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Abstract: Uncontrolled, large fires are a major threat to the biodiversity of protected heath 

landscapes. The severity of the fire is an important factor influencing vegetation recovery. 

We used airborne imaging spectroscopy data from the Airborne Prism Experiment (APEX) 

sensor to: (1) investigate which spectral regions and spectral indices perform best in 

discriminating burned from unburned areas; and (2) assess the burn severity of a recent fire 

in the Kalmthoutse Heide, a heathland area in Belgium. A separability index was used to 

estimate the effectiveness of individual bands and spectral indices to discriminate between 

burned and unburned land. For the burn severity analysis, a modified version of the 

Geometrically structured Composite Burn Index (GeoCBI) was developed for the field data 

collection. The field data were collected in four different vegetation types: 

Calluna vulgaris-dominated heath (dry heath), Erica tetralix-dominated heath (wet heath), 

Molinia caerulea (grass-encroached heath), and coniferous woodland. Discrimination 
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between burned and unburned areas differed among vegetation types. For the pooled 

dataset, bands in the near infrared (NIR) spectral region demonstrated the highest 

discriminatory power, followed by short wave infrared (SWIR) bands. Visible wavelengths 

performed considerably poorer. The Normalized Burn Ratio (NBR) outperformed the other 

spectral indices and the individual spectral bands in discriminating between burned and 

unburned areas. For the burn severity assessment, all spectral bands and indices showed 

low correlations with the field data GeoCBI, when data of all pre-fire vegetation types 

were pooled (R
2
 maximum 0.41). Analysis per vegetation type, however, revealed 

considerably higher correlations (R
2
 up to 0.78). The Mid Infrared Burn Index (MIRBI) 

had the highest correlations for Molinia and Erica (R
2
 = 0.78 and 0.42, respectively). 

In Calluna stands, the Char Soil Index (CSI) achieved the highest correlations, with  

R
2
 = 0.65. In Pinus stands, the Normalized Difference Vegetation Index (NDVI) and 

the red wavelength both had correlations of R
2
 = 0.64. The results of this study highlight 

the superior performance of the NBR to discriminate between burned and unburned areas, 

and the disparate performance of spectral indices to assess burn severity among vegetation 

types. Consequently, in heathlands, one must consider a stratification per vegetation type to 

produce more reliable burn severity maps. 

Keywords: heathland; Composite Burn Index (CBI); GeoCBI; separability index; 

burn severity map; spectral indices; hyperspectral 

 

1. Introduction 

Heathlands in Europe are highly valued as habitats for biodiversity conservation, as relict 

landscapes of European heritage and as prime leisure areas [1–5]. Most remaining heathlands are now 

protected under the European Habitats Directive (92/43/EEC), the European Birds Directive 

(2009/147/EC), or under national legislation. Although prescribed burning is used as a management tool in 

many heathlands [4,6–10], uncontrolled wildfires are a major threat to heathland habitats (e.g., [1,11,12]), 

with potentially devastating effects. In the short-term, heath fires partially or completely remove the 

vegetation layer and litter [5,11], thereby destroying the typical habitats and associated fauna. In the  

long-term, wildfires can alter species composition and diversity [5,11,13–16]. As a result, typical heathland 

species, such as Erica tetralix and Calluna vulgaris, are replaced by dominant grasses, such as 

Molinia caerulea [7,12,17–19]. Important to note, these degraded heathlands become even more vulnerable 

to wildfires [12]: Molinia caerulea produces large amounts of highly flammable dead grass material, thus, 

risking to drag the heathland into a self-reinforcing cycle of Molinia caerulea establishment [11]. 

The severity of a fire is one of the factors controlling post-fire vegetation recovery and species 

composition [13,15]. In wildfire research, the terms burn severity and fire severity are often used 

interchangeably [20–22]. Lentile et al. [21], however, suggest a clear temporal distinction between 

both terms. Fire severity quantifies the immediate short-term fire effects on the local environment, 

whereas burn severity quantifies both the short and long-term impact as it includes response processes 

such as vegetation recovery [21,22]. In the last few decades, remote sensing techniques have emerged 
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in wildfire studies thanks to their: (i) synoptic overview [23–26], (ii) vast coverage [21,27–29]; 

and (iii) repeated temporal sampling [21,27,30]. Furthermore, (iv) remote and inaccessible parts are 

easily studied [21,25,31], and (v) remote sensing studies are often cheaper and faster than detailed  

time-consuming field campaigns [21,24,29,30]. Various methods have been developed for burn 

severity assessments, including spectral indices (SIs) [32], simulation techniques [28,29,33], and 

spectral mixture analysis [34–40]. Spectral indices are the most widely used technique, due to their 

conceptual simplicity and computational efficiency [41]. Many studies rely on the Normalized 

Difference Vegetation Index (NDVI) [42–44], which uses the absorption and reflection characteristics 

of plants in the R (red) and NIR (near-infrared) spectral regions respectively. Numerous modifications 

of the NDVI have been derived to reduce atmospheric sensitivity and background variability [41]. 

