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Abstract: The accuracy of different coarse-resolution land cover products is an important 

consideration for product users at the regional or global scale, and different evaluation 

methods inevitably result in discrepancies in accuracy for the same land cover product. The 

remote sensing community has responded to this increased interest by improving 

methodologies for more accurately evaluating the correctness of land cover information.  

In this study, a pixel-based hierarchical classification strategy followed by an object-based 

classification method was applied to compact airborne spectrographic imager (CASI) 

hyperspectral data in order to produce highly accurate, high spatial resolution classification 

reference data. Some aspects of the fuzzy/conventional evaluation of MODIS land cover 

(MODISLC) (500 m) and GlobCover (300 m) data based on sub-pixel class fractions 

derived from high spatial resolution reference data at different thematic resolutions are also 

discussed. Relationships between homogeneity and fuzzy accuracy for two land cover 

products were obtained at different thematic resolutions. Additionally, the influences on 

the relationship resulting from the thematic resolution were also studied, and these are 

reported in this paper. Attempts were made to establish fuzzy/conventional evaluation rules 

for fuzzy classes, and the different performances of the fuzzy and conventional evaluations 

for hard/fuzzy labels were compared. The adjusted GlobCover accuracy after theoretical 

removal of the effect caused by spatial resolution was calculated based on the relationship 
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between homogeneity and accuracy; the result was a higher accuracy than for MODISLC 

at the same thematic resolution. In addition, the different performance characteristics of the 

relationships between homogeneity and adjusted GlobCover accuracy/MODISLC accuracy 

at different thematic resolutions were compared and analyzed over the area where the 

CASI transects were obtained. 

Keywords: MODISLC; GlobCover; fuzz evaluation; conventional evaluation; CASI 

hyperspectral data; homogeneity; thematic resolution 

 

1. Introduction 

Global land cover maps provide thematic characterizations of the Earth’s surface, which are 

indispensable parameters required for the analysis of the state and dynamics of terrestrial  

ecosystems [1,2]. Land cover is an essential climate variable that describes the flow of carbon, water 

and energy through the biosphere [3], and its accuracy is of great importance for a wide range of 

scientific studies, such as studies of the carbon cycle, climate change, water balance and desertification 

or watershed degradation [4–7]. Recently, global land cover maps derived from satellite data have 

been widely used in biogeochemical and climate models, such as soil-vegetation-atmosphere transfer 

models (SVAT) and global circulation models (GCM) [8], to better understand biosphere-atmosphere 

interactions. Furthermore, changes in global land use and land cover have significant implications for 

ecosystem health, sustainable land management, nature conservation, food security and land-use 

planning [3,9–13]. 

Since global land cover datasets derived from AVHRR data became available in the 1990s, 

numerous additional global land cover datasets have been produced based on different remote sensing 

data sources and mapping initiatives, such as the International Geosphere-Biosphere Program (IGBP) 

DIScover dataset [14], the University of Maryland (UMD) land cover product [15], MODIS land cover 

(MODISLC) product [16], GLC2000 [17] and GlobCover [18–20].  

As global land cover products have been extensively applied in numerous studies, the accuracy of 

mapped land cover classes is an important concern for scientists using these products in regional or 

global studies. As a consequence, the assessment of the accuracy of land cover maps derived from 

satellite data has been an important preoccupation of the remote sensing community, and a variety of 

approaches, including direct [21–29] and indirect [30–34] methods, have been developed. Among 

them, the sub-pixel fractional error matrix has been an effective and accurate evaluation approach for 

coarse-resolution land cover products, since the sub-fractional error matrix was introduced as a more 

appropriate way for defining accuracy based on areal sampling units. Its advantage over a conventional 

error matrix is particularly evident in assessing areas containing mixed pixels, as often occurs in 

coarse-resolution maps [8]. The accuracy derived using a sub-pixel fraction error matrix is more 

representative of the confidence-based agreement between the classification map and reference data, 

since a pixel composed of several land cover classes cannot be 100% correct for a given class; 

however, the predicted class was considered to be either 100% correct or 100% incorrect using the 

conventional evaluation. Four land cover products (MODISLC, GLC2000, IGBP-DIScover and UMD) 
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over Canada were evaluated using a sub-pixel fractional error matrix based on medium resolution 

(30 m) land cover data derived from Landsat TM/ETM+ imagery [8]. Ran et al. [26] also employed a  

sub-fractional error matrix to evaluate the four global land cover products (MODISLC, GLC2000, 

IGBP-DIScover and UMD) over China based on a 1:100,000 land cover map and analyzed the 

distribution of different error sources for each class.  

