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Abstract: Aerial and satellite imagery are widely used to assess the severity and impact of 

wildfires. Light detection and ranging (LiDAR) is a newer remote sensing technology that 

has demonstrated utility in measuring vegetation structure. Combined use of imagery and 

LiDAR may improve the assessment of wildfire impacts compared to imagery alone. 

Estimation of tree mortality at the plot scale could serve for more rapid, broad-scale, and 

lower cost post-fire assessments than feasible through field assessment. We assessed the 

accuracy of classifying color-infrared imagery in combination with post-fire LiDAR, and 

with differenced (pre- and post-fire) LiDAR, in estimating plot percent mortality in a 

second-growth coast redwood forest near Santa Cruz, CA. Percent mortality of trees 

greater than 25.4 cm DBH in 47 permanent 0.08 ha plots was categorized as low (<25%), 

moderate (25%–50%), or high (>50%). The model using Normalized Difference 

Vegetation Index (NDVI) from National Agricultural Imagery Program (NAIP) was 74% 

accurate; the model using NDVI and post-fire LiDAR was 85% accurate, while the model 

using NDVI and differenced LiDAR was 83% accurate. The addition of post-fire LiDAR 

data provided a modest increase in accuracy compared to imagery alone, which may not 
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justify the substantial cost of data acquisition. The method demonstrated could be applied 

to rapidly estimate tree mortality resulting from wildfires at fine to moderate scale. 

Keywords: LiDAR; forestry; wildfire; remote sensing; normalized difference vegetation 

index; coast redwood 

 

1. Introduction 

Wildland fires burn with varying intensity, which may be measured as flame height, heat, rate of 

spread, or total energy released. The resulting ecological effects depend on the interaction of intensity, 

duration and landscape characteristics, and are commonly referred to as fire severity, a broad term 

which encompasses mortality of vegetation as well as change in cover, effects on soil, and other 

factors. One field measurement of burn severity which is applicable across a wide range of vegetation 

types and has gained relatively widespread acceptance is composite burn index (CBI). CBI rating 

comprises the condition and color of soil, amount of vegetation consumed, scorch of trees, and 

presence of sprouting and/or new colonizing vegetation [1]. While useful, estimates of severity are not 

generally sufficient to make stand-level forest management decisions about post-fire response. Forest 

managers in particular have a need for information about fire effects and the spatial distribution of tree 

mortality following wildfire, but direct assessment from the field is time-consuming and costly. 

Remote sensing may be used to estimate varying levels of mortality and provide a more efficient, 

timely, scalable, and potentially more cost-effective means for post-fire assessment. The changes to the 

structure and color of aboveground vegetation and the color of soil following wildfire result in changes 

in the signal returned by both active and passive remote sensing systems. In particular, discrete-return 

light detection and ranging (LiDAR) and digital orthophotography (imagery) are commonly used to 

assess the condition of vegetation, including change detection following disturbance events such as 

wildland fire.  

Between the two technologies, the use of imagery to detect and characterize tree mortality and 

severity of forest fires has a more well-developed and robust research history. CBI was developed for 

the purpose of relating ground-based estimates of burn severity to estimates derived from 30 m 

resolution Landsat TM/ETM imagery [1]. Common image processing methods used to characterize 

burn severity include linear transformations, univariate image differencing, and supervised, 

unsupervised, and hybrid classification; the most commonly used strategies are methods of univariate 

image differencing [2]. Commonly used indices based on band ratios are the normalized burn ratio 

(NBR) and the normalized difference vegetation index (NDVI), and the differenced versions, dNBR 

and dNDVI. Although dNBR may be more sensitive to changes caused by wildland fire, dNDVI can 

be calculated from more commonly available color infrared imagery, which may also be available at 

finer spatial and temporal scales than Landsat imagery. Comparison of NDVI, NBR, dNDVI, and 

dNBR from Landsat TM/ETM+ scenes across four wildfire burn sites in Alaska to CBI found that NDVI 

performed similarly to NBR (|r| of 0.72 vs. 0.77) and dNDVI similarly to dNBR (|r| of 0.67 vs. 0.70) [3]. 