Other spectral indices have been developed specifically to detect post-fire effects: the Burned Area 

Index (BAI) [45], the Char Soil Index (CSI) [46], the Mid Infrared Burn Index (MIRBI) [47], and the 

Normalized Burn Ratio (NBR) [25]. Bi-temporal change detection is frequently used by differencing 

the post- and pre-fire index images, as this strongly reduces the spectral confusion between burned 

areas and spectrally similar terrain features, such as water, shadow, and dark soil [41,48]. One of these 

differenced SIs, the dNBR (differenced Normalized Burn Ratio), has become the standard SI approach 

to assess burn severity. However, bi-temporal indices do not always outperform single date 

indices [49,50]. In addition, the bi-temporal approach requires two images and is more constrained by, e.g., 

limited availability of cloud-free imagery [44,51,52], and difficulties regarding image-to-image 

normalization that need to be accounted for [53,54]. Therefore, Boelman et al. [52] and Harris et al. [44], 

among others, emphasize the utility of mono-temporal images for burn severity assessments. 

Previous studies have shown that burn severity assessments in forests generally achieve better 

results than in low cover environments such as shrublands or grasslands [25,32,49,55,56]. 

Heath landscapes generally have characteristic sparse vegetation cover as well. Thus far, little is 

known about how conventional burn severity indices perform in these landscapes. In this study, we use 

airborne imaging spectroscopy data to evaluate the variety of existing indices to discriminate between 

burned and unburned areas and assess burn severity in the Kalmthoutse Heide, a protected heath 

landscape in Northern Belgium that was recently hit by a severe wildfire. 

2. Study Area and Data 

2.1. Study Area 

The Kalmthoutse Heide is a well-documented, intensively studied, protected heath landscape in 

Belgium, 25 km north of Antwerp, along the border with the Netherlands (Figure 1). The 1000 ha core 

area consists of different heathland vegetation types [57]. Wet heath dominated by Erica tetralix, is 

endangered by encroaching grass species, most importantly Molinia caerulea. Dry heath, dominated 

by Calluna vulgaris vegetation, occurs on the higher zones. Sand dunes and acidic pools are scattered 

across the region. The inner heathland area is surrounded by coniferous woodlands (Pinus ssp.) and 

pastures. During exceptionally dry periods (often in late spring or summer) the area is prone to 

wildfires. In 1976 and 1996, relatively large fires destroyed parts of the nature reserve, 120 ha and 

330 ha, respectively. The 2011 spring season was extremely dry and warm, causing fires in several 
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reserves in Belgium. On 25 and 26 May 2011, a wildfire burned 370 ha of the core heathland area of 

the Kalmthoutse Heide. This fire was the subject of our research.  

Figure 1. (a) False color composite (RGB: LSWIR: 2332 nm; NIR: 801 nm, R: 699 nm) of 

the APEX image of 27 June 2011, over the Kalmthoutse Heide, showing the 2011 burn scar. 

Locations of field plots are indicated (yellow plus signs). The two north-south oriented black 

lines are the result of on-board calibration to measure dark current during acquisition (see 

Section 2.3). (b) pre-fire vegetation types within the burn scar (see Section 2.4). 

 

2.2. Field Data 

Field measurements were collected from 10 to 12 weeks post-fire using a modified version of the 

Geometrically structured Composite Burn Index (GeoCBI) [56]. The GeoCBI is an adaptation of the 

Composite Burn Index (CBI) [25]. The GeoCBI and CBI assess several factors of burn severity in the 

field for five vegetation strata: (i) substrates; (ii) grasses, herbs and small shrubs below 1 m; (iii) tall 

shrubs and trees up to 5 m; (iv) trees from 5 to 20 m; and (v) big trees taller than 20 m. The GeoCBI 

differs from the CBI by including the Fraction of COVer (FCOV) of each vegetation layer and as such 

should better reflect the spectral mixture as perceived by remote sensing systems, resulting in higher 

correlations with spectral reflectance [56]. In heathland vegetation, shrubs rarely grow higher than one 

meter leaving only two strata to analyze. To account for the characteristics of heathland vegetation, we 

added and modified some factors according to field expert knowledge and literature review (Table 1). 

For example, we added the percentage of black char (e.g., [21,34,38,39,58]) and used the length of 
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burned Calluna branches [59] as measures of severity (Table 1). In our study area, the fifth stratum 

(big trees, higher than 20 m) was not present and was therefore omitted. The factor scores were rated 

between zero (unburned) and one (high severity) and averaged per stratum. A plot’s final GeoCBI 

score was then calculated as the average stratum scores weighted by their FCOV:  

 e       
               

 
     

      
 
     

 (1) 

where m refers to each vegetation stratum and n is the number of strata. CBIm refers to the average 

score of stratum m. 

Table 1. Modified Geometrically structured Composite Burn Index (GeoCBI) for 

heathlands used in this study. 

Factors Rating Factor Score References 

A. SUBSTRATES Weighting Factor: 1 

Ancillary data: Percentage dead leaves on the soil, pre-fire exposed soil  

Percentage black char 0–100% 0–1  [21,34,38,39,58] 

Medium/heavy fuel charring Light/superficial/medium/deep  0.2 / 0.4/ 0.6 / 0.8 [25] 

Soil cover change 0–100% 0–1 [25] 

B. MOSSES, GRASSES, HERBS, LOW SHRUBS < 1 m Weighting Factor: Fraction of Cover (FCOV) 

Ancillary data: Dominant pre-fire vegetation type, dominant regrowth species, dominant sprout species 

% Foliage altered 0–100% 0–1 In contrast to [25,56], mosses 

and grasses are included here, 

since they make up a large part 

of the ground cover in heath 

landscapes (similar to [50] in 

tundra landscapes). 

Length of burned Calluna 

branches 

Average length in cm of the 3 

longest burned branches in or 

within 1    f the pl t’s b rder.  