In general, ambiguity in class labels leads to different interpretations. It is known that classification 

labels can be divided into two categories: “hard” classes and “soft/fuzzy” classes. The results of some 

previous studies have suggested that sub-pixel land cover mapping techniques based on continuous 

field characteristics may be preferable to “hard” classification approaches [8]. However, 

for “soft/fuzzy” classification, most applications retain the underlying assumption of crisp sets by 

constraining the sub-pixel proportions of the various classes to sum to unity. The assessment of the 

accuracy of these proportions of classes within pixels requires substantially different methods than for 

a thematic map in which each pixel is assigned to a single class [33]. Therefore, it is very important 

when evaluating the pixel-level accuracy of hard/fuzzy classification to achieve accurate information 

about the sub-pixel classes and their corresponding fractions within the coarse-resolution land cover 

pixel. It is evident that high-resolution remotely sensed data can provide the critical bridge needed for 

the evaluation of the accuracy of land cover products derived from coarse-resolution satellite imagery, 

such as MERIS (300 m) or MODIS (1 km) data. 

In this paper, we show how a hyperspatial classification map derived from compact airborne 

spectrographic imager (CASI) hyperspectral imagery was employed as a reference for the evaluation 

of MODISLC with hard classes and GlobCover, which includes fuzzy classes, based on the obtained 

sub-pixel classes and fractions. The major objectives of this study were: 

 to evaluate the MODISLC product using conventional and fuzzy evaluation methods at 

different thematic scales; 

 to evaluate GlobCover using conventional and fuzzy evaluation at different thematic scales; 

 to compare the fuzzy and conventional evaluation results for fuzzy and hard classes; 

 to calculate the theoretical real difference between the accuracy of MODISLC and GlobCover 

at different thematic resolutions. 

2. Materials 

2.1. Study Site 

The study was carried out in the Heihe River Basin, China’s second largest inland river basin.  

The study area is located between 97°24′ and 102°10′E and 37°41′ and 42°42′N and covers an area of 

approximately 130,000 km
2
. The landscape within the basin is diverse, comprising upstream and 

downstream elements, including glacier, frozen soil, alpine meadow, forest, irrigated crops, riparian 

ecosystems, desert and Gobi (Figure 1) [35]. The middle reaches of the Heihe River are dominated  

by a temperate arid climate with an annual precipitation of 140 mm, an annual evapotranspiration of 

1400–2800 mm, an annual sunshine amount of 3000–4000 hours and an average annual temperature of 

6 °C–8 °C. The altitude range is 1000–2000 m. The representative scenery consists of a staggered 

landscape of plain oasis and Gobi desert comprising sparse native vegetation and numerous areas of 
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artificial vegetation. Thus, it is very difficult to accurately evaluate the accuracy of a land cover 

product derived from coarse-resolution remote sensing data (such as the 300-m GlobCover or 500-m 

MODISLC product) in such a heterogeneous region. Furthermore, as this area is an irrigated district 

managed by farmers and the local government, the overall land cover patterns, including cropland, 

built-up areas and barren land, shelter forest and sparse shrubs, are very stable. Therefore, it can be 

assumed that the main land cover patterns did not change during the 3-year period of 2009–2012. 

Figure 1. Location of the compact airborne spectrographic imager (CASI) transects in the 

middle reaches of the Heihe River basin together with the associated ground survey sites. 

 

2.2. CASI Transects 

In this study, compact airborne spectrographic imager (CASI-1500) imagery acquired on  

29 June 2012, provided by Heihe Watershed Allied Telemetry Experimental Research (HiWATER) 

and launched by the National Natural Science Foundation of China (NSFC) [35], was used to evaluate 

MODISLC and GlobCover. Details of the CASI imagery are shown in Table 1. The imaging region for 

the CASI airborne sensor consisted of two long transects (Figure 1) covering 85.6 km × 1.4 km and  

70 km × 1.4 km over Gaotai and Linze counties in the middle reaches of the Heihe river basin. The 

CASI transects covered Gobi, various irrigated crops, grassland and the river. Furthermore, due to the 

CASI imagery used in this study being acquired at the peak of the vegetation growth season when the 

different vegetation types provided obvious differences in spectral features, it is reliable for obtaining 

accurate land cover classification based on CASI hyperspectral data. 

Table 1. Detailed information regarding the CASI aerial imagery used in the study. 

Sensor 
Spectral 

Region (nm) 

FWHM 

(nm) 

Spatial 

Resolution 

(m) 

Number of 

Channels 

Flight 

Altitude  

(m) 

FOV  

(°) 
Date 

CASI-1500 382.5–1055.5 7.2 1.0 48 3600 40 29 June 2012 
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2.3. Coarse-Resolution Land Cover 

Current satellite missions (SPOT, MODIS and MERIS) have become an increasingly vital component 

of the global observing system used for the monitoring of land cover and its dynamics [31]. In this paper, 

two commonly used coarse-resolution satellite land cover products are evaluated over the area where the 

CASI transects were obtained. A basic description of the two products is given in Table 2. 

Table 2. Basic characteristics of the GlobCover and MODIS land cover (MODISLC) 

products. IGBP, International Geosphere-Biosphere Program. 