Assessment of fire severity across three fires in pine, oak, and eucalyptus forests in Spain found that 

NDVI performed similarly to NBR, dNDVI similarly to dNBR, and that single-scene indices 
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outperformed multi-temporal indices at describing severity within burned areas, while multi-temporal 

indices were more accurate at distinguishing between burned and unburned areas [4]. With any method 

based on imagery, accuracy can be an issue, as ―countervailing post-fire factors often lead to spectral 

confusion‖ [5]. 

The combination of LiDAR data and imagery may offer the ability to improve on assessments 

based on imagery alone. The distribution of LiDAR returns reflected from vegetation offers additional 

structural information about the size, density, and possibly condition of that vegetation. Although this 

strategy has not been widely exploited as yet, Kane et al. [6] used LiDAR data to characterize vertical 

and horizontal canopy structure, and combined structural variables with an adjusted dNBR calculated 

from Landsat data to characterize the effects of fire severity on forest structure.  

The use of LiDAR alone to model forest structure is widely accepted and used across a variety of 

forest types and operational settings. A number of strategies have been used to model stand-level 

vegetation metrics based on attributes of LiDAR data. In a Douglas-fir/grand fir forest in Oregon, 

LiDAR data with average first-return density of 10 points/m
2
 was used to estimate Basal Area (BA), 

Lorey’s mean height, volume, density, quadratic mean DBH, and crown width using both area-based 

and single-tree approaches. Area-based models performed as well or better than single-tree models 

except for Lorey’s mean height. LiDAR metrics used in best models included the max, mean, 

percentiles, and interquartile distances of canopy heights; a variety of normalized point densities 

within height bins; and median, maximum, and percentiles of intensity data [7].  

Thematic classification of stands has also been attempted using LiDAR data. A random forest 

algorithm was used with LiDAR data (density of 0.26 returns/m
2
) to classify a multi-species conifer 

forest in Idaho by forest successional stage. In one model, with 7 classes, having overall accuracy of 

90.12%, canopy cover and mean height were the most important predictors, followed by the density in 

two height strata from 1–2.5 m to 20–30 m, median height, 25th percentile height, modal height, and 

density in the 10–20 m height stratum. In another model, with 6 classes, having overall accuracy of 

95.54%, canopy cover and mean height were the most important predictors, followed by maximum 

height, median height, and density of the 20–30 m height stratum [8]. Similarly, LiDAR data has been 

used to detect the presence or absence of particular conditions in forested environments. The presence 

of understory vegetation in a diverse deciduous forest, for example, was detected by filtering leaf-on 

and leaf-off LiDAR data based on probable height to crown base by species of overstory tree cover, 

with 77% accuracy using both datasets, and 72% accuracy using only leaf-off data [9]. The distribution 

(presence/absence) of shrub understory was mapped with 83% accuracy in a mixed conifer forest in 

Idaho using percent ground returns, percent of returns between 1 and 2.5m, and plot slope multiplied 

by the cosine of aspect, and the distribution (presence/absence) of snags was mapped with 72%–80% 

accuracy using a variety of topographic and canopy height metrics derived from LiDAR [10]. In a 

forest with a relatively high component of standing dead trees, on the North Rim of the Grand Canyon, 

LiDAR percentile heights and high/low intensity peak frequency data was used to distinguish between 

live and standing dead biomass and estimate volume of each with R
2
 of 0.76 for live biomass, and 0.62 

for dead [11]. 

While LiDAR has been used more extensively to characterize forest stand conditions in general, 

relatively few studies have used LiDAR data to describe or quantify damage resulting from forest fires. 

Canopy height (first return − bare earth) changes from LiDAR data gathered before and after the 
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Hayman Fire in Colorado revealed areas where vegetation was consumed, but errors in repeated 

measurement confounded quantification of vegetation lost [12]. Angelo et al. [13] explored the use of 

vertical vegetation profiles derived using LiDAR point cloud data to predict time since fire in an oak 

scrub landscape. LiDAR point data binned into 1 m slices served as input for a Support Vector 

Machine (SVM) classifier, which provided a reliable map of structural vegetation differences.  