1–(rating/100) Similar to shrub skeleton 

height [59] 

Regrowth % cover 0–100% 1–(rating/% foliage 

altered) 

This study 

Sprouts  1–10 1–(rating/10) [56] 

C. TALL SHRUBS AND TREES 1–5 m (only if FCOV > 5% ) Weighting Factor: FCOV 

Ancillary data: Dominant vegetation type  

% Foliage altered 0–100% 0–1 [25] 

Frequency % living 0–100% 1–rating [25] 

Leaf Area Index change % 0–100% 0–1 [56] 

D. TREES > 5 m (only if FCOV > 5% ) Weighting Factor: FCOV 

Ancillary data: Dominant vegetation type 

% Green (unaltered) 0–100% 1–rating [25] 

% Black/brown 0–100% 0–1 [25] 

Frequency % living 0–100% 1– rating [25] 

Leaf Area Index change % 0–100% 0–1 [25] 

Char height Average char height in meter.  rating/8 (max score 1) [25] 
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In total, 109 field plots were measured (Figure 1a). In order to enable studying pre-fire vegetation 

type effects on the GeoCBI—SI correlations, we stratified our sample design based on four vegetation 

types, derived from the 2007 classification and verified with field records: Calluna vulgaris-dominated 

heath (dry heath): 34 plots, Erica tetralix-dominated heath (wet heath): 29 plots, Molinia caerulea 

(grass-encroached heath): 27 plots, and Pinus ssp. (coniferous woodland): Eight plots (Figure 2). 

Note that for Erica plots, the GeoCBI range is small, only ranging from 0.4 to 0.8 with no unburned 

plots. Nine plots did not belong to one of the vegetation classes. 

Figure 2. Histograms of Geometrically structured Composite Burn Index (GeoCBI) scores 

per vegetation type with bin-width 0.2. Unburned plots have a GeoCBI score of 0, while 1 

represents highest severity. The total numbers of plots (n) are given between brackets. 

 

Eighty plots were sampled that were homogeneous in both pre-fire vegetation type and burn 

severity. In most burn severity studies, only homogeneous field plots are used [22,25,60]. As a 

consequence, obtained correlations are actually only truly valid for areas with relatively homogeneous 

burn severity, and say little about heterogeneous parts, e.g., transition areas. By including a number of 

plots in random locations, chances of including heterogeneous plots increase, and as such the obtained 

correlations should be less biased towards homogeneous areas only. For this reason, we sampled 

29 additional plots, based on randomly generated coordinates. As was to be expected, these random 

plots were found to be more heterogeneous in terms of both burn severity and vegetation types.  

Plots were located and recorded using a Real Time Kinematic Global Positioning System  

(RTK-GPS, Trimble GPS R6+, Trimble Navigation Limited, CA, USA) with a horizontal accuracy 

below 1.5 cm. Under tree canopies, where RTK-GPS signals are less strong, the accuracy remained 

under 0.5 m after post-processing. In each plot, the modified GeoCBI was recorded in circular plots of 

4 m diameter, which is close to the 2.4 m pixel resolution of the imagery (see next paragraph). Figure 3 

shows field plot examples with different burn severities in both dry heath and wet heath vegetation. 
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Figure 3. Example photographs and modified GeoCBI score (under each photograph) of 

dry (Left) and wet heath (Middle) and grass-encroached heath (Right) with different burn 

severity. (0 is unburned, while 1 represents highest severity). 

 

2.3. Airborne Data and Preprocessing 

Airborne imaging spectroscopy data of the Kalmthoutse Heide were acquired on 27 June 2011, 
i.e., approximately one month post-fire, using the Airborne Prism Experiment (APEX) sensor (Figure 1a). 

The sensor was operated by the Flemish Institute for Technological Research (VITO), and images were 

captured with a spatial resolution of 2.4 m. Spectrally, the data consisted of 288 narrow-band images, 

ranging from the visible to the longer shortwave infrared (LSWIR) spectral domain (410–2450 nm), with 

a spectral resolution between 5 nm and 10 nm [61]. Geometric, radiometric and atmospheric corrections 

were perf r ed usi g   T ’s i -house Central Data Processing Center (CDPC); as described by 

Biesemans et al. [62]. The two north-south oriented black lines visible on Figure 1a are the result of  

on-board calibration to measure dark current during acquisition [61]. Previous validation tests on 
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airborne imaging spectrometer data, acquired in similar conditions, have shown the geometric accuracy of 

the implemented algorithms to be at sub-pixel accuracy [62]. Atmospheric corrections are based on the 

radiative transfer code Modtran 4 [63]. After these corrections, the obtained data product consisted of 

288 bands of reflectance images. The bands that were acquired in the atmospheric water absorption 

regions (881–986 nm; 1072–1176 nm; 1322–1450 nm; 1790–1969 nm) were excluded, reducing the 

amount of spectral bands used in the study to 223. 

2.4. Ancillary Data 

The Kalmthoutse Heide has been the subject of a five-year study (2007–2011) on mapping 

heathland habitat quality using airborne imaging spectroscopy. This study provided us with a 

thoroughly validated vegetation type classification map of June 2007, on which we based the pre-fire 

vegetation stratification for the field sampling (see Figure 1b). Details on the applied method and 

results of this vegetation type map can be found in Thoonen et al. [64].  

Additionally, a detailed burn scar map was provided by VITO, which was produced using 0.25 cm 

spatial resolution, 4-band visible and near infrared (VNIR) UltraCam imagery of 2 June 2011, i.e., five 

days after the fire event. This burn scar map was visually validated by local terrain managers. We 

chose to use this map to analyze performance of the spectral regions to discern between burned and 

unburned land because of the higher spatial detail, the closer date to the fire event, and to ensure 

independency of the used APEX imagery. 

