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Abstract: This paper presents methods for 3D modeling of railway environments from 

airborne laser scanning (ALS) and mobile laser scanning (MLS). Conventionally, aerial 

data such as ALS and aerial images were utilized for 3D model reconstruction. However, 

3D model reconstruction only from aerial-view datasets can not meet the requirement of 

advanced visualization (e.g., walk-through visualization). In this paper, objects in a railway 

environment such as the ground, railroads, buildings, high voltage powerlines, pylons and 

so on were reconstructed and visualized in real-life experiments in Kokemaki, Finland. 

Because of the complex terrain and scenes in railway environments, 3D modeling is 

challenging, especially for high resolution walk-through visualizations. However, MLS has 

flexible platforms and provides the possibility of acquiring data in a complex environment 

in high detail by combining with ALS data to produce complete 3D scene modeling.  

A procedure from point cloud classification to 3D reconstruction and 3D visualization is 

introduced, and new solutions are proposed for object extraction, 3D reconstruction, model 

simplification and final model 3D visualization. Image processing technology is used for 

the classification, 3D randomized Hough transformations (RHT) are used for the planar 

detection, and a quadtree approach is used for the ground model simplification. The results 

are visually analyzed by a comparison with an orthophoto at a 20 cm ground resolution.  

Keywords: airborne laser scanning; mobile laser scanning; railway environment modeling; 

building modeling; building reconstruction; 3D building model; powerline modeling; 

ground model simplification 
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1. Introduction 

Over the last five years, an estimated US $300 billion worth of global investment has been 

expended to maintain and upgrade railway networks. The top industry challenges are capacity, 

operational efficiency and reliability, structural and competition issues, and safety and security. 

Railway environments have a great influence on greenhouse gas emissions [1], because 80% of rail 

traffic in Europe is currently powered by electricity; therefore, the vast majority of trains emit no local 

air pollutants, and increased rail traffic can help achieve substantial progress towards the 2020 target of 

a 20% cut in the EU greenhouse gas emissions. MarketLine [2] predicted that the industry will grow 

by 24% (almost $210 billion) in the five-year period ending in 2015. The need to maintain better 

documentation of the existing railway environment has been stressed, and a quicker and more efficient 

method for inspecting railways is required. The increased growth of the EU railway industry has also 

impacted the use of laser scanning and photogrammetric techniques for railroad engineering.  

The development of the railway industry has resulted in an increased demand for 3D modeling of 

railway environments because it provides an opportunity to visualize, explore and plan railway scenes 

indoors. However, because of the complexity of the terrain in railway environments, the available data 

sources for recent 3D modeling of such scenes have been mainly from aerial views, including aerial 

images, airborne laser scanning (ALS), orthophotos, digital elevation models (DEMs), and ground 

plans. The modeling from those data sources usually produces rough results (see Figure 1). It is 

challenging work to produce high resolution ground-based 3D modeling. The challenges result from 

the following: (i) complex terrains make it difficult to acquire data, especially for ground-based data 

collection; (ii) complex environments make it difficult to reconstruct environments. However, 

currently available sensor technologies and modeling methodologies have presented opportunities for 

detailed modeling of railway environments. 

Figure 1. 3D city model from Here 3D maps (Nokia). 

 

The rapid development of mobile sensor technology has made it possible to acquire data from 

complex terrains and scenes because of its flexible platforms, such as aircraft, cars or van, trains, 

boats, trolleys or personal backpacks. A laser scanner based on a platform of an aircraft is called an 

ALS and has been applied for surveying since 1994. After decades of development, the accuracy and 
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density of point collection has been greatly improved. For instance, in 1993, the pulse repetition 

frequency (PRF) of ALS was 2 kHz, whereas in 2007, the best PRF of ALS was 200 kHz and in 2013, 

it had increased to 800 kHz. The point density has increased from a few points per m2 to the current 

usual density of 50 points per m2. Thus far, ALS has been a particularly important method of rapid and 

highly accurate large-area mapping, especially for DEM products. However, ALS offers data from the 

top view, which is not adequate for high resolution and ground-based object modeling. Ground-based 

mobile laser scanning (MLS) might provide complementary measurements for ALS. MLS is integrated 

with GNSS and inertial measurement unit (IMU) and contains single or multiple laser scanners 

mounted on a platform on a car, van or train. MLS can apply different point densities, scanning angles 

and ranges to the objects compared to ALS. State-of-the-art MLS has a scan rate of 400 lines per 

second; the MLS RIEGL VMX-450-RAIL (RIEGL, USA) can measure up to 1.1 million points per 

second along the trajectory of a moving platform with a 360° field of view without gaps [3].  