While suitable classification accuracy could be achieved with a relatively small training dataset, 

mapped outputs were generated at the relatively coarse 320 m × 320 m ―mesoscale‖. In sagebrush 

vegetation, damage was estimated from change in height of first return. Accuracy of classification by 

this method ranged from 64% to 96%, and was superior to classification by dNBR, which ranged from 

32% to 85% [14]. The combination or fusion of imagery with LiDAR techniques discussed above has 

been used for a similar variety of purposes. These strategies may be as simple as utilizing information 

from both datasets (sometimes referred to as ―stacking‖), but often involves linear transformations of 

combined data, machine-learning algorithms, supervised classification, or some hybrid combination of 

any of the preceding methods. A variety of fuel metrics (canopy height, basal area, canopy cover, 

shrub cover, shrub height) were modeled in a Sierra Nevada mixed conifer forest with R
2
 between 0.59 

and 0.87 using principal component analysis of NAIP 1 m CIR imagery and heights, percentiles, and 

densities from LiDAR data having average pulse density of 9 pulses/m
2
 [15]. Surface fuels were 

modeled with 87.2% accuracy in pine-hardwood forestland including areas of brush and grass in east 

Texas using fusion of QuickBird 2.5 m CIR imagery with LiDAR-derived canopy cover, canopy 

height model variance, and normalized point density in four 0.5 m height bins [16]. 

There is a dearth of information regarding the variable mortality of trees following wildfire, and 

whether or not it can be modelled, using remotely sensed data, with sufficient accuracy to make 

management decisions, or to model the effects of fires on nutrient and carbon cycling. There are also 

few studies in the literature regarding the combination of imagery and LiDAR to characterize the 

effects of fire, whether in terms of mortality or some index of severity. 

In this study, we combined NDVI from NAIP 1 m CIR imagery with a variety of metrics from  

pre- and post-fire LiDAR data to estimate the level of mortality of trees of all species at a plot  

scale, roughly equivalent to 0.08 ha (1/5 ac) plots. Three levels of mortality were defined based on plot 

percent mortality of trees 25.4 cm (10′′) DBH and greater. Estimates made using a Classification 

Analysis and Regression Tree (CART) approach with NDVI alone were compared to estimates made 

using NDVI in combination with post-fire only and with differenced pre- and post-fire LiDAR to 

assess whether gains in accuracy would result from the addition of LiDAR data. We had two 

objectives: first, to determine the accuracy that could be obtained using imagery alone, and compare 

any gains in accuracy that could be made by adding LiDAR data, and second, to demonstrate 

generation of wall-to-wall mortality estimates using imagery and LiDAR data. 

2. Materials and Methods 

2.1. Study Site  

The study was conducted on a portion of Swanton Pacific Ranch, a 1,320 ha educational and 

research facility, dedicated to remain a working ranch and forest, owned by the Cal Poly Corporation 
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and managed by the College of Agriculture, Food, and Environmental Sciences at Cal Poly. The ranch 

is located on the west slope of the Santa Cruz Mountains on the Central Coast of California, 

approximately 19 km north of the city of Santa Cruz. Elevations across the site range from 

approximately 20 to 470 m. The topography is steep and rugged with slopes ranging from 0% to 85%. 

The site experiences a maritime-Mediterranean climate, with cool rainy winters and dry summers, 

moderated by coastal fog. Overstory forest canopy in the study area is dominated by second-growth 

coast redwood (Sequoia sempervirens (D. Don) Endl.) with a significant component of Douglas-fir 

(Pseudotsuga menziesii (Mirbel) Franco var menziesii), tanoak (Lithocarpus densiflorus (Hook & Arn.) 

Rehder) and coast live-oak (Quercus agrifolia (Née)). Riparian corridors are dominated by red alder 

(Alnus rubra (Bong.)) with bigleaf maple (Acer macrophyllum (Pursh)) and California bay 

(Umbellularia californica (Hook. & Arn.) Nutt.). With the exception of a small stand at the 

northernmost extent, the entire study site was clearcut in the early 20th century. Portions of the site 

were salvage logged following the Pine Mountain Fire in 1948. Approximately 127 ha, 41% of the site, 

was selectively harvested between 1989 and 2008, with some portions harvested twice within this 

period. As a result, the structure of the forest is variable across the site, with 1–3 age classes present. 

Basal area (BA) within the plots range from 4 to 202 m
2
/ha; BA within plots used for this project range 

from 35 to 124 m
2
/ha. On 12 August 2009, a fire was ignited to the north of Swanton Pacific Ranch 

which would come to be known as the Lockheed Fire, and burn 3,163 ha over the course of 11 days. 