3. Methods 

3.1. Spectral Indices 

Nine widespread spectral indices for burn severity analysis were calculated in this study (Table 2), using 

APEX bands in five spectral regions: blue (B: 450–500 nm), red (R: 600–700 nm), near infrared (NIR: 

700–1300 nm), shorter SWIR (SSWIR: 1300–1900 nm), and longer SWIR (LSWIR: 1900–2500 nm). 

Within each spectral region, the bands that revealed the highest discriminatory power were used to 

calculate the spectral indices (see Section 3.2). The NDVI is a widely used SI and is related to the 

amount of green vegetation making use of the relatively high reflection of vegetation in the NIR 

spectral region wavelengths, and absorption of radiation by chlorophyll in the red spectral region [65]. 

Other indices were designed to minimize the influence of disturbing signals, such as background and 

atmospheric effects, on the NDVI [41,66,67]. The non-linear design of the Global Environmental 

Monitoring Index (GEMI) strongly reduces atmospheric effects [68], which are considered very 

important for the remote sensing of dark surfaces such as burned areas [69]. Shorter wavelengths are 

more sensitive to atmospheric effects and the Enhanced Vegetation Index (EVI) uses this property by 

using the blue band’s sensitivity to calibrate the red band [70]. Additionally, the EVI enhances the 

vegetation signal by decoupling the background signal from the vegetation signal with a canopy 

background adjustment factor that addresses non-linear, differential and red radiant transfer through a 

canopy [70]. The Soil Adjusted Vegetation Index (SAVI) [67] similarly adds a soil correcting factor to 

the formula of the NDVI to account for background effects. The calibration constant L is set to 0.5 in 



Remote Sens. 2014, 6 1811 

 

this study (see Table 2) as this value is well suited for a wide range of background brightness values 

and vegetation densities [49,50,67]. 

Table 2. Spectral indices tested in this study. See text for wavelength intervals. 

Spectral Index Abbreviation Formula Reference 

 
Normalized Difference Vegetation Index NDVI       

     

     
  [65] 

Global Environmental Monitoring Index GEMI 

                  
       

   
  

with    
                           

         
 

[68] 

Enhanced Vegetation Index EVI         
     

               
  [70] 

Soil Adjusted Vegetation Index SAVI 
          

     

       
  

with       
[67] 

Modified Soil Adjusted Vegetation Index MSAVI        
                                

 
  [66] 

Burned Area Index BAI      
 

                         
  [45] 

Normalized Burn Ratio NBR      
         

         
  [25] 

Char Soil Index CSI     
   

     
  [46] 

Mid-Infrared Burn Index MIRBI                             [47] 

Notes: B: Blue, R: Red, NIR: Near Infrared, SSWIR: Shorter Short Wave Infrared, LSWIR: Longer Short 

Wave Infrared. 

Qi et al. [66] elaborated on the SAVI and designed the Modified Soil Adjusted Vegetation Index 

(MSAVI), which automatically sets the calibration constant based on vegetation density to further 

reduce the background noise. The Burned Area Index (BAI) was specifically designed to detect and 

enhance the char signal [45]. The BAI uses red and NIR reflectance values to calculate the spectral 

distance from each pixel to a reference spectral point to which burned pixels converge. The spectral 

values of this reference point (NIR reflectance 0.06 and R reflectance 0.1) were based on literature and 

analysis of several sets of satellite sensor images [45]. The Normalized Burn Ratio (NBR) [25] uses 

the Near Infrared (NIR) and Longer Short Wave Infrared (LSWIR) spectral region instead of the R 

region as used by the NDVI. In the LSWIR region radiation is strongly absorbed by the water content 

in vegetation or soils [25]. Scorching, drying, or dry soil exposure after fire will increase the LSWIR 

reflection and thereby decrease the NBR value [25,71]. The CSI similarly makes use of this feature by 

rationing the NIR and the LSWIR reflectance values [46]. The MIRBI [47] was designed for a  

shrub-savannah vegetation type, where NIR wavelengths are less useful due to the senescent state of 

the vegetation in the fire season. The index was developed in a Shorter Short Wave Infrared 

(SSWIR)/LSWIR spectral space and its performance was proven to be relatively stable over time in 

savannah ecosystems [47]. 

3.2. Spectral Sensitivity for Burned Area Discrimination 

A separability index (Equation (2)) was used to estimate the effectiveness of (i) individual bands 

and (ii) spectral indices to discriminate between burned and unburned land. The separability index 
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(also called normalized distance) has been used before to assess the power of mostly broadband 

sensors to discriminate burned areas [41,46,69,71–73], and was chosen for its widespread use in fire 

studies. The separability index is computed as follows:  

    
       

      
 (2) 

where    and    are the mean values of the considered spectral band of the burned and unburned areas 

respectively, and    and    the corresponding standard deviations. The higher the separability index M, 

the better the discrimination. Values of M higher than one indicate good separability, while values 

lower than one represent a large degree of histogram overlap between the burned and unburned 

classes [41,69]. The heathland in this study is a mixture of different vegetation types (see Section 2.1 

for a description). Therefore, the sensitivity analysis was performed on four vegetation types separately, 

based on the classification of Thoonen et al. [64] (Figure 1b). The bands that revealed the highest 

discriminatory power on the pooled dataset within each spectral region (see Section 3.1 for wavelength 

intervals) were used to calculate the spectral indices (Table 2). 