Dataset 
Spatial 

Resolution 
Sensor Year Input Data 

Classification 

Method 
Label 

GlobCover 300 m 
MERIS/ 

Envisat 
2009 

Bi-monthly MERIS 

reflectance 

composites  

15 channels 

Unsupervised/ 

supervised 

Clustering 

LCCS  

(22 classes, 

including  

fuzzy classes) 

MODISLC 500 m 

MODIS 

Terra 

and 

Aqua 

2012 

MODIS surface 

reflectance 

(channels 1–7),  

EVI, LST and 

BRDF 

Supervised 

classification 

system using decision 

tree classifier 

IGBP 

(17 hard 

classes) 

GlobCover is a European Space Agency (ESA) initiative, which began in 2005 in partnership with 

the Joint Research Center (JRC), the European Environmental Agency (EEA), the Food and 

Agriculture Organization (FAO), the United Nations Environment Program (UNEP), the Global 

Observation of Forest Cover and Land Dynamics (GOFC-GOLD) and the International  

Geosphere-Biosphere Program (IGBP). The available GlobCover land cover products include two 

versions: GlobCover, released in late September 2008, and GlobCover 2009, released on 1 December 

2010 [18–20]. The recently released GlobCover 2009 for the year 2009 was used in this paper in order 

to match the acquisition time of the CASI aerial imagery. The MODISLC product, developed by 

Boston University in cooperation with the MODIS Land Team from the National Aeronautics and 

Space Administration (NASA), provides data characterizing five global land cover classification 

systems [16]. The first version was made available in 2001, and it has been updated yearly since then. 

The first land cover classification scheme identifying 17 land cover classes defined by the IGBP from 

MCD12Q1 V051 [1] for the year 2012 was used in this study. 

2.4. Ground Survey Data 

Prior knowledge about land cover types is very important for accurately classifying remote sensing 

images using an automatic classification algorithm. Even though some land cover types in high spatial 

resolution (1 m) imagery can be identified by visual interpretation, a ground survey to obtain land 

cover information was carried out during July 2012, and this was very helpful for providing accurate 

prior knowledge about the different land cover types in the CASI hyperspectral imagery (Figure 1).  

A total of 139 accessible ground survey sites were surveyed within CASI transects, and the GPS 

locations of the individual survey sites can be seen in Figure 1. These data, together with manual 
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interpretation of the CASI images, were used to select high-quality sample pixels for the different land 

cover types. We then generated random training and testing data in the proportion of 6:4 within the 

sample dataset. 

3. Methodology  

3.1. Classification of CASI Transects  

In this study, a high spatial resolution classification based on CASI imagery was used as the reference 

data for evaluating the accuracy of the coarse-resolution satellite-based land cover products. The aerial 

classification database consisted of a 1-m resolution land cover database classified into five land cover 

types based on the ground survey data, visual interpretation of the CASI imagery and the requirement 

that classes match the labels used for the GlobCover and MODISLC sub-pixel classes. The five land 

cover types included trees, grassland, water, cropland and built-up and barren land. For the hyperspatial 

aerial classification dataset, the preparatory and classification steps included the following. 

i. The CASI DN values were first radiometrically corrected using calibration coefficients provided 

by laboratory calibration (gains and offsets). Then, atmospheric correction was carried out using 

the MOTRAN 4 model, which is embedded in the ENVI/FLAASH module [36], in order to 

derive the ground surface reflectance (GSR). The input parameters were set based on the location, 

sensor type and ground weather conditions observed on the day the image was acquired. Then, 

the CASI GSR was geometrically registered using the CASI pre-processing software 

(ProcManager) with required flight parameters and airborne POS data. During this registration 

process, each pixel was resampled to 1-m resolution and the UTM projection (WGS 84) using 

the nearest-neighbor method. 

ii. A simple pixel-level ratio vegetation index (RVI) based on  
   

 (NIR) and  
   

 (red) reflectance 

bands was used to accurately separate the vegetated, built-up and barren land and water pixels. 

iii. The vegetated land area was segmented into individual objects using a blob coloring algorithm 

based on spatial neighborhoods. For example, spatially adjacent vegetated pixels were merged 

into one object; if there were no other vegetated pixels adjacent to a pixel, it was defined as  

an object. 

iv. Relatively small vegetated objects of a single type (shrubs) were characterized by a specific 

small area threshold (Figure 2). 

v. Relatively large vegetated objects of a single type included grassland and spatially continuous 

trees. The grassland class was typically characterized by relatively large areas and low RVI 

thresholds. Continuous trees with different growth status were discriminated based on the large 

areas they covered and also the variance threshold (Figure 2) for the reflectance of the green 

band ( 
   

). A shape index (Figure 2) giving the ratio of the perimeter to the area of an object 

was used to extract tree-covered areas with a specific geometric shape, such as green belts 

along roads. 

vi. Relatively large vegetated objects of mixed types consisted of cropland and shelterbelt mixed 

with cropland. The reflectance threshold (Figure 2) of the green band ( 
   

) was applied to 

extract a portion of shelterbelt; however, defining the remaining pixels (excluding the extracted 
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shelterbelt) as cropland would have misclassified some trees in the shelterbelts as cropland, 

which is erroneous. To address this problem, we developed a post-classification process for 

mixed vegetation that used a moving 3 × 3 window to filter the resulting classification. If the 

center pixel of the window was cropland and at least one ‘tree’ pixel was present in the window, 

the center pixel was moved to the tree class. 