The entire site is located within the perimeter of the Lockheed fire, and experienced varying intensity 

and subsequent tree mortality. As a result of the fire, 37.5 hectares of the study area were salvage-logged 

using a helicopter in the winter of 2009 (see Figure 1b). 

Figure 1. Harvest history within the study area (a) regular commercial harvest; (b) salvage 

harvest in 2009. 
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2.2. Tree Measurements  

This study made use of 47 pre-existing 0.08 ha (1/5 acre) continuous forest inventory (CFI) plots, 

last inventoried either in 2003 or 2008. The plots are located on a 152.4 m (500′) systematic grid; plot 

locations were originally established using a staff compass and cloth tape. A variety of standard forest 

inventory data is collected every ten years at each CFI plot for every tree greater than 2.54 cm (1′′) 

DBH, however, data used in this analysis was limited to tree species, DBH, and tree status (live or 

dead). Tree status was assessed each year following the fire, through 2012, with the most recent status 

(2012) being used for this analysis. The diameters of trees in plots measured in 2003 was projected to 

2008 using a growth rate of 2% [17]. The plot mortality used is the percent mortality in trees at least 

25.4 cm (10′′) DBH, to avoid the confounding effect of the presence or absence, before the fire, of a 

large number of small trees in a plot; the 47 plots used are the subset of a total of 83 plots in the study 

area which have at least 15 trees which are at least 25.4 cm DBH. The diameter cutoff was chosen 

based on the professional experience of the authors; several cutoffs were informally tested, and the 

25.4 cm value chosen as the most appropriate. Plot mortality of trees 25.4 cm (10′′) DBH and greater 

was coded as a categorical variable to determine the relative effectiveness of using only imagery, using 

imagery and post-fire LiDAR, and using imagery and pre- and post-fire LiDAR to classify mortality. 

The categories used and number of plots in each category are shown in Table 1. 

Table 1. Plot-level mortality categories. 

Mortality of Trees 25.4 cm DBH and Greater (%) Mortality Class Number of Plots 

<25 Low 20 

25–50 Moderate 16 

>50 High 11 

These categories were chosen to provide enough information to land managers with as few classes 

as possible. In areas with less than 25% mortality of trees 25.4 cm DBH and greater, salvage 

harvesting is not likely to be economically viable, and the productivity of these areas is probably not 

significantly impacted by that level of mortality. In areas with greater than 50% mortality, harvesting is 

probably necessary to maintain productivity, and is very likely to be supported from an economic point 

of view. Areas in between will likely need further assessment based on the age, size, and density of 

timber, accessibility, and landowner objectives. 

Plot center locations were collected during post-fire mortality assessment in 2009 using a Garmin 

60csx GPS.  

2.3. Imagery 

National Agricultural Imagery Program (NAIP) 1 m CIR orthoimages taken in the summer of 2010 

were downloaded as digital ortho-quarter-quads and stitched together in ESRI ArcMap 10.1. The 

spatial accuracy of the image was checked against two points which had been surveyed using 

conventional methods and which could be easily identified in the image; the average error was 2.54 m. 

The image has extensive deep shadows, which, in preliminary exploration of the data, interfered with 

the relationship between NDVI and mortality. The raw values of shadowed pixels were transformed 
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using the following technique: an unsupervised classification process was used in ArcMap 10.1, with  

7 classes, 2 of which corresponded with shadowed pixels. The resulting raster was reclassified to a set 

of binary masks representing either unshadowed or shadowed areas. These masks were used to extract 

samples of unshadowed and shadowed pixels from an unburned portion of the scene with similar 

vegetation as the fire area. Approximately 20 million unshadowed pixels and approximately 8 million 

shadowed pixels were compared. The distributions of pixel values from the sample are shown below in 

Figure 2. 

Figure 2. Raw band values, unburned sample area, from (a) band 1 (red); (b) band 4 (infrared). 

  

(a) (b) 

The mean values of each sample of pixels were calculated. For band 1, the mean value of shadowed 

pixels was 73, while the mean value for unshadowed pixels was 135. For band 4, the mean value of 

shadowed pixels was 101, while the mean value for unshadowed pixels was 177. The values of 

shadowed pixels were adjusted by the difference in means (62 for band 1, and 76 for band 4).  

