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Abstract: The availability of ZY-3 satellite data provides additional potential for 

surveying, mapping, and quantitative studies. Topographic correction, which eliminates the 

terrain effect caused by the topographic relief, is one of the fundamental steps in data 

preprocessing for quantitative analysis of vegetation. In this paper, we rectified ZY-3 

satellite data using five commonly used topographic correction models and investigate 

their impact on the regression estimation of shrub forest leaf biomass obtained from sample 

plots in the study area. All the corrections were assessed by means of: (1) visual inspection 

(2) reduction of the standard deviation (SD) at different terrain slopes (3) correlation 

analysis of different correction results. Best results were obtained from the Minnaert+SCS 

correction, based on the non-Lambertian reflection assumption. Additional analysis 

showed that the coefficient correlation of the biomass fitting result was improved after the 

Minnaert+SCS correction, as well as the fitting precision. The R
2
 has increased by 0.113 to 

reach 0.869, while the SD (standard deviation) of the biomass dropped by 21.2%. 

Therefore, based on the facts, we conclude that in the region with large topographic relief, 

the topographical correction is essential to the estimation of the biomass. 
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1. Introduction 

Shrub biomass is one of the best indicators of shrub productivity and an important input for the 

study of ecological systems; at the same time, biomass is an important basis of the material cycle and 

the energy conversion. Shrubs can grow well under dry and cold climates, no matter if the soil is fertile 

or not, dry or wet, thus shrubs play a major role in water and soil conservation, as well as in ecological 

protection and restoration. However, many studies on shrubs put more emphasis on the physiological 

and chemical characteristics [1], or growth pattern [2] instead of quantitative parameters, such as 

biomass [3,4]. Furthermore, shrubs grow mostly in arid areas as well as in semi-arid mountains, where 

the illumination often results in the canopy surface oriented towards the sun receiving more solar 

radiation than that oriented away from the sun on the opposite slope. This radiation difference caused 

by the topographic relief in the remote sensing image, apart from the anisotropic reflection properties 

of the ground (Bidirectional Reflectance Distribution Function, BRDF effects), is called the 

topographic effect. As a result, it has been recognized as an important factor responsible for the same 

object having different spectral response in images obtained from mountainous area [5], which 

seriously affects the quantitative inversion of vegetation parameters, as well as surface parameters. 

Topographic correction refers to transformation of the radiation brightness values or reflectance of 

all pixels from the slanted to another reference plane (usually horizontal plane) in order to eliminate 

the terrain effect caused by the topographic relief, so that the same objects with different solar azimuth 

show the same spectral response [6]. Over the past 30 years, various topographic correction methods 

have been developed. Early in the 1980s, Teillet et al. [7] presented the Cosine model based on the 

assumption of single band bidirectional reflectance parameters, and then improved it to a new 

algorithm, which is known as the C correction model [8]. However, because of the defects of the 

assumption based on the Lambertian reflection, the result has the problem of overcorrection.  

Huang et al. [9] further promoted an improved C correction method, which simplified the calculating 

process on the premise of the correction effect. Afterwards, Gu and Gillespie [10] proposed the SCS 

(Sun-Canopy-Sensor) model from the view of the relationship between vegetation canopy and sun 

radiation; by introducing a regulation parameter C, the model was enhanced and named SCS+C  

model [11]. In view of defects of Lambertian reflection theory, by introducing the empirical constant k, 

Smith [12] proposed the famous Minnaert model based on the non-Lambertian reflection theory, which 

solved the problem of excessive correction. Reeder [13] simplified the parameters of the Minnaert 

model, and introduced the principle of the SCS algorithm into the Minnaert+SCS correction model. 

More recent studies by Stijn and Emilio [14] compared the different topographic correction results on 

multitemporal Landsat ETM+ data. The statistical results showed that for a single image, the C 

correction model and the Minnaert model are ideal, while for multitemporal data, the C correction is 

better. Shi Di et al. [15] proposed a new topographic correction model by introducing the concept of 

the radiation-scaling factor. Combined with a lookup table established by the 6S atmospheric 
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correction model, the new model only needs the solar azimuth parameters and the atmospheric model 

as input parameters, which simplified the physical model considerably. Ediriweera et al. [16] assessed 

the performance of five topographic corrections including PSSSR (Processing Scheme for 

Standardized Surface Reflectance) on the Landsat 5 TM reflectance in the context of prediction of FPC 

(Foliage Projective Cover) in hilly landscapes in North-Eastern Australia; the visual and statistical 

results showed that the PSSSR method had the best performance in terms of eliminating topographic 

effects. Along with the wide applications of remote sensing in the field of ecological environment, the 

improvement of the quantitative analysis accuracy is the key to the earth’s surface and vegetation 

parameters inversion. Therefore, geometric correction, topographic correction, atmospheric correction 

and many other data normalization steps are especially important. In this paper, on the basis of 

previous studies, we compared five different topographic correction methods on ZY-3 multi-spectral 

imagery over Beijing Jundushan Mountain, and analyzed the impact of using different correction 

models on the estimation of shrub leaf biomass, in order to provide a reference for the subsequent 

mountain shrub vegetation biomass inversion study on the selection of the optimal topographic 

correction method. 