Figure 2. Hierarchical structure of the legend for the land cover types of CASI transects. 

Specific rules were extracted for different land cover types in this region using CASI 

ground surface reflectance. GSR, ground surface reflectance; RVI, ratio vegetation index. 

 

As shown in Figure 2, a hierarchical classification scheme [37–40] was employed to classify the 

CASI hyperspectral imagery: different hierarchical levels were separated using a pixel-based 

classification based on reflectance spectra, and different vegetation types were discriminated using 

object-based classification based on geometric and spectral features of objects segmented according to 

the spatial adjacent relationship. In the pixel-based classification, RVI thresholds discriminating three 

land cover types were set when the classification accuracy of the testing sample pixels from three land 

cover types reached its maximum value; in the object-based classification, thresholds discriminating a 

specific land cover type were set when the accuracy of the testing sample pixels from the specific land 

cover reached its maximum value. The land cover types in the CASI transects were mapped according 

to the above hierarchical classification process, as illustrated in Figure 3. (The result for one sub-region 

within the CASI transects is shown). 

  

CASI GSR 

Built-up and Barren Land 

0.8 ≤             ≤ 1.7 

 

Vegetated Land 

            > 1.7 

 

Water 

            < 0.8 

 

Segmentation 

Grassland  

Area > 20 m² and 

          _mean ≤ 2.0 

Trees  

(1) Area ≤ 20 m² 

(2) Area > 20 m² and     _variance > 0.025 

(3) Perimeter/area > 0.38 

(4)      < 0.041 and post classification filter 

Cropland 

Remaining zone 

Pixel-based classification 

Object-based classification 
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Figure 3. Two sub-regions in the CASI land cover map that consist of all five classes: 

trees, grassland, cropland, built-up and barren land and water. 

 

3.2. Evaluation of Coarse-Resolution Land Cover over the Area of the Continuous CASI Transects 

GlobCover and MODISLC land cover were reprojected on to a UTM projection using the same 

projection parameters as the CASI data (UTM N47, WGS-84). The boundary coordinates of each 

GlobCover (300 m) or MODISLC (500 m) pixel could be calculated using the central UTM 

coordinates of the pixel. The pixels that were completely covered by the CASI transects according to a 

comparison of the coordinate ranges in the CASI transects and coarse-resolution pixels were then 

selected for evaluation in the next step. The number of pixels selected from GlobCover and MODISLC 

are shown in Table 3. 

As shown in Table 3, five GlobCover land cover classes (Classes 11, 20, 30, 140, 200) and four 

MODISLC land cover classes (Classes 12, 7, 10, 16) were present within the area of the CASI 

transects; their corresponding spatial distributions are shown in Figure 4. In this study, the following 

steps were performed for each coarse-resolution land cover pixel: (1) the location of the center of the 

coarse-resolution pixel was determined; (2) the pixel’s footprint was located in the CASI transects;  

(3) the proportions of the different land cover types within the footprint were calculated according to 

the hyperspatial classification; (4) the dominant fraction and corresponding dominant class within the 

footprint was determined.  
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Table 3. Detailed information about GlobCover and MODISLC classes observed within the 

area of the CASI transects. 

2 Thematic 

Classes 

3 Thematic 

Classes 
GlobCover Label 

Number 

of Pixels 

MODISLC 

Label 

Number 

of Pixels 

Vegetation 

Cropland 

Post-flooding or irrigated 

croplands  

(or aquatic) Class: 11 

204 
Croplands 

Class:12 
178 

Mosaic cropland  

(50%–70%)/vegetation 

(grassland/shrubland/forest) 

(20%–50%) Class: 20 

255   

Natural 

vegetation 

Mosaic vegetation 

(grassland/shrubland/forest) 

(50%–70%)/cropland  

(20%–50%) Class: 30 

259 
Open shrublands 

Class:7 
39 

Closed to open (>15%) 

herbaceous vegetation 

(grassland, savannas or 

lichens/mosses) Class: 140 

187 
Grasslands 

Class:10 
114 

Bare areas Bare areas 
Bare areas 

Class: 200 
828 

Barren or 

sparsely 

vegetated 

Class:16 

101 

Figure 4. GlobCover and MODISLC land cover classification over the region of the CASI 

transects. (a) GlobCover; (b) MODISLC. 