The resulting distributions, shown in Figure 3, are very similar. A similar technique was used by 

Sarabandi et al. [18] (2004) to correct shadowed pixels in IKONOS and QuickBird satellite imagery, 

although their correction also accounted for both differences in mean and standard deviation. 

Figure 3. Adjusted band values, unburned sample area, from (a) band 1 (red); (b) band 4 (infrared). 

  

(a) (b) 

These adjusted bands were used to calculate NDVI. In order to isolate areas of forest cover versus 

grasses, shrubs and lower vegetation, the calculated NDVI raster was masked using a LiDAR-derived 

canopy height threshold of 2 m. The resulting NAIP adjusted NDVI for vegetation above 2 m in height 

is the NDVI used in all further analysis. 
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Initial, exploratory analysis of image NDVI and percent mortality was conducted using linear 

regression (not the coded mortality discussed above). The relationship between NDVI and mortality 

was determined to be different for shadowed versus unshadowed pixels, and the values of shadowed 

pixels were adjusted. As shown in Figure 4, adjustment yielded similar results as merely cropping out 

shadowed pixels. The benefit lies mainly in being able to use the entire scene, rather than having gaps, 

and in not basing some plots’ measurement on a very small number of pixels. 

Figure 4. Linear fit for plot percent mortality on NDVI for (a) all pixels; (b) only 

unshadowed pixels; (c) all pixels, shadowed pixels have been adjusted. 

 

(a) 

 

(b) 

 

(c)  
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As mentioned in Section 2.3, the adjusted NDVI values were retained for areas where the LiDAR 

canopy height was greater than 2 m from the DEM. In fact, canopy-height masks at 1–5 m were tested, 

again using linear regression of plot percent mortality. The results, shown in Table 2, indicate that a 

higher threshold value might have yielded a better prediction; however, the number of pixels which 

contributed to the average values for some plots became small. The value of 2 m kept the proportion of 

all plots contributing above 60%, matched the threshold used for the LiDAR metrics, and still provided 

an improvement compared to unmasked data.  

Table 2. Plot percent mortality on plot average NDVI masked from 0 to 5 m. 

Average 

NDVI 
R

2
 

Whole plot 0.487 

Above 1 m 0.513 

Above 2 m 0.516 

Above 3 m 0.521 

Above 4 m 0.523 

Above 5 m 0.524 

2.4. LiDAR 

Two LiDAR data sets were used for this project: one collected 28–29 February 2008, and one  

9–10 March 2010, both by Airborne1 corporation, El Segundo CA. The 2008 flight used an Optech 

ALTM 3100 sensor aboard a Cessna 210 fixed-wing aircraft, scanning at 100,000 Hz with a scan angle 

of 14°. The 2010 flight used an Optech ALTM Orion sensor aboard a Navajo Chieftain fixed-wing 

aircraft, scanning at 150,000 Hz with a scan angle of 14°. For both flights, 1-sigma horizontal accuracy 

was 30 cm, and vertical accuracy 18.3 cm at 95% confidence and 15.2 cm at 90% confidence, 

according to the vendor. Quality assurance for elevations was provided by the vendor using real-time 

kinematic GPS points. For the 2008 flight, 1,046 points were collected; RMSE for the LiDAR DEM 

was 0.03 m, with residuals ranging from −0.15 to 0.07 m. For the 2010 flight, 2,742 points were 

collected; RMSE for the DEM was 0.034 m, with residuals ranging from −0.052 to 0.03 m. Raw data 

from both flights were delivered in LAS format, filtered by the vendor to identify bare-earth ground 

returns, and with points classified as first, last, or intermediate returns. Average first-return density 

across the study area was 5.78 returns m
2
 for the 2008 data and 8.12 returns m

2
 for the 2010 data. The 

raw LiDAR data were clipped to the locations of the CFI plots and exported as comma-separated value 

files using FUSION LTK 3.30, developed by the US Forest Service. Height percentiles and a variety of 

other metrics describing the vertical distribution of LiDAR returns above 2 m, as suggested by  

White et al. (2013) in their best-practices guide, were calculated for each plot using the CloudMetrics 

tool in FUSION [19]. The number of points in 1 m height bins was calculated for each plot using the 

DensityMetrics tools in FUSION. Height percentiles were normalized by mean and mode, and point 

counts in 1 m height bins were normalized by total number of points, in Microsoft Excel. All metrics 

calculated were also differenced by subtracting 2008 values from 2010 values in Microsoft Excel. 
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3. Results  

In order to provide a baseline for comparison, plot average, adjusted NDVI above 2 m was used to 

predict coded plot percent mortality (1–3) using a CART procedure. The confusion matrix for this 

prediction is shown in Table 3; overall accuracy was 74%. 