The measurement distance to the objects can be from 0.3 m to 800 m. MLS can also be used with 

different platforms, such as vehicle- and trolley-operated MLS for urban area data acquisition,  

boat-mounted MLS equipment for fluvial environments, and backpack versions of MLS used for surveying 

applications in the field of natural sciences, an example of which can be found in Kukko et al. [4].  

When reconstructing a complex railway environment, the complexity is based on the diversity of 

the objects of the railroad infrastructure and surroundings, which include railroads, buildings, 

powerlines, pylons, street/traffic lights, etc. Due to flexible sensor platforms offering various data 

sources, e.g., ALS and MLS, and also various available survey products like digital maps or  

ortho-photos, these data have provided the possibility for the complex 3D environment reconstruction. 

The multiple complementary data sources from different views offer the flexibility and feasibility 

required for rapid, highly efficient and detailed 3D environment modeling. The contributions of 

published studies on 3D modeling are listed below.  

(i) Building extraction and reconstruction  

The methods for 3D building modeling rely heavily on data sources. Data from the field of 

photogrammetry, such as single images, stereo-images or multiple images, extract edge features or 

line-shaped objects, which provides significant benefits. However, planar feature extraction usually 

relies on texture recognition, which has considerable impacts on an object’s reflection, the light source, 

the angle of illumination, the position of the camera, etc. Therefore, it is more reliable to acquire 

planar features from laser scanning point clouds. However, the edge feature in point cloud scanning 

exhibits a saw-tooth shape and additional work is required to generalize the feature for the final  

line-shape acquisition. For building reconstruction, two techniques are usually applied: a model-driven 

approach and data-driven approach. Model-driven approaches construct the models by predefined 

primitives, whereas data-driven approaches utilize complex algorithms, such as plane detection, shape 

generalization, intersection line detection, to achieve the final model. A comparison between  

model-driven and data-driven methods has been conducted by Tarsha-Kurdi et al. [5]. According to 

their study, model-driven approaches rely on prior knowledge wherein people know a scene well and 

know what kind of building types are in a scene. Nevertheless, models based on this approach usually 

show less visual deformation compared to data-driven approaches. An advantage of data-driven 

approaches is that they do not require prior knowledge of a scene. Therefore, they can be applied to 
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large unknown areas. Currently 3D models towards the whole world are going on [6]. It will require 

years until completion. Thus, automatic methods must still be developed and improved.  

Literature reviews on the methods of building extraction and reconstruction can be found by Wang [7], 

Hyyppa et al. [8], Baltsavias [9], Brenner [10], Kaartinen and Hyyppa [11], and Haala and Kada [12]. 

Wang [7] produced an overview of the methods according to different data sources. Hyyppa et al. [8] 

produced an overall review for the methods of building extraction and reconstruction from single to 

multiple data sources since the 1990s. Kaartinen and Hyyppa [11] collected building extraction 

methods from 11 research agencies in 4 testing areas. Input data contained airborne-based data and 

ground plans (for selected buildings). Building extraction methods were analyzed and evaluated from 

the aspects of the time consumed, level of automation, level of detail, geometric accuracy, and total 

relative building area and shape dissimilarity. Haala and Kada [12] reviewed building reconstruction 

approaches according to building structures, such as roofs and facades, in which the input data covered 

both airborne-based and ground-based data.  

In addition, Rutzinger [13] investigated the accuracy of data fusion of building walls and roofs from 

MLS and ALS, respectively, and verified their availabilities for 3D building modeling.  