  

(a) (b) 

In the evaluation process using high spatial resolution reference data, open shrubland (Class 7) in 

MODISLC was considered to agree with the trees ‘class’ in the reference data, as the trees in the study 

area consist of a large number of young trees and groves, whose heights and crowns are very close to 
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those of shrubs in the desert. Class 200 in GlobCover and Class 16 in MODISLC were considered to 

agree with ‘built-up and barren land’ in the reference data. As built-up areas account for only a tiny 

proportion of the enlarged coarse-resolution land cover pixels, this was unlikely to have much impact 

on these evaluation results. 

In MODISLC, each class definition describes a “hard” label that represents only one type of class. 

The conventional and fuzzy methods used in this study for the evaluation of MODISLC “hard” classes 

can be summarized as follows. 

 Fuzzy: The accuracy of the pixel is equal to the percentage of hyperspatial reference pixels that 

agree with the class of the coarse-resolution pixel based on the sub-fraction error matrix [8]. 

 Conventional: The accuracy of the pixel is a Boolean value. The coarse-resolution pixel is 

considered to be 100% correct when it agrees with the dominant class or 0% correct when  

it disagrees. 

For GlobCover, the evaluation methods for MODISLC described above are also suitable for other 

hard classes in GlobCover. However, some classes describe “fuzzy” labels that consist of a variety of 

sub-pixel classes and their corresponding proportions (e.g., Class 20 consists of mosaic cropland 

(50%–70%) and vegetation (grassland/shrubland/forest) (20%–50%)). The sub-pixel class fraction 

derived for each coarse-resolution pixel offers an additional option for assessing fuzzy classification: a 

set of rules can be established to define the relationship between reference and classification data [8]. 

Strict conventional and fuzzy evaluation rules were established in this study for “fuzzy” GlobCover 

classes based on a comprehensive consideration of the correctness of the classes involved in the 

definition of each label. The process is shown below, taking Class 20 as an example.  

 Fuzzy: The accuracy is determined according to the different pre-conditions, as shown in  

Table 4. 

 Conventional: The coarse-resolution pixel is considered to be 100% correct when cropland agrees 

with the reference-based dominant class and the percentage of natural vegetation is not less than 

20%; otherwise, the pixel is considered to be 0% correct. 

Table 4. Fuzzy evaluation rules for the GlobCover fuzzy class (Class 20). 

Precondition Accuracy of Fuzzy Class 

Dominant class (cropland) does not agree with the 

reference-based dominant class  

Equal to the percentage of reference pixels that 

agree with the cropland 

Cropland agrees with the reference-based dominant class, 

and the percentage of natural vegetation is higher than 0% 

Equal to the percentage of cropland plus 

percentage of natural vegetation in reference data 

Cropland agrees with the reference-based dominant class; 

the percentage of cropland is higher than 50%, and the 

percentage of natural vegetation is 0% 

Partial agreement for the fuzzy class  

(50% agreement) 

Cropland agrees with the reference-based dominant class; 

the percentage of cropland is less than 50%, and the 

percentage of natural vegetation is 0% 

Equal to the percentage of reference pixels that 

agree with the cropland 

Both conventional and fuzzy evaluation methods were performed for MODISLC and GlobCover 

over the area covered by the continuous CASI transects. The evaluations of the two methods for each 
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coarse-resolution land cover type were compared and the difference in accuracy achieved using the 

fuzzy and conventional evaluation methods for hard classes, and fuzzy classes were also analyzed.  

In addition, the accuracy of MODISLC and GlobCover were also evaluated for the different thematic 

resolutions shown in Table 3, and the relationships between homogeneity and classification accuracy 

were explored. All analyses performed in this study were based on conventional and fuzzy accuracies 

generated using coarse-resolution land cover and hyperspatial resolution reference land cover data. 

4. Results and Discussion 

4.1. Accuracy of CASI Hyperspatial Classification 

The classification accuracy of the CASI transects was assessed using the test data and was found  

to have an overall accuracy of 95.07% and a kappa coefficient of 0.93, as shown in Table 5. This 

shows that the CASI land cover map could provide reliable reference data for validation of the 

GlobCover product.  

Table 5. Confusion matrix for assessing the CASI land cover map using independent 

testing data differing from the training data in the sample dataset. 

Class 

Reference Data 

SUM 
User Acc.  

(%) Trees Grassland Cropland 
Built-Up and 

Barren Land 
Water 

CASI 

Classification 

Trees 3068 20 9 9 0 3106 98.7 

Grassland 0 652 0 0 0 652 1.0 

Cropland 498 71 5636 0 0 6205 90.8 

built-up and 

barren land 
21 223 136 8150 0 8530 95.5 

Water 0 0 0 0 1510 1510 100 

SUM 3587 966 5781 8159 1510 20,003  

Prod. Acc. (%) 85.5 67.5 97.5 99.8 100   

Overall accuracy = 95.07%; kappa coefficient = 0.93 

4.2. Influence of Homogeneity on Accuracy of MODISLC and GlobCover  

The homogeneity of each coarse-resolution pixel can be measured using the proportion of the 

dominant land cover type in the hyperspatial reference data: the greater the dominant fraction, the 

more homogeneous the coarse-resolution pixel will be. In this study, the homogeneity over the area 

covered by the continuous CASI transects was classified into six cluster members based on the 

dominant fraction of each coarse-resolution pixel (40%–50%, 50%–60%, 60%–70%, 70%–80%,  