2. Material and Methods 

2.1. Study Area  

The study area is located in the north of Jundushan Mountain, in Beijing, consisting of north of 

Changpin County, northeast of Yanqing County, mid-south of Huairou County, and west of Miyun 

County (Figure 1). The altitude is 587 m on average, ranging from 182 m to 1503 m, and the maximum 

and mean slope calculated from DEM (Digital Elevation Model) are 76.2° and 22.8°. The climate 

belongs to the temperate semi-humid continental monsoon climate, where the annual average 

temperature is about 2–11 °C and the mean annual precipitation is 450–660 mm depending on the 

altitude. Shrubs are widely distributed in this area. Moreover, deciduous broadleaved forest and 

temperate coniferous forest are the dominant types of forest vegetation in this area, such as Quercus, 

Tilia, Fraxinus, Acer, Populus, Pinus tabulaeformis, and Biota orientalis. The main shrub types are Vitex 

negundo, Spiraea trilobata, Myripnois dioica, and Deutzia grandiflora. In this area, dominant species 

distribution are usually mixed, for example, Vitex negundo mixes with wild Jujube, Vitex negundo mixes 

with Spiraea trilobata and Prunus armeniaca, Vitex negundo mixes with Spiraea trilobata and 

Myripnois dioica, etc. 

2.2. Data Acquisition and Processing 

2.2.1. Satellite Image Data and DEM 

The ZY-3 image was acquired on 22 August 2012. The solar zenith angle is 29.58° and the solar 

azimuth angle is 147.80°. The ZY-3 satellite operates in a sun-synchronous round orbit at an altitude  

of 506 km, with a global coverage every 3–5 days. Four cameras are carried on the ZY-3 platform, 

namely a 2.1 m resolution nadir looking panchromatic TDI (Time Delay Integration) CCD camera, a 

pair of 3.5 m resolution front and backward looking panchromatic CCD cameras and one 5.8 m 
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resolution nadir looking multi-spectral CCD camera. The multi-spectral camera has 4 bands—Blue 

(0.45–0.52 µm), Green (0.52–0.59 µm), Red (0.63–0.69 µm), and Near-infrared (0.77–0.89 µm). 

Figure 1. Schematic plot of the study area location. 

 

Compared with other resources satellites launched by China, ZY-3 has higher spatial resolution, 

higher geometric accuracy as well as better positioning accuracy. In addition, it has tilt capability and 

stereo mapping capability at 1:50,000 scale. The experiments in this research suggested that a DSM 

(Digital Surface Model) could be extracted from the front and back view of high-resolution 

panchromatic data. Through geometric correction with a 1:50,000 relief map and resampling a DEM 

could be produced at a spatial resolution of 10 m. 

2.2.2. Field Sampling Data 

The field investigation is part of the ―National Remote Sensing Investigation and Evaluation of the 

Ecological Environmental Changes in Ten Years‖ starting in June 2012. During three months, 1206 points 

were checked and more than 300 samples were collected, which covered all over Beijing and 

concentrated in the northern mountains. And the field investigation in the study area was carried out in 

August. According to the geographical distribution of the shrub and the area characteristics, altitude 

and shrub types, thirty 100 m × 100 m sample plots were set up, and from each plot three 30 m × 30 m 

regions were set, in which three 10 m × 10 m small squares were used. Due to the limits of the terrain 

and weather condition, we acquired 84 effective group samples in all of 90 sample regions. 
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For each square, the geographical measurements including the No. of the square, the GPS 

coordinate in the center of the square, altitude, slope, and aspect were recorded. Species and canopy 

measurements within the square were also recorded including the name and count of dominant species, 

the fresh weight, the plant height, as well as the density, and the LAI (Leaf Area Index) value, and 

fisheye photos were taken. We fetched 100 g samples from every sample region into numbered bags 

and dried them under constant temperate in the laboratory and computed values of moisture content 

according to Equation (1), translated fresh weight to dry weight and recorded it. The average dry 

biomass per unit area (1 m × 1 m) in the sample area was recorded (unit is g/m
2
). 