According to the previous research work, it can be concluded that the use of aerial-based data and 

ground-based data can achieve 3D building models with a (i) high level of automation and (ii) high 

level of detail.  

(ii) Powerline and pylon modeling  

The available approaches to modeling powerlines can be obtained from Melzer and Briese [14], 

McLaughlin [15], Jwa et al. [16], and Sohn et al. [17]. Melzer and Briese (2004) proposed a method 

for powerline extraction and modeling via ALS by using a 2D Hough transformation and 3D fitting 

methods. However, it was based on the assumption that the powerlines were parallel. In practical 

applications, the scenes are usually more complex. Jwa (2009) introduced a voxel-based piece-wise 

line detector (VPLD) approach for automatic powerline reconstruction using ALS data. This method 

was based on certain assumptions such as the transmission line not being disconnected within one span 

and the direction of the powerline not changing abruptly within a span. The latest contribution to 

powerline classification and reconstruction using ALS data was by Sohn et al. (2012); they used a 

Markov random field (MRF) classifier to discern the spatial context of linear and planar features, such 

as in a graphical model for powerline and building classification. They assumed that powerlines run 

through inhabited areas with many buildings. Powerline pylons were classified and showed the 

connection between powerlines.  

(iii) Pole detection  

Pole-like objects such as street lights or traffic lights are essential in railway environments. Studies 

about pole detection methods can be found in Brenner [18], Golovinskiy et al. [19], Lehtomäki et al. [20], 

Pu et al. [21], and Li and Elberink [22]. Golovinskiy et al. [19] utilized computer vision knowledge for 

object recognition (including poles) by the following four steps: locating, segmenting, characterizing, 

and classifying clusters of 3D points. The resulting recognition rate is 65%. Lehtomaki et al. [20] 

proposed an automatic method for pole-like object detection in MLS, and the algorithm is divided into 

four phases: (i) segment each profile into a group; (ii) remove the long group; (iii) cluster and merge 
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the groups; and (iv) classify poles and non-poles according to their shape, length, orientation and point 

density in the local neighborhood of the cluster. The algorithm was evaluated and achieved a comparable 

accuracy, with a correctness of 81% and a detection possibility of 77.7%. Li and Elberink [22] 

proposed a five-step method of pole-like object detection. The accuracy of detecting pole-like objects 

was 72.4% and 75.1% in two different test datasets. However, most proposed methods were 

knowledge-based methods that required prior knowledge of the environment or scene.  

(iv) Road modeling  

Studies of road extraction usually use images ([23–25]), ALS ([26–28]) or both ([29,30]) as data 

sources. Currently, certain methods based on MLS data are also available: Goulette et al. [31], Kukko [32], 

Jaakkola et al. [33] and Pu et al. [21]. MLS provides direct information to acquire the positions of 

railroads if the trajectory of the MLS fits the center line of one of the railroads. Searching for parallel 

lines could be helpful for other railway environment extractions. In this paper, the goal was to produce 

a final visualization of railway environments. Therefore, the visualization of railroads was conducted 

by mapping orthophotos onto ground models, with railroads considered part of the ground.  

Additionally, currently 3D visualization has received considerable attention due to the large screen, 

the powerful processors and abundant memory as well as open operation system of the computer and 

the mobile devices, e.g., iPad, smartphone, or PDA [8]. However, as sensor technology continues to 

develop, it not only increases the number of point clouds but also the accuracy of data acquisition, 

although 3D models from a significant number of points would cause difficulties in the model  

post-processing, including model rendering and visualization, especially for dense ground points. 

Therefore, model simplification is required. Ground models are popularly called digital elevation 

models (DEMs), and they utilize raster format or vector format to represent terrain characteristics. 