Table 3. Confusion matrix, model A (NDVI). 

 Classification  Omission 

Reference <25% 25%–50% >50% Total error 

<25% 19 1 0 20 0.05 

25%–50% 6 10 1 17 0.41 

>50% 0 4 6 10 0.40 

Total 25 15 7 47  

Commission error 0.24 0.33 0.14  0.26 

This model, shown in Figure 5, will be referred to as ―model A‖; a map of predicted mortality for 

the entire fire area based on this model can be found in Section 3.1. 

Figure 5. Classification tree for Model A, imagery only. 

 

Imagery and LiDAR 

Plot mortality was classified using the combination of NDVI and post-fire LiDAR, and  

NDVI combined with pre- and post-fire LiDAR (differenced LiDAR). Again, a CART procedure was 

used, using leave-one-out cross-validation for variable selection. The CART procedure makes a series 

of splits in the data, selecting a variable to split the data into two classes at each step, such that the 

resulting classes are more homogenous than the parent. Using only post-fire LiDAR, the best model 

(model B) used: 

- NAIP 2010 adjusted NDVI above 2 m (NDVI); 

- 50th percentile/mean height of points above 2 m (p50/mean); 

- 50th percentile/mode height of points above 2 m (p50/mode); 

- Standard deviation of height of points above 2 m (St. Dev.); 

- Percent of points in the 16–17 m height bin (d17m).  
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The confusion matrix for model B is shown in Table 4, overall accuracy was 85%. The 

classification tree for the model is shown in Figure 6; a map of predicted mortality using this model 

can be found below. 

Table 4. Confusion matrix, model B (NDVI & post-fire LiDAR). 

 Classification  Omission 

Reference <25% 25%–50% >50% Total error 

< 25% 17 2 1 20 0.15 

25%–50% 1 15 1 17 0.12 

>50% 0 2 8 10 0.20 

Total 18 19 10 47  

Commission error 0.06 0.21 0.20  0.15 

Figure 6. Classification tree for Model B, imagery and post-fire LiDAR. 

 

Using differenced LiDAR, the best model (model C) included:  

- NAIP 2010 adjusted NDVI above 2 m (NDVI); 

- Change in skewness of height of points above 2 m (Δskew); 

- Change in median of absolute deviations from mode of height of points above 2 m (ΔMADmode); 

- Change in percent of points in the 4–5 m height bin (Δd5m); 

- Change in percent of points in the 6–7 m height bin (Δd7m); 

- Change in percent of points in the 24–25 m height bin (Δd25m). 

The confusion matrix for model C is shown in Table 5; overall accuracy was 83%. The 

classification tree for the model is shown in Figure 7; a map of predicted mortality using this model 

can be found in Figure 8c. 

Table 5. Confusion matrix, model C (NDVI & differenced LiDAR). 

 Classification  Omission 

Reference <25% 25%–50% >50% Total error 

<25% 18 2 0 20 0.10 

25%–50% 1 16 0 17 0.06 

>50% 0 5 5 10 0.50 

Total 19 23 5 47  

Commission error 0.05 0.30 0.00  0.17 



Remote Sens. 2014, 6 1965 

 

 

Figure 7. Classification tree for Model C, imagery and differenced LiDAR. 

 

Figure 8. Maps of estimated mortality for the entire fire area using (a) Model A—NDVI 

only; (b) Model B—NDVI & post-fire LiDAR; (c) Model C—NDVI & differenced LiDAR. 

 

(a)  
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Figure 8. Cont. 

 

(b) 
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Figure 8. Cont. 

 

(c) 

Maps of estimated mortality were generated for the entire fire area using each of the methods 

above. These maps, shown in Figure 8, have a 30 m pixel size, chosen as an even number of meters 

that closely corresponds with the field plot size (900 compared to 809 m
2
). Because the pre-fire 

LiDAR data was collected for another project, it does not cover the entire fire area, although it covers 

the entire study area—thus the small area in the southeast portion of the fire area with no predicted 

mortality in Figure 8c. The remaining area with no predicted mortality in all three maps is the area 

where the LiDAR canopy height is within 2 m of the DEM. 