80%–90%, 90%–100%). The relationships between the homogeneity and corresponding classification 

accuracy of cluster members for MODISLC and GlobCover at different thematic resolutions are 

presented in Figure 5. The x-coordinate of a point on this graph is the average dominant fraction, 

which represents the average homogeneity over a given cluster, while the y-coordinate gives the 

corresponding average accuracy achieved by either fuzzy or conventional evaluation. For fuzzy 

evaluation, the 1:1 line defines the maximum achievable accuracy for a given homogeneity, while the 
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difference in y-coordinates between a point and the 1:1 line represents the error of the classification 

method [8].  

Figure 5. The relationships between homogeneity and accuracy for (a) MODISLC and  

(b) GlobCover at different thematic resolutions. 

 

(a) 

 

(b) 

Both conventional and fuzzy evaluation were applied to MODISLC and GlobCover using the 

original thematic classes. It can be seen in Figure 5 that the conventional accuracy of a cluster  

(70%–80%) in MODISLC is higher than the maximum achievable accuracy for a given homogeneity 

that results from considering that the pixel is 100% correct in the conventional evaluation. This means 

that the accuracy of the pixel is overestimated, which to some extent indicates that the fuzzy evaluation 

method is more reasonable. It can be seen from Figure 5 that the conventional accuracy is higher than 

Original: y = 0.7742x1.6691  R² = 0.8607 

3 classes: y = 0.7547x1.4662   R² = 0.8418 
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the fuzzy accuracy for MODISLC with hard labeling, whereas the opposite—conventional accuracy 

lower than the fuzzy accuracy—is true for GlobCover with fuzzy labeling. The reason for this 

phenomenon will be discussed in the next section. The graph also indicates that the relationship 

between the fuzzy accuracy and homogeneity is more significant than the conventional accuracy and 

that the difference between the fuzzy accuracy and the conventional accuracy narrows with increasing 

pixel homogeneity. 

In Figure 5, there is a general increasing trend in classification accuracy with increasing pixel 

homogeneity as a result of the relative unambiguity of pure pixel labeling. However, in the case of 

MODISLC, there is an obvious decrease in accuracy in highly homogeneous areas with a dominant 

fraction of 90%–100%. These pixels with high homogeneity are classified as grassland or shrubland  

and account for a tiny proportion of the reference data. For GlobCover, in contrast, the accuracy 

continuously increases with increasing homogeneity, which indicates that GlobCover agrees better 

with the reference data than MODISLC when the labeling is unambiguous. Further analysis of the 

spatial distribution of the disagreement between GlobCover and the reference data reveals that the 

largest differences between them are found in transition zones between desert and oasis cropland. 

A smaller number of thematic classes will produce a higher dominant fraction and more 

homogeneous land cover, and vice versa [8]. In this study, fuzzy evaluation was performed for two 

coarse-resolution land cover types at different thematic resolutions. It can be seen from Figure 5 that 

the accuracy at lower thematic resolution is higher than that at higher thematic resolution for 

MODISLC with hard labels, because the lower thematic resolution reduces the number of labeling 

errors caused by mislabeling, whereas the accuracy with the original thematic classes is a little bit 

higher than that obtained using three thematic classes for GlobCover. This is caused by the influence 

of the evaluation on the fuzzy labeling. For GlobCover, the coefficients of determination (R
2
) for the 

regression relationship between homogeneity and accuracy exhibit an increasing trend as the number 

of thematic classes decreases; in contrast, there is a decreasing trend in the case of MODISLC as a 

result of the mislabeling that occurs in highly homogeneous regions (see Figure 5). 

4.3. Comparison of Fuzzy and Hard Class Accuracies 

In order to better understand the different performances of the fuzzy and hard class labeling, we 

selected all GlobCover Class 20 pixels in the region of the CASI transects for accuracy evaluation. In 

this case, the fuzzy and conventional accuracies of each Class 20 pixel were calculated based on the 

evaluation rules established for the fuzzy class (Table 4). In addition, “cropland”, which is the 

dominant class in the Class 20 definition, was used as the hard label for all the pixels. It can be clearly 

seen from Figure 6 that the maximum achievable fuzzy accuracy of the hard class is the dominant class 

fraction of a coarse-resolution pixel, whereas the fuzzy accuracy for the fuzzy class might be higher 

than the dominant class fraction of a coarse-resolution pixel. To find the maximum achievable 

accuracy of the fuzzy class, it is necessary to carry out further analysis based on different 

preconditions, as listed in Table 4.  

