-season occurred between mid-November and mid-December. 

The four model-derived phenometrics calculated for each synoptic station, in 2007 (Figure 5),  

also confirm the SOS metric north-south gradient with a growing season that began in late June for 

Bougouni and Sikasso and the end of July-beginning of August for the other stations. The SMAX was 

concentrated in August, the EMAX was concentrated in October, and the end-of-season mainly 

occurred during the first half of November. 

Figure 5. Satellite- (pink) and model-derived (violet) phenometrics boxplots were calculated 

for eight synoptic stations, ranged from north (Top) to south (Bottom), in 2007. The mean 

signed difference (MSD) is the difference between the model- and satellite-derived 

phenometric values in days. 

 

For the model- and satellite-derived phenometrics value variability in the 10 km × 10 km window 

around the stations, the SOS and SMAX distributions were wider for the Sudano-Guinean stations in 

Bougouni and Sikasso (standard deviation between 25 and 35 days) than for the other stations in  

the Sudanese and Sahelian regions (standard deviation between two and 20 days for SOS). For the 

satellite-derived phenometrics, the variability is that of the area taken around each station (20 × 20 pixels), 
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whereas for the model-derived phenometrics, the variability is due to the number of simulations 

performed for each station (Table 3). 

The satellite-derived SOS and EMAX were detected before the model-derived phenometrics  

(MSD of 33 and 19 days, respectively), whereas the satellite-derived SMAX and EOS were detected 

after (MSD of -4 and -37 days, respectively). 

4.2.2. A Comparison of the Satellite- and Model-Derived Phenometrics 

The satellite- and model-derived phenometrics of the eight stations for 2007 were regressed  

against each other and compared. Figure 6 shows that the relationships between the satellite- and 

model-derived SOS, SMAX, and EOS are consistent among the stations (coefficient of correlation  

of 0.92, 0.74, and 0.65, respectively; p-value < 0.05). The SOS phenometrics yielded the best results; 

in contrast, the results were unsatisfactory for EMAX, especially for the Nara station (Figure 6). 

Figure 6 also shows the RMSE, which is between seven and 12 days according to the phenometric. 

Figure 6. Linear regression for the median satellite- and model-derived phenometrics 

values for the eight stations during 2007. The diagonal dotted lines represent the 1:1 line. 

 

4.3. Phenometrics Temporal Analysis 

4.3.1. Inter- and Intra-Annual Variations 

Figure 7 shows the four MCD12Q2 product phenometrics calculated for Segou and Sikasso  

for 2002 to 2008 years. 

For Segou, the year-to-year variation was slight for the four phenometrics, with a range of values  

of 11, 13, 6, and 8 days for SOS, SMAX, EMAX, and EOS, respectively. The intra-annual variation is 
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small too with a standard deviation comprised between five and 16 days according the years, as 

indicated by the short whiskers in Figure 7. 

For Sikasso station, the inter-annual range of values is equivalent to that for Segou (23, 5, 5, and 4 days 

for SOS, SMAX, EMAX, and EOS, respectively). However, the intra-annual variations are particularly 

large for Sikasso, particularly in 2004 and 2006, with a standard deviation comprised between  

nine and 71 days. 

Globally, the model-derived phenometrics for the Segou and Sikasso stations from 2002 to 2008 

(Figure 7) display similar inter- and annual variations compared to the satellite-derived ones. However 

for Sikasso, the boxplots and whiskers were larger for model-derived SOS and SMAX, and the 2004 

and 2006 years do not appear as anomalous for the EMAX and EOS. 

As for the spatial analysis, the satellite-derived SOS were detected before the model-derived 

phenometrics (MSD of 33 and 52 days for Segou and Sikasso, respectively), whereas the satellite-derived 

EOS were detected after (MSD of -31 and -42 days for Segou and Sikasso, respectively). 

Figure 7. Satellite- (pink) and model-derived phenometrics boxplots (violet) calculated for 

Segou and Sikasso from 2002 to 2008. The mean signed difference (MSD) corresponds to 

the difference in days between the model- and satellite-derived phenometrics. 