3

1

1
(1 )

3 100

ij ij

i i

j=

w n
W = 

 
  

 
  1 2 72 1 2 3i = , , , ; j = , , ;  (1) 

where: wij= fresh weight of the jth quadrat; nij = plant count of the jth quadrat; μi = moisture content of 

the ith area; Wi = dry biomass of per unit area in the ith area. 

2.2.3. Data Processing 

There are three steps to process the satellite image: radiometric calibration, geometric correction, 

and atmospheric correction. The parameters for conversion of digital numbers (DN) to radiance 

(W∙m
−2
∙sr

−1
∙μm

−1
) were provided by the Satellite Surveying and Mapping Application Center, NASG, 

as well as the solar azimuth angle and the solar zenith angle. Atmospheric correction was based on the 

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) algorithm, and the 

radiance (μW∙cm
−2
∙nm

−1
∙sr

−1
) was converted to surface reflectance. The parameters used for the 

atmospheric correction are listed in Table 1. The RPC (Rational Polynomial Cofficients) file and 

ground control points were used to implement ortho-rectification, in which the error was limited to 0.5 

pixels. Finally, the study area was extracted from the image, and the slope and aspect data were 

extracted from DEM data by modeling. 

Table 1. The parameters used for the atmospheric correction in this paper. 

Parameters Value Parameters Value 

Solar azimuth angle 60.784798° Atmosphere model Mid-Latitude Summer 

Solar zenith angle 148.091629° Aerosol model Rural 

Latitude 40.571969° Water column multiplier 1.00 

Longitude 116.632222° Visibility 35 km 

In order to ensure the effectiveness of the fitting result and the accuracy of the assessment result, the 

sample data was classified through a stratified sampling method according to the altitude. Seventy-two 

groups of sample data were used to build the biomass model, and the remaining 12 groups were used 

to assess the model accuracy. 
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2.3. Methods 

2.3.1. Topographic Correction Models 

Currently, four types of topographic correction models are mainly used based on DEM:  

empirical-statistical models [7,17], normalization models [18], Lambertian reflection models [19] and 

non-Lambertian reflection models [11,20]. Some common Lambertian and non-Lambertian reflection 

models are presented in Table 2. Law and Nichol’s study [21] shows that all methods can be applied to 

surface reflectance (after atmospheric correction in this paper) or the apparent or top-of-atmosphere 

(TOA) reflectance. 

Table 2. The topographic correction models used in this study. 

 
Topographic Correction 

Models 
Expression Presenter Transformation Expression 
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=
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where: Lm = radiance after correction; L = radiance before correction; Lmin = minimum radiance before 

correction; ρh = reflectance of a horizontal surface; ρ = reflectance of an inclined terrain;  

ρmin = minimum reflectance of an inclined terrain; θs = solar zenith angle; S = slope; i = solar incident 

angle (Figure 2); e = angle of incidence for the receiving sensor, and in this paper, the e value is equal 

to S due to the satellite angle of tilt (θv equals to 0 in Figure 2); θv = sensor incident angle;  

C = empirical constant; k = Minnaert constant. 

The cosi can be expressed as: 

 s s scosi = cos cosS sin sinScos A     (2) 

where: φs = solar azimuth angle (measured in Figure 3); A = aspect. 

In the C correction model and the SCS+C model, the C can be calculated based on the linear 

relationship between the original reflectance and the cosine of the solar incident angle (Equation (3)).  

a bcosi    (3) 

where: ρ = reflectance of pixels before topographical correction; a = intercept of the linear fitting 

result; b = slope of the linear fitting result; where a represents the intercept of the linear expression 

while b is the slope of the linear expression. C can be calculated by fitting the result of a and b, which 

is expressed as: C = a/b. 
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Previous research suggested that the Minnaert model based on the non-Lambertian reflectance 

assumption performed better than other topographical correction models [22]. It overcomes shortcomings 

of Lambertian reflection models by adjusting the magnitude of the topographic correction through 

considering the empirical constant k, which has been tuned to fit the observed BRDF, and was 

introduced by Minnaert in 1941. The k value ranges from 0 to 1 according to the surface of the object. 

If the surface is Lambertian, k is equal to 1, otherwise k is less than 1. In addition, the value of k 

depends on both the type of land cover and the image band, and is computed by the conventional 

regression fitting linear equation. 

Figure 2. The geometric relationship of the possible solar-ground-sensor constellations.  

(a) shows that when the surface is horizontal plane, i = θv, while for the surface relief (b) and 

(c); (b) there will be two cases according to the angle size of the i and the θs. When i < θs; 

(c) the normal tilts toward the sun, and the e replaced by the sum of the slope and the θv, 

otherwise, the e equals to (S − θv). 