The conventional accuracy for the fuzzy class is very low and is characterized by a decreasing trend 

with increasing homogeneity as a result of the evaluation rule, which is stricter than the conventional 

evaluation for the hard class and which focuses on the correctness of both the dominant class and  
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sub-dominant classes. It, therefore, becomes harder for a coarse-resolution pixel to be considered 

100% correct, especially in a highly homogeneous area, where there are fewer sub-dominant classes. 

For the hard class, the conventional accuracy is higher than the dominant fraction and increases with  

increasing homogeneity. 

Figure 6. Comparison of fuzz accuracy and conventional accuracy for the fuzzy class and 

the hard class. 

 

Figure 6 shows that the fuzzy accuracy for the fuzzy class is higher than that for the hard class. It 

can also be seen that the difference between the accuracies is very small and becomes narrower with 

increasing homogeneity. In contrast, the difference between the conventional accuracy for the fuzzy 

class and that for the hard class is large and becomes wider with increasing homogeneity. From 

another perspective, it can also be seen that the variation in the fuzzy accuracy for the hard and fuzzy 

classes is small, whereas the variation in the conventional accuracy for the hard and fuzzy classes is 

relatively large. The fuzzy evaluation method, therefore, has a more stable performance. 

However, the variation characteristic of the fuzzy accuracy for the fuzz class, as shown in Figure 6, 

is particular to the coarse-resolution pixels, where the dominant class of the fuzz label agrees with the 

reference-based dominant class, and sub-dominant classes also exist in the reference data. Within the 

CASI transects, the reference-based dominant class of a majority of pixels labeled with Class 20 is 

cropland, and natural vegetation also exists in the pixels, which indicates that Class 20 in GlobCover 

performs in good agreement with the reference data over the study area.  

4.4. Comparison of MODISLC and GlobCover Accuracy 

As fuzzy accuracy is a more reasonable representative of the “true” accuracy of coarse-resolution 

land cover and is more significantly related to the homogeneity, all of the performance analysis 

described in this section was based on the fuzzy accuracy. The average homogeneities and average 

accuracies of MODISLC and GlobCover over the CASI transects at different thematic resolutions are 
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listed in Table 6. It can be seen that the average homogeneity shows an increasing trend with 

decreasing spatial and thematic resolution and also that the average accuracy for MODISLC and 

GlobCover with hard thematic labels (green cells in Table 6) shows an increasing trend with increasing 

average homogeneity. This supports the conclusion of a previous study [8] that spatial resolution and 

thematic resolution both affect pixel homogeneity, which, in turn, determines the evaluated accuracy 

for the coarse-resolution pixel. However, it should be noted that average accuracies for GlobCover, 

including fuzzy thematic labels (yellow cells in Table 6), present higher accuracy than the 

corresponding accuracies for GlobCover with three thematic hard classes, which could be explained by 

the fact that fuzz accuracy for fuzz class is higher than that for hard class, as illustrated in Figure 6.  

Table 6. The homogeneity and accuracy of MODISLC and GlobCover at different  

thematic resolutions. 

Thematic Resolution 

MODISLC (500 m) GlobCover (300 m) 

Average 

Homogeneity 

Average 

Accuracy 

Average 

Homogeneity 

Average 

Accuracy 

Adjusted Average 

Accuracy 

Original thematic classes 0.815 0.528 0.837 0.626 0.554 * 

3 thematic classes 0.815 0.537 0.837 0.618 0.543 ** 

2 thematic classes 0.847 0.646 0.869 0.759 0.719 *** 

* calculated using y = 0.1479e1.6219x with the x-value equal to the average homogeneity of MODISLC;  

** calculated using y = 0.1349e1.71°8x with the x-value equal to the average homogeneity of MODISLC;  

*** calculated using y = 0.2252e1.3717x with the x-value equal to the average homogeneity of MODISLC. 

Differences in spatial resolution, the projection system and the sensor point spread function 

represent one of the main difficulties in comparing the different coarse-resolution land cover  

datasets [30]. In general, in previous land cover comparison studies [30–33], land cover datasets were 

spatially resampled and translated into a common legend that accommodated all the land cover 

categories on an aggregated level, so that the comparison can be performed. However, the accuracy of 

one coarse-resolution map at different spatial resolutions could be simulated based on a theoretical 

relationship between the image spatial resolution and the accuracy achieved by combining the 

resolution, homogeneity and accuracy relationships [8]. In this study, we used this approach to realize 

the accuracy comparison between land cover maps with different spatial resolutions without 

resampling for land cover. The quantitative mathematical relationships (Figure 5b) achieved between 

homogeneity and fuzzy accuracy for GlobCover at different thematic resolutions were used to 

calculate the adjusted GlobCover accuracy by taking the homogeneity at the MODISLC spatial 

resolution as the input x-value. The adjusted GlobCover accuracy represents the accuracy of 

GlobCover labeling at the spatial resolution of MODISLC; theoretically, it eliminates the influence of 

the spatial resolution on the accuracy. The difference between the accuracy and adjusted accuracy for 

GlobCover represents the influence of the error due to the spatial resolution, as illustrated in Table 6. 