 

4.3.2. Comparison of the Satellite and Model-Derived Phenometrics 

The satellite- and model-derived phenometrics for the years 2002 to 2008 were regressed against 

each other and compared for Segou and Sikasso stations. Figure 8 shows that the relationships between 

the satellite- and model-derived phenometrics are consistent, among the years, for Segou SMAX  

and EOS (coefficient of correlation of 0.68, and 0.70, respectively; p-value < 0.05), and that the 

satellite- and model-derived phenometrics are consistent among the years for Sikasso EMAX and EOS 

(coefficient of correlation of 0.7 and 0.65, respectively; p-value < 0.10). The inconsistency of Sikasso 

SOS phenometric was partly due to the year 2006 (orange point in Figure 8). 
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Figure 8 also shows the RMSE, which is between one and eight days according to the phenometric 

and the station. 

Figure 8. Linear regression of the satellite- and model-derived phenometric median values 

for Segou and Sikasso from 2002 to 2008. The diagonal dotted lines represent the 1:1 lines. 

The SOS points represented by the orange circles were inconsistent for the rainfall 

distribution, which is discussed below (Section 4.4). 

 

4.4. Inconsistencies Analysis 

During the data analysis, we verified that the model- and satellite-derived start-of-season dates were 

consistent with the rainfall data. We observed certain inconsistencies, particularly in the SOS for 

Segou in 2002 (even if the point is not an outlier in the regression, see Figure 9) and Sikasso in 2006; 

the inconsistencies are further analyzed below. 

- For Segou, in 2002, the time lag between the satellite- and model-derived phenometrics may be 

due to either satellite indices that were too early or model indices that were too late to detect the 

sowing dates. A closer look at the rainfall data showed that the satellite-derived SOS was 

consistent with the first rains. However, the model considered the rainfall levels and highlighted 

a false start in plant emergence, which is commonly referred to as failed sowing dates (Figure 9, 

with red circles that indicate failed sowing dates and green circles that indicate successful 

sowing dates). Thus, the model indicates that the plant was first sown on DOY 170 (such as for 

the satellite), but it did not grow properly and was re-sown 30 days later; this additional 

information from the model was not considered by the satellite. 

- For Sikasso, in 2006, the satellite-derived SOS was detected two months before the first rains 

(Figure 9). The satellite-derived SOS was unusually early, and likely, the rain gauges may have 
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missed the first rains in the area, which raises questions on the spatial representativeness of the 

local rainfall measurements. 

Figure 9. Rainfall (mm), LAI simulation (blue curve) and model- (dotted blue lines) and 

satellite-derived (dotted red lines) phenometric barplots for the two years, which indicate 

inconsistencies (Segou in 2002 and Sikasso in 2006), including for the LAI millet choho 

simulation in Segou and sorghum guinea in Sikasso (blue curve). From left to right, the 

dotted lines correspond to the start-of-season, start-of-maximum of season, end-of-maximum 

of season, and end-of-season, respectively. The red circle indicates a failed sowing date, 

and the green circle indicates a successful sowing date. 

 

5. Discussions 

5.1. Comparison between Satellite- and Model-Derived Phenometrics 

First, the model- and satellite-derived phenometrics were separately analyzed for the eight 

stations in 2007; we observed that the season began sooner (May vs. July), with more variability 

for the start-of-season (SOS) and start-of-maximum of season (SMAX) (approximately 30 days vs.  

10 days) in the south than in the north, except for Nara, wherein the season began early in 2007 (end of 

June). A similar crop calendar with related conclusions was also generated that highlighted the 

temporal (seven years) analyses for Segou and Sikasso. These results corroborate results from other 

studies [44,45]. The variability in the south, especially for the seedlings, was due to a greater variety of 
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species and varieties; cropping calendars must be adapted, not only to plant characteristics (species and 

photoperiod characteristics), but also to the beginning of the season [24]. The observation that  

satellite- and model-derived phenometrics in Sikasso vary more from year-to-year than in Segou, 

especially the SOS, suggests that natural vegetation is important in a humid site, wherein the transition 

dates may vary due to non-homogeneous land cover. This enhanced variability is also better reflected 

in the model that proposes various strategies based on expert knowledge, which is exemplified in the 

simulations through potential early sowing in the south, whereas only intermediary or late sowings 

were allowed in the north. Briefly, lower latitudes are consistent with longer rainy seasons and more 

choices by the farmers at the beginning of the crop season. For the end of the crop cycles, the two 

other phenometrics (EMAX and EOS) were concentrated in October and November, respectively, 

regardless of their location. The end of the rainy season was less variable than the beginning; farmer 

practice calendars are typically based on the average end of the rainy season [43]. 