  

Figure 3. Sketch map of the solar zenith angle and azimuth angle in the horizontal plane. 

The solar zenith angle is measured from vertical, and the solar azimuth angle is measured 

clockwise from north. 

O

φs
North

 

The Minnaert model expression in Table 2 can be written as below: 

 m

k k
L cos cos = L cosei e   (4) 
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Taking the logarithm on both sides, Equation (4) can be written as: 

   ln ln ln
m

L cosi cos = L cose ek    (5) 

Consider x = ln(cosi × cose), y = ln(L × cose), m = lnLm, then we propose the linear representation 

of Equation (5) as: 

=y kx m  (6) 

Note that the sample points used for regression fitting must be selected from the same type of land 

cover and then we can compute the value of x and y of every sample. For the sample pixel, both k and 

m are constants, and k can be computed by linear fitting. 

The parameters of each model were calculated before performing the topographic correction,  

5000 vegetation sample points are created randomly in each remote sensing image. C and k of each 

image band can be linear fitted by Equations (3) and (5). In this paper, the authors selected the 5 common 

topographical correction models listed in Table 2. Then the values of all constants for each band are 

listed in Table 3. 

Table 3. Parameters of correction models * for the ZY-3 multispectral bands. 

Parameters Band1 Band2 Band3 Band4 

C(SCS+C) 1.4144 0.6041 0.6314 0.4405 

k(Minnaert) 0.3956 0.5620 0.5518 0.6196 

k(Minnaert+SCS) 0.4281 0.6348 0.6223 0.7061 

* Cosine and C-HuangWei do not need any extra parameters. 

2.3.2. Biomass Estimation 

Previous research suggested that a correlation exists between dry biomass of vegetation in the 

growth state vegetation and various vegetation indices [23–27], and it is important to consider overall 

multiple vegetation index combinations to estimate the biomass. 

Considering the distribution and plant architecture of shrub community characteristics, and the fact 

that the vegetation indices are sensitive to the soil environment, we tested ten vegetation indices, 

including NDVI (Normalized Difference Vegetation Index) [28], MSAVI (Modified Soil Adjusted 

Vegetation Index) [29], GNDVI (Green Normalized Difference Vegetation Index) [30], MTVI2 

(Modified Triangular Vegetation Index 2) [31], MSR (Modified Simple Ratio Vegetation Index) [32], 

RDVI (Ratio Difference Vegetation Index) [33], IPVI (Infrared Percentage Vegetation Index) [34], 

OSAVI (Optimized Soil Adjusted Vegetation Index) [35], NLI (Non-Linear Index) [36], and TVI 

(Triangular Vegetation Index) [37], listed in Table 4 to fit the estimation models. 

Figure 4 is the workflow for biomass estimation. There are five parts in the flow: remote sensing 

data preprocessing and vegetation index extraction; Vitex negundo extraction; field data sampling 

processing; model fitting and accuracy assessment and biomass distribution mapping. The remote 

sensing data preprocessing includes radiometric calibration, atmospheric correction, geometric 

correction, image clipping and the extraction of ten vegetation indices. Then, drawing the map of the 

shrubs’ distribution in the study area, by using the vegetation distribution map of Beijing in 2006, 

DEM data, slope data, aspect data and the shrub field survey results. Finally, estimating Vitex negundo 
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vegetation indices and its canopy biomass fitting models by the least squares method and evaluating 

the models’ accuracy to select the optimal one. In the selected process, remote sensing data 

preprocessing, topographical correction by the Minnaert+SCS model, vegetation indices extraction and 

biomass estimation by the least squares method are in the process, respectively. 

Table 4. Spectral vegetation index used in this study. 

Vegetation Index Full Name * Expression Presenter 

NDVI 
Normalized Difference 

Vegetation Index 
( ) ( )nir red nir redR R R R   

Deering et al. 

[28] 

MSAVI 
Modified Soil Adjusted 

Vegetation Index 

2(2 1 (2 1) 8( ))

2

nir nir nir redR R R R    
 Qi et al. [29] 

GNDVI 
Green Normalized Difference 

Vegetation Index 
( ) ( )nir green nir greenR R R R   

Gitelson et al. 

[30] 

MTVI2 
Modified Triangular  

Vegetation Index 2 2

1.5(1.2( ) 2.5( ))

2( 1) (6 5 ) 0.5

nir green greenred

nir nir red

R R R R

R R R

  

   
 Haboudane 

[31] 

MSR 
Modified Simple Ratio 

Vegetation Index 

1

1

nir red

nir red

R R

R R




 Chen et al. 

[32] 

RDVI 
Ratio Difference  

Vegetation Index 
( )nir red nir redR R R R   

Roujean et al. 