3.3. Relationship between Spectral Bands and Indices versus Burn Severity 

A linear regression analysis was applied on the GeoCBI scores of the field plots to evaluate the 

performance of the individual spectral bands and the SIs to assess burn severity. The correlation is 

defined by the coefficient of determination (R
2
), i.e., the proportion of total variance in the GeoCBI 

scores that is explained by the spectral band or SI, and statistical significance was quantified by the  

p-value using the F-statistic. 

Previous research demonstrated that the performance of spectral indices depends on the vegetation 

type [32,43,49,55,74,75]. Therefore, we performed our analysis per vegetation type, as well as for all 

the data pooled together over the vegetation types. 

Finally, a spatial distribution of the burn severity at the Kalmthoutse Heide was produced by using 

the optimal regression parameters of the four vegetation types considered in our study. For areas with 

other vegetation types (Figure 1b), the best performing SI for the pooled dataset was used. The area 

and percentage of each vegetation type within the burn scar are listed in Table 3. 

Table 3. Area and percentage of each vegetation type within the burn scar. Areas not 

belonging to one of the four vegetation types are grouped in ―other‖. 

Vegetation Type Area (ha) Percentage 

Erica 88.9 25.2 

Calluna 72.4 20.6 

Molinia 105.5 30.0 

Pinus 9.0 2.6 

other 76.3 21.7 
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4. Results 

4.1. Spectral Sensitivity for Burned Area Discrimination 

The bands with the highest separability index M for each spectral region are listed in Table 4. For 

the pooled dataset, the NIR spectral region had the highest overall M-score (M = 0.73). The LSWIR 

(M = 0.50) and SSWIR (M = 0.43) regions demonstrated moderate discriminatory power.  

The G (M = 0.22), R (M = 0.18) and, especially, the B (M = 0.05) wavelengths had very low M-values. 

The visible regions thus have very poor and the SWIR spectral regions moderate discriminatory power, 

but the best distinction is made by the NIR spectral region. 

Table 4. Maximum separability index values to discern burned and unburned areas for 

each spectral region, both for pooled data and for each vegetation type separately. The 

corresponding Airborne Prism Experiment (APEX) bands (central wavelength in nm) are 

given between brackets. Values higher than one are given in bold. 

Spectral Region Pooled Dataset Calluna Erica Molinia Pinus 

B 0.05 (499) 0.17 (450) 0.32 (499) 0.20 (499) 0.06 (450) 

G 0.22 (552) 0.25 (552) 0.65 (552) 0.51 (552) 0.21 (546) 

R 0.18 (699) 0.39 (699) 0.64 (699) 0.46 (699) 0.19 (675) 

NIR 0.73 (801) 1.14 (1063) 1.18 (828) 1.13 (1063) 0.84 (767) 

SSWIR 0.43 (1302) 0.98 (1302) 0.98 (1302) 1.03 (1302) 0.48 (1302) 

LSWIR 0.50 (2232) 0.85 (2352) 0.37 (2332) 0.50 (2339) 0.43 (1977) 

Note: B: Blue, G: Green, R: Red, NIR: Near Infrared, SSWIR: Shorter Short Wave Infrared, LSWIR: Longer 

Short Wave Infrared, see Section 3.1 for wavelength intervals. 

This conclusion holds when stratifying the data, although considerable differences are present 

between vegetation types. The heather vegetation types (Calluna, Erica, and Molinia) had higher 

separability indices (up to M = 1.18 for the NIR band in Erica vegetation) than the Pinus vegetation, 

which had similar results to the pooled dataset (Table 4). The SSWIR spectral region had high  

M-values for the heather types (M = 0.98 and 1.03). The LSWIR region performed well (M = 0.85) in 

dry heath (Calluna), whereas this spectral region performed only moderate in Erica and Molinia 

vegetation types (M = 0.37 and 0.50 respectively). The optimal spectral bands of the heather species 

were located close to the bands of the pooled dataset, except for the NIR, the region with the highest 

separability index. Pinus vegetation had different optimal bands for most spectral regions.  

The SIs were calculated with the bands of the pooled dataset (Table 2), and are listed in Table 5. 

Among the SIs analyzed, The NBR provided the highest discriminating ability and is the only SI with 

a separability index higher than one (M = 1.15). The NDVI, GEMI, SAVI, MSAVI, and MIRBI had 

M-values between 0.5 and 1. The BAI revealed a poorer performance (M = 0.34), and the CSI (M = 0.04) 

and EVI (M = 0.01) revealed very little discriminatory power.  
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Table 5. Separability index values to discern burned and unburned areas for the spectral 

indices by using the best performing bands on the pooled dataset (Table 4). Full names are 

listed in Table 2. Values higher than one are given in bold. 

Spectral Index Separability Index M 

NDVI 0.59 

GEMI 0.67 

EVI 0.01 

SAVI 0.74 

MSAVI 0.73 

BAI 0.34 

NBR 1.15 

CSI 0.04 

MIRBI 0.86 

4.2. Relationship between Spectral Indices and Field Assessments of Burn Severity 

In general, the individual spectral bands had low correlations with the GeoCBI field data (Table 6). 

The SSWIR spectral band obtained the highest correlation (R
2
 = 0.41) for the pooled data, the NIR 

band showed a slightly lower correlation (R
2
 = 0.40). The other bands demonstrated R

2
 values smaller 

than 0.2. There is a remarkable large discrepancy between the correlations of the different vegetation 

types. Burn severity in Calluna vegetation had a strong correlation with the LSWIR region (R
2
 = 0.51). 