Second, comparing satellite- and model-derived phenometrics for the stations in 2007, the  

satellite-derived SOS was approximately 30 days before the model-derived SOS. As vegetation and 

land cover are rarely uniform across 25 ha (500 m
2
), the indications from the remotely sensed 

phenological indicators at the spatial resolution are unclear [28]. We hypothesized that the SOS delay 

may be due to a mix of the natural vegetation and crops in a pixel; natural vegetation begins at  

the beginning of the rainy season, while farmers typically wait for a certain level of rain before  

sowing [39]. Thus, the model-derived SMAX was earlier than the satellite-derived SMAX (four days), 

while the opposite was observed for the EMAX phenometrics (19 days). We assumed that the LAI 

profile simulations suggest that the cultivated patch was homogeneous with simultaneous growth for 

each plant, whereas the MODIS product inherently included a mix of land cover types. The LAI curve 

that represents pure crop phenology shows a curvature change before the MODIS mixed pixel; thus, 

the SMAX was earlier for the model. The EOS phenometrics difference was approximately 40 days for 

the model simulations and satellite observations. On the ground, the EOS approximately corresponds 

to the harvesting period, although the external environmental and socio-economic conditions may also 

play a role. For example, the harvesting date can either be sooner to avoid moisture for too much rain 

or immediate consumption, but it may be later due to a small working force or if the farmer practices 

allow the grains to dry up; these considerations may explain the later EOS detection using the satellite 

approach, typically 40 days after the model-derived EOS. 

Comparing phenometrics from 2002 to 2008 in Segou and Sikasso, the RMSE remained 

approximately from one to eight days for the four phenometrics (vs. seven to 12 days for the eight 

stations in 2007), and the mean signed difference remained globally stable among the different climate 

conditions. The difference between the Segou and Sikasso metrics was approximately 30 days  

(50 days for Sikasso) for the model and satellite SOS images; the difference was 10 days for the 

SMAX, 20 days for the EMAX and 40 days for the EOS. Several sources of uncertainty in both the 

satellite and modeled data explain these differences. 
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5.2. Uncertainties, Data Limitations, and Interpretations 

For the MCD12Q2 product, we showed in a previous study that the Zhang algorithm is not 

applicable in instances with greater than two consecutive missing 16-day NBAR EVI values, which is 

often the case in tropical West African countries [34]. Thus, artifacts can be introduced into the 

MODIS Land Cover Dynamics product due to the few opportunities for a clear view of the ground 

during the rainy season; thus, the data tend to be contaminated with clouds. Accurate results require 

good cloud screening and removing aerosols from the image. As a result, determining the SMAX and 

EMAX indicators from the MODIS Land Cover dynamics products was more difficult than 

determining the SOS and EOS, and we agree with Brown and de Beurs [20], who hypothesized that 

the different phenometrics performances (especially at the season maximum) would decrease due to 

cloud residue in the composite data. Thus, several cautions should be considered when using these 

phenological indicators. Our results are also consistent with [12], which showed that the MODIS 

NDVI composite data accurately predict phenology if the NDVI observations are not contaminated by 

clouds and are well-distributed over the main transition phases. 

Second, the spatial resolution of this MODIS product (500 m) and the fact that we considered the 

main type of agricultural system (mixing two or three species in different proportions) at each station 

are also sources of inaccuracy [34]. At the pixel scale, the uncertainty is due to a mix of different land 

cover types in a pixel. At the station scale, we use various combinations of crop varieties, practices and 

soils based on geographic areas and expert knowledge to represent the variability of the situations. 

However, the model was not calibrated to force using the most suitable varieties for each area. 