[33] 

IPVI 
Infrared Percentage  

Vegetation Index 
( )nir nir redR R R  

Crippen et al. 

[34] 

OSAVI 
Optimized Soil Adjusted 

Vegetation Index 
( ) ( 0.16)

nir red nir red
R R R R    

Rondeaux  

et al. [35] 

NLI Non-Linear Index 
2 2

( ))
red nir rednirR R R R（  

Goel et al. 

[36] 

TVI Triangular Vegetation Index 0.5(120( ) 200( ))nir green red greenR R R R    
Broge et al. 

[37] 

* The abbreviation of some vegetation indexes may be different from previous ones and the vegetation index 

names listed in the table are new ones coming up with presentation papers  

Figure 4. Processing flowcharts of biomass estimation. 
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3. Result 

3.1. Comparison of Different Topographic Correction Models 

3.1.1. Visual Inspection 

Figure 5 displays a sub-scene of the ZY-3 scene. The true color composite ZY-3 bands 3, 2, and 1 

as red, green, and blue for a small mountainous area in the study area is illustrated to highlight the 

difference before and after topographic corrections. Elevations range from 100 m to 1182 m, slopes 

between 0° and 41°. The illumination (cosi) represents the cosine of the solar incident angle. Bright 

areas receive a higher illumination, while dark areas have a lower one. The comparison between the 

images showed that all topographic correction methods minimized the topographic effect by 

minimizing the three-dimensional impressions in the topographically normalized images. However, the 

Minnaert and Minnaert+SCS corrections seemed to show a greater decrease in the three-dimensional 

relief effect. While the Cosine, C-HuangWei and the SCS+C corrections showed similar visual effect, 

and obviously over-correction appeared after correction, which is mainly caused by the defects of the 

Lambertian reflectance assumption. 

Figure 5. Visual impression of the results from different models.  

 

3.1.2. Statistical Analysis 

The mean reduction (%) in SD for vegetation pixels after correction is presented in Table 5. These 

are the values for the 5000 vegetation sample points (mentioned in the calculation of the correction 

parameters before) used for our assessment, taken under a range of slope angles (from 0° to 43.6°). 

The SD should decrease after a successful shade removal, meaning that the impact of illumination is 

reduced [14]. 
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Table 5. Mean reduction (%) of standard deviation (SD) compared with the original image 

for vegetation pixels after topographic correction. For each band, results of the best 

performing algorithm are presented in bold. 

 % Reduction in SD 

Band 1 Band 2 Band 3 Band 4 

Cosine −12.6 2.1 −13.5 27.4 

C-HuangWei −11.0 −31.2 −12.4 26.5 

SCS+C −7.9 12.6 16.1 24.2 

Minnaert −13.6 9.8 19.0 13.7 

Minnaert+SCS −1.9 12.6 16.2 23.9 

First it can be seen from the table that the simpler methods based on the Lambertian reflectance 

assumption, such as the Cosine correction and the C-HuangWei correction, reduce in general the SD 

but in a rather limited way, giving clearly higher SD than some of the other methods. Second, it can be 

observed that the Minnaert and Minnaert+SCS corrections generate lower SD than the other methods. 

Moreover, all the methods cannot reduce the SD of all bands simultaneously. 

Figure 6. The statistical results of the SD for the original image and five different 

topographic correction methods. The results obtained under different slope angles are given 

for the fourth bands. Standard deviation is calculated every 5° (ranging from 0° to 43.6°). 

(a) The SD for the fourth band of the ZY-3 CCD image before and after topographic 

correction (b) The mean reduction (%) of SD compared with the original image (the fourth 

band) after topographic correction.  

  

(a) (b) 

In Figure 6a, we can see that the regression lines can be divided into three groups according to the 

variation tendency of the SD with the increase of the slope. The SD for the original image rises 

steadily from 0° to 7.5°. There is then a slight fluctuation for an increase until to 23°. After rising more 

sharply for the next 10°, there is a moderate dip, followed by a gradual rise until 43.6°. It is projected 

to peak at 0.18 at around 33°. In addition, lines representing the Cosine correction, C-HuangWei 

correction, and the SCS+C correction show a general upward trend with the increase of the slope angle, 

as well as the line stands for the original image. This group of lines offer similar results, with similar 

SD for the fourth band of the ZY-3 image with a slope angle > 33°, and reaches a peak at 0.145 at 
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43.6°. However, the Minnaert correction and the Minnaert+SCS correction fluctuate for a slight dip 

until 37°, followed by a rise until 43.6°. Figure 6b shows the distribution of the mean reduction (%) of 

SD (for the fourth band) for different slope angles. As can be seen from the illustration, the group of 

Lambertian corrections fluctuates until to 33°, there is a sharp dip to 13 percent at 37.5°. The group of 

the non-Lambertian corrections shows general rise until 37.5°, and reaches the peak at around 37.5°. 