It can be seen from Table 6 that the average adjusted GlobCover accuracy is higher than the 

MODISLC accuracy at the same thematic resolution (three classes and two classes), which indicates 

that the GlobCover classification method is theoretically more accurate than MODISLC’s over the area 

of the CASI transects after the removal of the of the effects due to the spatial and thematic resolution. 
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In this analysis, different performances of the adjusted GlobCover accuracy and MODISLC 

accuracy in areas with different homogeneities at different thematic resolution scales were compared. 

The different types of difference shown in Table 7 are explained below the table. From the values of 

difference
1
 and difference

2
 shown in Table 7, it can be seen that a lower thematic resolution can 

produce almost the same increasing effect on the adjusted GlobCover accuracy in areas with different 

degrees of homogeneity, whereas a lower thematic resolution could more clearly affect the MODISLC 

accuracy in heterogeneous areas than in homogeneous areas. Furthermore, a comparison between the 

magnitude of difference
3
 and difference

4
 shows that a lower thematic resolution can reduce the gap 

between the MODISLC and GlobCover accuracies. Difference
4 

is higher than difference
3
 for areas 

with a 90%–100% dominant fraction as a result of the MODISLC mislabeling in homogeneous areas 

that were analyzed in the previous section. 

Table 7. Comparison of the different performance characteristics of the relationships 

between accuracy and homogeneity for adjusted GlobCover/MODISLC at different 

thematic resolutions 

Cluster 

(Dominant Fraction) 
Difference

1
 Difference

2
 Difference

3
 Difference

4
 

50%–60% 0.136 0.237 0.095 −0.005 

60%–70% 0.135 0.130 −0.008 0.004 

70%–80% 0.147 0.06 −0.112 −0.024 

80%–90% 0.149 0.061 −0.110 −0.022 

90%–100% 0.134 0.057 0.121 0.198 

Difference1 represents the difference between adjusted GlobCover accuracies for two and three thematic 

classes; difference2 represents the difference between MODISLC accuracies for two and three thematic 

classes; difference3 represents the difference between adjusted GlobCover accuracy and MODISLC accuracy 

for three thematic classes; difference4 represents the difference between adjusted GlobCover accuracy and 

MODISLC accuracy for two thematic classes. 

5. Conclusions 

In this study, fine-scale remotely sensed data from an area of continuous CASI transects provided a 

good opportunity to obtain sub-pixel class fractions and to determine the dominant class type in  

coarse-resolution land cover pixels. This is crucial for assessing the accuracy of coarse-resolution land 

cover products. A highly accurate hyperspatial aerial classification map was produced and used as the 

reference data for conventional and fuzzy evaluation of MODISLC and GlobCover land cover products. 

For fuzzy classes in GlobCover, we attempted to establish suitable evaluation rules. Factors influencing 

the accuracy included the homogeneity, spatial resolution and thematic resolution, and these were all 

fully considered in the comparative analysis. The results of the analysis showed that the relationship 

between fuzzy accuracy and homogeneity is more significant than conventional accuracy, and that the 

difference between the fuzzy accuracy and the conventional accuracy gets narrower with increasing pixel 

homogeneity. GlobCover was in better agreement with the reference data than MODISLC when the 

labeling was unambiguous. The variation in the fuzzy accuracy for both hard and fuzzy classes was 

small, whereas the variation in the conventional accuracy for hard and fuzzy classes was relatively large. 
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Hence, the fuzzy evaluation was more stable under different types of labeling, and in theory, the 

GlobCover classification product provided a higher mapping accuracy than MODISLC after removal of 

the effects due to the spatial and thematic resolution over the area of the CASI transects. 

However, the conclusions based on the above analysis are particular to the study area used and, 

more specifically, to the datasets and methods used to derive the relationships concerning accuracy, 

homogeneity, spatial resolution and thematic resolution. In addition, other factors also introduced 

unavoidable errors into the accuracy evaluation. These included misregistration between the  

coarse-resolution land cover and hyperspatial reference data and errors in the regression relations 

between homogeneity and accuracy at different thematic resolutions. The heterogeneity derived from 

the reference data showed that the grassland and open shrub over the study area can be described by a 

mosaic label, such as GlobCover Class 20, or can be mapped using higher spatial resolution satellite 

imagery, which could improve the mapping accuracy for grass and shrub in heterogeneous zones. 

The assertions contained in this study must be qualified by stating that they apply to the performance 

of datasets over a small-scale region; further studies should focus on a larger area. However, aerial 

remote sensing datasets are costly and of limited availability, and so, this poses significant challenges 

in evaluating land cover products at continental or global scales. High resolution and multispectral 

satellite data covering larger areas, such as WorldView, GeoEye and QuickBird data, could be 

considered as alternatives.  
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