In addition, although real field combinations can vary greatly, we did not weight the different 

simulations to avoid introducing more subjectivity and uncertainty. 

Third, we observed certain inconsistencies with the rainfall data. The representativeness of the local 

rainfall information is questionable due to the convective rainfall regime; it is possible that a rainfall 

event (sporadic rain) may not be considered by the rain gauge in the two studied areas given the large 

spatial variability at a comparable site in Niger [17]. Thus, analyzing the representativeness of the 

variability observed from the satellite phenometrics would require a denser network, such as in Benin and 

in Niger, to study the utility of additional information from weather satellites for crop model results [46]. 

Despite the differences between the satellite- and model-derived transition dates, they are clearly 

related. The model-derived phenological indicators clearly simplify the ideal crop growth, whereas the 

satellite indicators are aggregated at 500 m and encompass several types of land cover. However, the 

differences are consistent, and spatial and temporal comparisons (with RMSEs at approximately five 

and nine days) suggest that the land cover dynamics derived from the MODIS time series can 

reproduce the spatial and temporal variability of different crop species and integrate both rainfall 

variability and land cover diversity. Our results are consistent with Xiao et al. [47], wherein large 

plains in North China and wheat/maize rotation systems were studied. 

5.3. Crop Monitoring and Early Warning Systems 

In Mali, it has been shown that except for the humid sub-region with dense cloud cover over more 

than 15 days, phenological indicators from the MCD12Q2 product are consistent with ground 

knowledge and modeling. However, in the food security context, the MCD12Q2 product cannot  
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be used because it is generally delivered the next year (MCD12Q2 is produced once a year  

from 24 months of input data, i.e., including data for the 12 months of interest bracketed by six months 

of earlier and later data; see [30] for details). Zhang’s algorithm [23] could also be used for the EVI 

time series during the growing season, and we observed that in the middle of the growing season, the 

algorithm can calculate the first two EVI curvature-change rates (i.e., the SOS and SMAX for the 

season) [34]. As satellite observations are often contaminated by clouds during the maximum of the 

season in West Africa, this study mainly indicates that the observed SOS can easily be used in early 

warning systems for crop monitoring. For example, in semi-arid monsoonal ecosystems, where food 

crops are often photoperiodic, a sowing delay reduces the yield due to growing season length [48]. 

Therefore, combined with historical sowing date data, the satellite-derived SOS from the MODIS 

MCD12Q2 product could be used as an early warning indicator of risky conditions in the region. 

These data support a previous study from Brown and de Beurs [20], wherein existing methods that use 

sowing date ground observations were assessed, and the same SOS metric derived from multiple 

sensors and rainfall data was compared; a metric based on NDVI and relative humidity was developed 

therefrom. The linear regression between the observed sowing dates and MODIS eight-day composite 

with an 8-km spatial resolution showed a RMSE of approximately 12 days [20]. In addition, 

our outlier analysis suggested that the model and observations are complementary; they each provide 

different information. These observations reinforce our conviction that our method is relevant  

in countries where ground observations are scarce or difficult to collect; the combined use of  

satellite- and model-derived indicators of crop phenology should improve agricultural production 

estimates on a national scale in West Africa. 

6. Conclusions 

This paper documents the simultaneous use of remotely sensed indicators and a crop growth model 

to provide a better estimate of vegetation phenological changes in the data-scarce West African 

countries with food insecurity and a monsoonal ecosystem. We observed that the phenological 

indicators from the MODIS Land Cover Dynamics Yearly (MCD12Q2) product reproduce the  

spatio-temporal variability of crop phenological stages in Southern Mali. 

Where the satellite observations are not contaminated by clouds and are well distributed over the 

transition phase, the start-of-season indicator could be recalculated from the EVI time series and used 

as complementary information with the crop model. Food security systems could benefit from such 

remotely sensed indicators, which provide spatially continuous information and vegetation phenological 

change information that integrates rainfall variability, land cover diversity, and farmer practices. 

In the future, crop phenology monitoring should also benefit from ESA’s upcoming satellite 

Sentinel-2, which will provide high spatial-, spectral- and temporal-resolution images of Earth on 

national and global scales. 
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