There is then a steadily drop for the Minneart+SCS correction, followed by a slight rise until 43.6°. It 

can be concluded from Figure 6 that the non-Lamertain corrections perform better than the group of 

Lambertian correction under high slope angles (>33°). The analysis performed for the images shows 

that the best results were obtained by the non-Lambertian corrections including the Minnaert method 

and the Minnaert+SCS method. To a lesser extent, as can be seen from Table 5, the SCS+C correction 

gives good results as well. 

3.1.3. Correlation Analysis 

Previous studies show that the pixel reflectance of image data in regions of large relief has 

obviously correlation with the cosine of the solar incident angle, and the correlation obviously 

weakened or even vanished after terrain correction [11,38]. Theoretically, a greater slope absolute 

value of linear fitting expressions between the pixel reflectance and cosine indicates a more obvious 

terrain effect; in addition the greater the correlation coefficient R
2
, the more obvious the terrain effects. 

Band 4, for example, by taking 5000 sample points randomly from the image before and after 

correction respectively, a scatter diagram (Figure 7) is shown below, the coordinate axis respectively 

represents pixel reflectance and the cosine of the solar incident angle value of the fourth band. 

Figure 7. Scatter plots and the linear regression fitting lines of reflectance band4 and cosi 

before and after correction. 
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As we can see from the diagram, for the original image, the scatter distribution and the regression 

fitting line of reflectance and cosi are in the tilt state obviously, while the tilt decreased significantly 

after correction. Thus, it is obvious that all correction models can weaken the terrain effect in a certain 

degree in this study. For the Cosine model, C-HuangWei and SCS+C model, regression-fitting lines 

incline in the opposite direction against the original image, due to excessive correction. In contrast, the 

scatter distribution and the fitting line tilt of the Minnaert decreased significantly, as well as that of the 

Minnaert+SCS, which has a horizontal trend. Furthermore, it indicates that the effect of Minnaert+SCS 

is preferable to that of Minnaert and the rest of the three models. The pixel reflectance and cosi fitting 

results of band4 from different correction results are shown in Table 6. Similarly, the original image 

has the higher correlation coefficient (R
2
 reaches 0.306) and gradient of the fitting line, while the 

Minnaert+SCS result has the lowest in both. Besides, the results of Cosine, C-HuangWei and  

SCS+C have a negative correlation with cosi. In a word, the comparison and analysis show that 

Minnaert+SCS correction performs better than other models in this paper. 

Table 6. R
2
 and the linear regression fitting expressions of reflectance band 4 and cosi 

before and after correction. 

Correction 

Model 
R

2
 Expression of Fitting Line 

Original Image 0.306 y = 0.5673x + 0.0753 

Cosine 0.0580 y = −0.1825x + 0.5412 

C-HuangWei 0.0264 y = −0.1239x + 0.5086 

SCS+C 0.0253 y = −0.1216x + 0.5068 

Minnaert 0.0263 y = 0.1425x + 0.4073 

Minnaert+SCS 0.0246 y = 0.1179x + 0.4210 

3.2. Effects on Biomass Estimation 

3.2.1. Fitting Results of Biomass 

In this paper, we used the regression analysis method to fit leaf biomass of shrub in the Beijing 

mountain area, and solved the parameters by the least square method. Due to the abnormal distribution 

of the sample data, the Kendall correlation coefficient was used in the correlation analysis between the 

10 groups of vegetation indices and biomass sample data (in IBM SPSS Statistic software, version 

20.0). Results showed that the NDVI, OSAVI, MTVI2, GNDVI, NLI, MSAVI, RDVI, and IPVI had 

significant correlation with the biomass data, while the correlation between TVI or MSR with the 

biomass was not so significant; NDVI, MSAVI, GNDVI, MTVI2, MSR, RDVI, and IPVI had a  

non-ignorable correlation with OSAVI; Furthermore, there were significant linear relationships between 

MSAVI and other vegetation indices. In order to ensure the sample variables are independent and have 

low correlation with each other, the authors removed vegetation indices that had correlation with 

others, such as NDVI, OSAVI, and MSAVI, and chose TVI, MTVI2, GNDVI, NLI, MSR, RDVI, and 

IPVI (the latter fails to pass the correlation test during the regression and is therefore removed) to fit 

biomass by the regression method. We then got the fitting results of different terrain corrections (Table 7). 
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From Table 7, the determination coefficient R
2
 reaches more than 0.75, and the model significance 

is significant (p < 0.05), which shows that the fitting models have good robustness, and they can 

express the arithmetical relationship between vegetation indices and leaf biomass. For the three types 

of Lambertian reflection corrections, the R
2
 of the fitting equation increased compared to the original 

image data, but still stayed below 0.8, and have reached a significant level (p < 0.05). For the  

non-Lambertian reflection correction, Minnaert and Minnaert + SCS, the R
2
 of the fitting equation 

after correction reached more than 0.85, and have reached a more meaningful level (p < 0.01). 