4. Discussion  

We presented a comparison of the accuracy of imagery-only, imagery fused with post-fire LiDAR, 

and imagery fused with differenced (pre- and post-fire) LiDAR in estimating plot-level mortality 
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resulting from a wildfire in a typical second-growth coast redwood forest. We presented the percent 

accuracy of each method across 47 field plots. Using a single, freely available post-fire image (model A), 

mortality classes were estimated with 74% accuracy. Our results are similar to other studies which 

have used NDVI to estimate severity, although it is difficult to compare severity to mortality [3–5]. 

Although approximately 40% of plots in the higher two mortality classes were misclassified, 

importantly, no plots with high mortality (>50%) were classified as low mortality (<25%), or vice-versa. 

In addition, we generated maps of estimated mortality across the entire fire area, for demonstration 

purposes. These maps should not be considered accurate, as the models they use are based on a limited 

sample, which does not represent all the forest types present across the fire area. However, they are 

likely to be as accurate in areas of similar forest type outside the study area as they are within it. 

Examination of the map of the model A prediction for the entire fire area, shown in Figure 8a, suggests 

that too much area was classified as low-mortality by this method; the confusion matrix suggests that 

some of this area should have been classified as moderate.  

The combination of imagery with post-fire LiDAR data improved overall accuracy from 74% to 

85%, compared to imagery alone. Most of the improvement can be attributed to plots which were 

incorrectly classified as low-mortality and which are in fact moderate-mortality. On the other hand, 

classification using post-fire LiDAR is less accurate when it comes to low-mortality plots, and 

classifies one of these plots as high-mortality, which is one of only two plots which were misclassified 

across two classes—the other being in the unshadowed NDVI classification.  

Two of the LiDAR variables selected, the p50/mean and p50/mode, describe the skew in the data. 

The standard deviation is used in combination with p50/mode—where both are low, mortality is 

higher. Where both values are higher, there are a greater number of returns higher in the canopy, which 

presumably corresponds with greater vegetative structure, and lower mortality. Similarly, where the 

ratio of p50/mean is low, mortality is high, as it is where p50/mean is higher but the percentage of 

returns from 16 to 17 m is low. To state this another way, for similar values of NDVI, mortality is 

lower where p50/mean and d17 are high—where there are more returns higher in the canopy, by two 

different measures.  

The addition of LiDAR data for post fire assessment is associated with substantial additional cost, 

though the data may be gathered for other purposes such as watershed or other risk assessments.  

At present, the question for land managers considering the use of LiDAR data for predicting mortality 

or characterizing fire severity will be whether this extra cost is justified by increased accuracy.  

As more uses are developed for the data, however, collection becomes more economically feasible.  

In addition, anecdotally, it appears that the extent of LiDAR acquisitions is increasing, and the future 

will likely bring more widely available, higher quality inexpensive or free LiDAR data.  

The combination of imagery with both pre- and post-fire LiDAR in a change-detection approach did 

not improve classification in this study. There was a slight decrease in overall accuracy compared to 

the post-fire LiDAR and imagery model, and this strategy yielded the lowest accuracy in the  

highest-mortality class of all strategies explored. Half of the plots with mortality greater than 50% 

were misclassified as moderate-mortality.  

Similarly to model B, this model used variables describing the skew and variation in the data  

set—in this case, Δskew and ΔMADmode—and change in normalized densities in three height bins, 

from 4–5, 6–7, and 24–25 m. Where ΔMADmode was higher (positive or only slightly negative), and 
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Δd25m was positive, mortality was higher, which seems counterintuitive—these characteristics 

indicate that LiDAR returns are more broadly distributed through the canopy, and that there is more 

structure high in the canopy. It may be, however, that this is only due to an absence of structure below 

25 m. Where Δd7m and Δd5m were negative, mortality was lower, which seems reasonable if the 

change was due to more returns higher in the canopy, but this is not certain—it could also be due to a 

higher proportion of returns below those thresholds. 