Erica vegetation in contrast did not demonstrate significant relationships in any spectral region. 

A strong and significant relationship was measured between the GeoCBI scores and the SSWIR band 

for Molinia vegetation (R
2
 = 0.75). The Pinus stands revealed the highest correlation with the red 

spectral band (R
2
 = 0.64).  

The results of the correlation analysis with the SIs were comparable to the correlation analysis with 

the spectral bands in the sense that poor correlations were observed with pooled data, while clearly 

stronger relationships existed per vegetation type (Table 6). The MSAVI and MIRBI explained most of 

the variance for the pooled data, with an R
2
 of 0.40 for both indices. Note, that for pooled data, the 

SSWIR spectral band (R
2
 = 0.41; Table 6) gave a higher correlation than any SI. By stratifying the data 

per vegetation type, the correlations clearly increased. Calluna had the highest correlation with the CSI 

(R
2
 = 0.65). The MIRBI, NBR, and SAVI were also suitable in Calluna stands. In Erica stands, the 

correlations remained relatively low, however, MIRBI showed the highest correlation coefficient  

(R
2
 = 0.42), followed by the NDVI (R

2
 = 0.38). Relatively high correlations were obtained for 

Molinia vegetation with MIRBI having the highest R
2
 value (0.78). The GeoCBI of Pinus stands 

revealed strong relationships with indices that generally performed poorer in other vegetation types: 

the NDVI, SAVI and GEMI had the strongest correlations of 0.64, 0.63 and 0.59 respectively. 

Figure 4 demonstrates how the slope of the MIRBI regression lines clearly varies per vegetation 

type. Consequently, using the regression line obtained for the pooled data would imply a strong 

generalization and loss of information.  
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Table 6. Relationship (expressed as R
2
) between the GeoCBI field data and spectral bands 

and spectral indices (Table 2) with pooled data and data per vegetation type. 

R
2
 

Pooled Data (n = 109) 

Per Vegetation Type 

Calluna (n = 34) Erica (n = 29) Molinia (n = 27) Pinus (n = 8) 

B 0.12 *** 0.21 ** 0.03 0.08 0.45 

G 0.20 *** 0.00 0.00 0.31 ** 0.02 

R 0.20 *** 0.05 0.03 0.33 ** 0.64 * 

NIR 0.40 *** 0.41 *** 0.13 0.55 *** 0.54 * 

SSWIR 0.41 *** 0.41 *** 0.08 0.75 *** 0.13 

LSWIR 0.00 0.51 *** 0.06 0.17 * 0.19 

      

NDVI 0.14 *** 0.49 *** 0.38 *** 0.15 * 0.64 * 

GEMI 0.21 *** 0.45 *** 0.15 * 0.45 *** 0.59 * 

EVI 0.07 ** 0.33 *** 0.14 * 0.60 *** 0.44 

SAVI 0.24 *** 0.50 *** 0.22 ** 0.40 *** 0.63 * 

MSAVI 0.40 *** 0.41 *** 0.13 0.55 *** 0.54 * 

BAI 0.26 *** 0.32 *** 0.10 0.31 ** 0.39 

NBR 0.22 *** 0.55 *** 0.25 ** 0.38 *** 0.33 

CSI 0.18 *** 0.65 *** 0.26 ** 0.57 *** 0.50 

MIRBI 0.40 *** 0.58 *** 0.42 *** 0.78 *** 0.19 

Notes: n: number of field plots; *** p < 0.001; ** p < 0.01; * p < 0.05; no asterisk: p > 0.05; values higher 

than 0.35 are given in bold. 

Figure 4. Scatter plots and linear regression lines between the Mid-Infrared Burn Index 

(MIRBI) and the Geometrically structured Composite Burn Index (GeoCBI) field data, for 

pooled data and for separate data per vegetation type. 

 

To benefit from the relatively strong correlations that were observed among the vegetation types 

with different SIs, the final burn severity distribution (Figure 5) combines the GeoCBI values derived 
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from separate regression models for each vegetation type, based on the regression parameters of 

the best-performing SI (Table 7). For areas not belonging to one of the four vegetation types, the 

regression parameters of the best performing SI on the pooled dataset were used (i.e., MSAVI). 

This spatial distribution is expressed in GeoCBI values (Figure 5). 

Table 7. Best performing spectral index and corresponding regression parameters, as used 

in the burn severity spatial distribution (Figure 5). 

Regression Parameters GeoCBI = a SI + b 

Vegetation Type  Best Performing SI Slope Intercept 

Calluna CSI −0.2168 0.7640 

Erica MIRBI 0.1686 0.2815 

Molinia MIRBI 0.2716 0.1977 

Pinus NDVI −1.7498 1.3697 

Other classes MSAVI −1.9697 0.7492 

Figure 5. Burn severity spatial distribution of the 2011 fire at the Kalmthoutse Heide, 

produced by using the optimal regression parameters per vegetation type (see Table 7). 