Furthermore, the fitting result of Minnaert+SCS correction had higher R
2
 and precision, which 

increased by 0.113 and 15.8 g/m
2
, respectively, in contrast to the original image. 

Table 7. Model Statistics and Analysis of Variance (ANOVA
☉). 

Model Expression R
2
 SE(g/m

2
) Sig. F 

Original image 
Y = −204.847 + 1209.428MTVI2-2405.185RDVI + 47.623TVI + 1338.759MSR 

+ 1742.851NLI + 2482.307GNDVI 
0.756 88.5 * 9.312 

Cosine 
Y = −268.452 + 1094.142MTVI2-1922.190RDVI + 64.352TVI + 1097.733MSR 

− 1048.229NLI + 1862.554GNDVI 
0.787 86.4 * 8.799 

C-HuangWei 
Y = −229.937 + 1109.368MTVI2-2192.665RDVI + 59.320TVI + 1400.529MSR 

− 1558.106NLI + 2056.861GNDVI 
0.773 84.0 * 8.752 

SCS+C 
Y = −238.902 + 1320.922MTVI2-2106.025RDVI + 50.221TVI + 1128.092MSR 

− 1615.210NLI + 2102.425GNDVI 
0.790 82.3 * 9.017 

Minnaert 
Y = −302.228 + 1529.474MTVI2-2351.601RDVI + 38.944TVI + 1037.805MSR 

− 2209.750NLI + 1083.262GNDVI 
0.854 76.2 ** 9.362 

Minnaert+SCS 
Y = −217.032 + 1604.227MTVI2-2409.825RDVI + 40.352TVI + 1099.027MSR 

− 2128.104NLI + 1166.460GNDVI 
0.869 72.7 ** 9.401 

☉
 ANOVA is short for Analysis of Variance; ** Correlation is significant at the 0.01 level; *: Correlation is 

significant at the 0.05 level. 

3.2.2. Effects on Biomass Estimation 

In this section, the authors used the fitting results above for biomass estimation, and the residue 

between estimation results and the measured biomass of the 12 samples is shown in Figure 8. At first 

glance, the distribution of sample bars in every diagram is near the 1:1 contour, which shows that the 

biomass estimation fitting results are reliable. Furthermore, for the original image, inversion results 

with the measured SD of 74.1 g/m
2
, and the statistics maximum error reaches 99.6 g/m

2
, for which 

there are three main causes: first of all, the shrubs have special distribution characteristics and plant 

structure, mostly forested, and uneven distribution on sunny slopes more than in shade; Second, the 

discontinuity of sampling and too much rain in August in the Beijing mountain area, in 2012, 

contributed to vegetation grown apace, caused a deviation of the sample data. Third, due to the 

geometric deformation caused by the ZY-3 satellite observation angle to a certain extent, in the 

mountain area. In addition, the determination of regression parameters in the topographic correction 

model is also the principal factor that affects the final result. As mentioned above, the Cosine,  

C-HuangWei and SCS+C correction resulted in greater error in the regions where the biomass is higher 

or lower, and the maximum error reached 100.2 g/m
2
; as a result of excessive correction in slope pixels. 

However, for the Minnaert model and the Minnaert+SCS model, being based on the assumption of the 

non-Lambertian reflection, showed stable characteristics, where the error range is controlled within the 



Remote Sens. 2014, 6 2759 

 

 

85 g/m
2
. Especially for the Minnaert+SCS correction result, where the SD reaches 58.4 g/m

2
, with the 

maximum error of 64.7 g/m
2
 (Table 8). Besides, overcorrection results seem to be much better than the 

uncorrected image, as can be seen from the statistics result in Tables 7 and 8. 

Figure 8. Comparison between predicted and actual leaf biomass. 
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Table 8. The statistics result of actual biomass and the estimation in comparison (g/m
2
). 