Unless pre- and post-fire data collections are made with differencing in mind, they will likely differ 

in density, which affects both DEM generation and canopy metrics in complex ways, interacting with 

slope and cover. These effects likely confound the relationships between metrics and actual 

aboveground structure, making relationships with mortality (or other attributes) difficult to detect. 

Similar problems were discovered by Kaufmann et al. [12]. It is possible that thinning the post-fire 

LiDAR point cloud to more closely match the pre-fire data would have provided better results.  

In addition, data sets may have been separated into files of manageable sizes using different grids, as 

was the case in this study. Differences in density and in gridding make calculation of differenced 

metrics much more complex and time-consuming than metrics from a single dataset. As a result, in 

most cases, differencing would have to yield a significant improvement in accuracy to justify the 

additional time and effort. 

The Lockheed Fire began at the northern end of the fire area (shown in Figure 8) and was initially 

wind-driven, jumping from ridge to ridge in a south-east direction, and backing down to the drainages 

between. The fire was generally most intense on the ridge-tops, and least intense in drainages. All three 

methods used to map estimated mortality highlight a pattern which is generally consistent with this 

pattern of intensity, although model C (Figure 8c) shows only a weak pattern related to topography. 

Field measurements used in this study are limited to diameter and status (live or dead). Field survey 

crews were trained in proper procedures, and mortality was assessed three separate times over three 

years [17]. However, it is possible that there are errors in the field data used. 

The LiDAR vendor for the data used in this study stated the vertical accuracy of the data was 18.3 cm 

at 95% confidence, and 15.2 cm at 90% confidence, and the 1σ horizontal accuracy as 30 cm. These 

accuracies are based on measurements made under better than average conditions across the study 

area. The accuracy is likely lower in areas with dense forest canopy, especially in the pre-fire data. 

The field plots used in this study were originally established on a 152.4 m (500′) grid, based on a 

variety of control points, using a staff compass and cloth tape. Coordinate locations for these plots 

were collected with a Garmin 60 csx GPS, which is a consumer-grade unit. While their ultimate 

accuracy is lower than that of mapping-grade units, personal experience working in the study area has 

demonstrated that currently available mapping-grade units will not establish a position in many plot 

locations. Horizontal positional accuracy of these locations is estimated to be within 10–15 m, though 

an independent accuracy assessment has not been conducted. However, a similar unit, deployed in 

forested conditions, had average RMSE of 16.88 m, with the authors calculating 95th percentile RMSE 

to be 29.22 m [20]. Using these values, the average plot would have an error representing 

approximately 64% of the plot area—this is the proportion of the remote sensing data that is outside 

the field plot. The 95% error stated is nearly equal to the plot diameter—only 3% of the remote sensing 

data sampled would be from the actual area of the field plot. The consequences of errors in plot 

locations are probably less than might be suggested by the percentages stated, given that some area 
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immediately outside plots will contain canopies of trees which are in fact located within those plots, 

while a similar area which is in fact part of the plot will contain canopies of trees which are outside the 

plot. In addition, the mortality of larger trees is not expected to be drastically different over the space 

of a few meters. In general, plots nearer to control points had locations closer to the original grid, while 

those further from control points appear to have more error, as would be expected if the actual 

locations of plots conform less to the grid as the distance from control increases, and the GPS points 

are more accurate. 

5. Conclusions  

This study demonstrates that remote sensing data can be used to estimate plot-level tree mortality 

resulting from wildfire with a modest degree of accuracy. The combination of imagery and post-fire 

LiDAR data yielded a moderate increase in overall accuracy compared to the use of imagery alone, 

while the combination of imagery and differenced LiDAR data yielded a small decrease in overall 

accuracy compared to the use of only post-fire LiDAR, though it still increased accuracy compared to 

imagery alone. 

Further research is recommended to investigate the improvement in accuracy that can be made 

using post-fire LiDAR and imagery, and to determine whether thinning of the post-fire LiDAR point 

cloud to match the pre-fire density has any impact on results using differenced LiDAR.  

The CART procedure used is a powerful tool for modelling a categorical response, which requires 

fewer assumptions than linear or logistic regression, and offers simpler interpretation of output.  

The approach and methods used in this study could be adapted to rapidly estimate the mortality of trees 

that is expected to result from wildfires, at scales that would not be practical or economical using  

field-based methods. 
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