The burn severity is expressed in GeoCBI. 
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5. Discussion 

5.1. Burned Area Discrimination 

The high discriminatory power of the NIR spectral band is consistent with findings of  

Veraverbeke et al. [41], Smith et al. [46], Pereira [69], Lasaponara [73], and López-García and 

Caselles [76]. This spectral region has been widely considered as the best spectral region to detect and 

map burned areas [41,69,76,77]. The NIR region is strongly reflected by vegetation. As a result, 

vegetation removal or scorching implicates a post-fire drop of NIR reflectance. The SWIR reflectance 

increases after burning, due t  the fire’s re  val  f water-retaining vegetation [25,41]. This reflectance 

increase is higher than in the visible wavelengths (VIS) and, hence, the SWIR region outperforms the 

VIS regions. As stated in literature (e.g., [41,69,76,77]), the VIS wavelengths have a very low 

performance in discriminating between burned and unburned areas. A likely explanation is that water, 

water-rich swamps, dense conifer forests and peat soil types all are relatively dark which causes spectral 

confusion with burned areas in these wavelengths [69]. Differences in separability performance among 

wildfires have been observed by Lasaponara [73]. Lasaponara [73] suggests that these observations 

might be due to the different land cover types affected by the fire. Our results support the hypothesis that 

differences in separability performance are caused by different vegetation types within the burn scar. 

The best performing LSWIR band (central wavelengths 2332, 2339, and 2352 nm, except for Pinus) 

corresponds with the findings of van Wagtendonk et al. [26], Veraverbeke et al. [41], and Pleniou and 

Koutsias [71], who found the most discriminating wavelengths at 2370 nm, 2310–2360 nm and  

2300–2370 nm, respectively. In the study by van Wagtendonk et al. [26], the 788 nm NIR band 

demonstrated the strongest reflectance decrease, close to the optimal NIR band for Pinus vegetation  

(767 nm) and for the pooled dataset (801 nm) found in our study. The optimal SSWIR band in this study 

(1302 nm), however, differs with Veraverbeke et al. [41] (1600 nm) and van Wagtendonk et al. [26] 

(1762 nm).  

The NBR had the highest discriminating power in our study, due to its combining of the spectral 

regions with strongest decrease and increase, the NIR and LSWIR region, respectively [26]. This index 

provided also good discriminatory power in South African savannahs [46]. The CSI, though using the 

same bands, performs poorly in this study, just as in Veraverbeke et al. [41]. In savannahs, however, the 

CSI attained a high degree of spectral separability [46]. The higher discriminative power that we found 

of the NIR spectral band compared to the NDVI is caused by the very low performance of the red (and 

visible) wavelengths. This is also confirmed by other studies, where the NIR channel alone achieved 

better separability results than indices based on a combination of NIR and VIS spectral bands [46,69]. 

5.2. Burn Severity Assessment 

Very few studies analyze the correlation between separate spectral bands and field data.  

Epting et al. [49] and Hoy et al. [50] only report the NIR and LSWIR spectral region in their analysis. 

Epting et al. [49] analyzed correlations between the NIR-band and the GeoCBI for four forest fires, 

resulting in correlations (R
2
) between 0.06 and 0.62. This is consistent with Hoy et al. [50] (R

2
 = 0.39 

and 0.27) and our study (R
2
 = 0.40). Hoy et al. [50] did analyze the SSWIR band, but did not report 

numbers due to insignificance of the results. In our study, however, this band demonstrated the highest 
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correlation with the GeoCBI. For the LSWIR spectral region, we found similar results as Hoy et al. [50]: 

in both studies the LSWIR performance is very low. Epting et al. [49], however, revealed a R
2
 between 

0.19 and 0.55 for the LSWIR region. The difference in performance between the SSWIR and LSWIR 

spectral band might be explained by differences in liquid water absorption: water absorption in the 

LSWIR band is significantly stronger than in the SSWIR band [78,79]. The 1302 nm SSWIR band 

used in this study is situated close to the NIR spectral region. Therefore this SSWIR band is expected 

to be less sensitive to moisture content than to vegetation structure, which is the most important 

variable influencing the NIR spectral region [80,81]. The inconsistencies between the study of  

Hoy et al. [50], and Epting et al. [49], and this study may be due to the different ecosystems and 

vegetation types observed, i.e., Alaskan black spruce forests, interior Alaskan vegetation types (forests, 

as well as low cover sites) and Atlantic European heathlands respectively. 

Indeed, previous research demonstrated that the correlation performance of the GeoCBI depends on 

the vegetation type [32,43,49,55,74,75]. Stratifying our data per vegetation type also improved the 

correlation results considerably. Most studies show stronger correlations in forested areas than in sparser 

vegetation types like shrubs and herbs: Epting et al. [49] found strong relations in mixed forests  

(R
2
 = 0.83). Herbs and shrubs on the other hand, showed a Pearson correlation coefficient of 0.33 and 0.25 

respectively (R
2
 = 0.11 and 0.06). The authors conclude that the CBI may not be appropriate to assess burn 

severity in non-forested areas. In addition, Key and Benson [25], Veraverbeke et al. [55], De Santis and 

Chuvieco [56], and the review by French et al. [32], show stronger correlations in forested areas than in 

shrub and herb vegetation. In our heathland fire study, the NBR performed rather poorly, while in other 

studies this index generally acquires the best results when compared to other indices [44,49,50]. This also 

indicates that the performance of burn severity assessment varies among vegetation types.  

The CSI was the best index in dry heath (Calluna) vegetation. The CSI is the ratio of the NIR and 

LSWIR spectral band (Table 2), a low CSI value means a high burn severity. Bare soil that was 

exposed post-fire also results in low CSI values, due to similar reflectance values in the NIR and 

LSWIR region. The CSI is designed to detect the char signal [46], but it also amplifies the soil cover 

change signal. This results in good performances in our dry heath vegetation, as well as in the 

chaparral ecosystems of California [44]. Wet heath vegetation shows a very poor correlation, 

considerably lower than the other vegetation types. This might be partly explained by the fact that this 

is the only vegetation for which we did not sample unburned field plots (Figure 2), which considerably 

lowers the range of variability in both the SIs and GeoCBI scores, affecting the strength of the 

regressions. In wet heath vegetation (mainly Erica) and grass-encroached heath (Molinia stands), the 

MIRBI showed the best correlation with the field data. Our finding that the MIRBI had the highest 

correlation within the wet heath and grass vegetation types is consistent with Trigg and Flasse [47]. 