Correction Model SD Maximum Error 

Original Image 74.1 99.6 

Cosine 72.0 100.2 

C-HuangWei 71.3 96.8 

SCS+C 68.9 93.1 

Minnaert 62.7 84.2 

Minnaert+SCS 58.4 64.7 

4. Discussion 

For quantitative estimation based on remote sensing reflectance and vegetation indices, the 

precision of the inversion model largely depends on the remote sensing data processing, and the 

determination of the parameters in the process of modeling. In addition, parameter selection is 

extremely important. On the extent of the study area, the k value is a constant, while during the process 

of calculation, it can be found that the k partially depends on the geometric parameters such as the 

solar incident angle and slope. Lu et al. [39] found that there was a non-ignorable deviation between 

the fitting values of k under different slope grade, which showed that the correction precision of a large 

region of relief need to be further improved. 

In this paper, the DEM data used were processed from the stereopair of the ZY-3 images, which 

consisted of forward and backward looking panchromatic images with a resolution of 10 m. However, 

it is clear that the resolution of the DEM is inconsistent with that of the remote sensing data, so that  

re-sampling in the process of data processing hardly can be avoided, therefore, it is bound to affect the 

precision of the topographic correction. Nevertheless, there is no definite conclusion at present about 

the best matching combination between the resolution of the DEM and that of the original image [40]. 

In addition, the selection of the random sample points has a crucial impact on the calculation results of 

the topographic correction model regression parameters (such as k and C), such that different sets of 

sample points will result in different regression parameters. Therefore a method to confirm the 

regression parameters more scientifically is still needed. In addition, the terrain ups and downs are 

often associated with the change of the vertical distribution of vegetation, such as the difference of 

vegetation in different slope angles and different elevation level, and different growth status of the 

same vegetation. Therefore, whether the original image pixel brightness (or reflectance) change is 

caused by topographic relief or characteristic spectral features itself, should be taken into consideration 

in the improvement of the topographic correction method. 

In practical, scenes with different zenith angles should better be investigated to evaluate the 

performance of a topographic correction method [14,41]. However, studies of previous researchers 

were sufficient to verify the validity of the corrections resulted from different solar zenith angles. With 

respect to this reality, like many researchers [5,22,39], we did not examine the correction effects under 

different illumination criteria in this paper. Thus, it can also be concluded from the previous 

researches’ studies that methods such as Minnaert, based on Non-Lambertain models, have better 

performance under lower solar zenith angle [14]. While they may have performed the worst [5] under a 

large solar zenith angle about 65°. 
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In addition, the regression model for biomass estimation is only suitable for the time and 

environmental conditions in the study area, as well as the processing method of the field sampling 

data. In different seasons and different geographical conditions, the biomass fitting models show 

obvious differences [27]. For the discontinuous distribution and the special plant architecture of the 

shrubs, the pixels in the image data are affected by the soil background easily. Moreover, due to the 

resistance to cold and drought, shrubs also distribute in the high altitude and infertile localities, where 

the reflectance of the canopy is easily affected by the background of soil and rock. Therefore, in the 

future research we will investigate how to improve the typicality of sampling and the universality of 

the inversion model. 

5. Conclusions 

In this paper, we compared five commonly-used topographic correction models on the ZY-3 

satellite multispectral images, then discussed the impacts of different models on shrub biomass 

estimation over Beijing Jundushan Mountain. From the results, we drew the following conclusions: 

(1)The topographic correction model based on Lambertian reflection theory tends to cause 

excessive correction due to the sky diffuse reflection and the surrounding terrain. The models based on 

non-Lambertian reflection assumption yield better correction results. Visual comparison, statistical 

analysis and correlation analysis show that the Minnaert+SCS model can effectively weaken the 

influence of terrain relief on pixels in ZY-3 satellite multispectral images, and restore a true reflectance 

of the pixels in the relief area. 

(2) The precision of the regression fitting between spectral vegetation indices and shrub leaf 

biomass is improved after topographic correction, as well as the determination coefficient R
2
. All the 

above shows that the topographic correction on ZY-3 satellite data is able to improve the estimation of 

shrub leaf biomass to a certain extent. In addition, results based on non-Lambertian reflection models 

are superior to those based on Lambertian reflection models. Furthermore, with the Minnaert+SCS 

model, the biomass regression fitting result has the R
2
 of 0.869, and the SD is reduced to 58.4 g/m

2
, 

which suggests that in areas of topographic relief, topographic correction is indispensable to the 

biomass estimation based on vegetation indices.  

(3) Further research should be carried out with imagery acquired from different sensors and solar 

zenith angles, to examine the performances of the methods under different illumination criteria. 

Moreover, how the accuracy of the DEM affects the results of topographic correction of ZY-3 imagery 

should also be investigated in future studies. 

In this paper, the authors make full use of the domestically made satellite products of China, in 

order to show its potential ability to the remotely sensed quantitative research. 
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