In fact, this SI was designed for shrub-savannah ecosystems which has similarities with heath 

ecosystems. For example, grasses are widely present in both ecosystems and they are both 

characterized by quick post-fire recovery. The relatively high correlations with the SSWIR and 

especially the LSWIR spectral regions indicate that the post-fire decrease in moisture content varies 

among and is related to different severity levels. The coniferous vegetation has the highest correlation 

with the red spectral band and the NDVI. Differences in severity between the coniferous woodland 

plots were expressed as the amount of scorching of the needles in the crown. In none of the plots the 

pine needles were completely burned, but the amount of scorching of the crown significantly differed 
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among the coniferous woodland plots. This scorching influenced the photosynthetic activity and the 

amount of healthy vegetation of the trees, which is measured in the red and NIR region, respectively. 

This might explain the superior performance of the red region and NDVI for the coniferous woodland 

plots. The LSWIR region in post-fire environments is especially sensitive to increased reflectance due 

to the charcoal signal. However, in the coniferous woodland plots, charcoal exposure remained 

relatively limited, which might explain the lower performance of this region. Consequently, the most 

important factor in this vegetation type is not the change in water content, such as in Molinia and Erica 

vegetation types, but the change in photosynthetically active vegetation density.  

We observed a discrepancy between the results of the spectral sensitivity analysis for burned area 

discrimination and the burn severity regression analysis. In the burn severity analysis, the SSWIR band 

showed the best performance and the LSWIR band the lowest. However, the SSWIR-band resulted in 

low discriminatory power for burned area discrimination, while the LSWIR was the second best 

burned area discriminator (compare Table 6 with Table 4). The results of the spectral indices further 

confirm this discrepancy: the NBR outperformed the other indices in discriminating between burned 

and unburned areas, but was for no vegetation type the best predictor of burn severity. The opposite 

was also true: the CSI revealed very low discriminatory power for burned area mapping, whereas this 

index performed best to estimate burn severity in dry heath vegetation. Certain individual bands and 

indices, thus, performed differently for mapping burned area, compared to burn severity. Therefore, 

it is recommended to optimize the SI selection for each application separately.  

We used the optimal regression parameters of the best-performing SI for each vegetation types to 

predict a spatial burn severity distribution for the entire burned area. An alternative approach could 

have been to validate the optimal regression parameters with independent field data. Due to the low 

number of field plots after stratification per vegetation type (e.g., eight Pinus plots), this was not 

feasible in our research. 

In this study, we used spectral indices for their conceptual simplicity and computational efficiency. 

These spectral indices are widely used, and therefore direct comparison with previous research and 

other study areas is straightforward. Hence, spectral indices have clear advantages over other burn 

severity assessment methodologies. However, spectral indices use only a small fraction of the 

information contained in the spectroscopy images. For example, the spectral indices in this study used 

two or three spectral bands (see Table 2), whereas the APEX image acquired data in 233 bands 

suitable for analysis. Therefore, future research can focus on upcoming but more advanced 

methodologies that combine all information available from the spectroscopy data cube. Testing 

multiple band combinations with feature selection methods is one of the methods that may reveal more 

insights in the relation between severity and spectral response. Another technique that is often applied 

on imaging spectroscopy datasets is Spectral Mixture Analysis (SMA). SMA may reveal the 

proportion and physical presence of char within a pixel, which has been proposed as an indicator for 

severity assessments by several authors [21,34,39,58,82]. However, also these techniques have their 

limitations, e.g., the definition of the endmembers [83]. 

This article is a contribution to spectral imaging spectroscopy research of wildfires. More available 

spectral libraries (e.g., the ASTER spectral library [84]), new emerging SMA techniques [83] and 

spaceborne imaging spectroscopy missions planned in the near-future (Hyperspectral Infrared Imager, 

hyspiri.jpl.nasa.gov; Precursore Iperspettrale (Hyperspectral Precursor), www.isa.it; Environmental 
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Mapping and Analysis Program, www.enmap.org), might make spectroscopy data more widely 

available. This will foster more research on the spectral properties of post-fire landscapes and 

vegetation recovery in various vegetation types such as the heathlands in this study. 

6. Conclusion 

This study analyzed (i) the performance of single spectroscopy bands and spectral indices to 

discriminate between burned and unburned areas, and (ii) the potential of using spectroscopy bands 

and spectral indices and a modified version of the GeoCBI for the assessment of burn severity in a 

mixed heath landscape, similar to burn severity analysis in forest areas. Discrimination between burned 

and unburned areas differed among vegetation types. The NBR, widely applied for burn severity 

assessments, was the best discriminator between burned and unburned areas, and could, thus, be used 

in our heathland area to delineate the burn scar. For burn severity assessments, a few modifications of 

the GeoCBI suffice to collect severity data in the field. Using a single SI for all vegetation types within 

a heathland however seems undesirable, as much higher correlations with field reference data are 

obtained when separate spectral indices are used per pre-fire vegetation type. As a consequence, burn 

severity maps should ideally discriminate between vegetation types. This study is one of the first  

post-fire remote sensing studies performed in heathland habitats, and its repeatability and the 

performance of specific SIs need to be confirmed in future studies. 
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