Before the advent of ALS, the photogrammetric method was used as a primary method of DEM 

generation and included breakline extraction from stereo-images. DEM generation has primarily been 

in a vector format. ALS has become a very important method of DEM generation because of its rapid, 

accurate, and highly efficient data acquisition, especially over large survey areas. DEM is usually 

extracted from ALS as a raster. Raster DEMs present flat or undulated terrain as points with uniform 

spaces. Disadvantages include redundant points for flat terrain and inadequate representation in a 

changing or sloped area. Numerous methods for DEM simplification have been reported, and the main 

methods are as follows [34]: (i) working from a finer resolution of DEM to a coarse resolution for a 

point reduction method; (ii) reconstructing the terrain by a triangulated irregular network (TIN) method; 

(iii) filtering method; (iv) point-additive method; (v) point-subtractive method; (vi) feature-point 

method; and (vii) combination of the point-additive and feature-point methods [34]. This paper 

will present a novel and effective approach for ground point simplification that has adjustable 

parameters for the different levels of detail of the ground features. After ground point simplification, 

the reduction of the points can be up to 99.36% of the original number, and this approach is flexible 

for 3D visualization.  

In this paper, a complete procedure for railway environment modeling and visualization is 

addressed. The railway environment modeling contains object classifications and reconstructions of 

buildings, powerlines and poles. The different advantages of ALS and MLS are used in modeling the 

objects from different data sources. The primary focus is on building roof extraction from ALS, 
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building facade extraction from MLS, complete building integration from ALS and MLS, powerline 

and pylon detection from ALS and ground model simplification for 3D visualization. The remainder of 

the paper is organized as follows: Section 2 introduces the data sources for railway environment 

modeling; Section 3 presents the modeling methods; Section 4 includes the result and discussion; and 

Section 5 offers the conclusions.  

2. Materials 

The test area is located in Kokemaki, Finland and focuses on railroad environments that are 

approximately 2 km long. The data were provided by VR Track Oy, Finland [35]. Figure 2 shows the 

datasets used for the development of the method. These datasets include MLS, ALS and an orthophoto. 

The orthophoto was generated according to the terrain (DEM) from an ALS point cloud, and aerial 

images were acquired from the same platform as the ALS data. Therefore, those datasets are 

comparable when using an orthophoto for the visual analysis.  

Figure 2. Data sources. The red frame shows the datasets used for the method 

development and implementation. Information outside of the red frame illustrates the 

origin of the orthophoto and indicates the relationship between the airborne laser scanning 

(ALS) and orthophoto. 

 

The ALS on a helicopter platform consisted of a laser scanner, navigation system and digital 

camera. The aerial survey was performed at an altitude of 300 m with a Topeye system (S/N 742) with 

an average point density of 49.62 points/m2. The aerial images were taken by a Rollei camera with a 

resolution of 7816 × 5412 pixels. The orthophoto derived from the DEM and aerial images was 

presented at a 20 cm ground resolution.  

The ground-based data were acquired by the StreetMapper mobile mapping system. This system 

comprises two Riegl VQ250 scanners, DGPS and IMU components combined in the TERRAcontrol 

system, a roof-mounted laser scanner platform, and a pylon-mount PC/instrumentation system (Figure 3). 

The data were captured at a distance of 50 m from the railway lines at an average speed of 35 km/h. 

Each scanner performed up to 300,000 measurements per second with a scanning rate up to 100 scans 

per second. After data cleaning and thinning, the point density averaged 720 points per square meter. 

Two twelve megapixel geo-referenced cameras were also included for documentation purposes.  

When selecting different datasets for data fusion, the data accuracy should be a primary concern 

because different datasets could have been acquired at different times with different systems and 

navigation solutions, etc. Therefore, common control points must be used as reference data. Control 
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points were provided by the VR Track Oy [35] at 500 m intervals to verify and improve the accuracy 

of the data. Figure 4 illustrates the ALS and MLS datasets.  

Figure 3. StreetMapper mounted on a train wagon (image from the VR Track Oy [35]). 

 

(i) ALS data 

The relative accuracy between individual flight lines has been verified. TerraMatch (Terrasolid 

software, Finland) was used for individual corrections for each flight line in XYZ, roll and mirror 

scale. Ground control points were used for reference. The report showed that after matching, the global 

statistics of total Root Mean Square (RMS) was 0.034 m.  

(ii) MLS data 

The accuracy of the final GNSS solution and INS trajectory was estimated at 3–5 cm and 5 cm or 

less, respectively, by comparing the results of the forward processing solution and the reverse 

processing solution. The different drive passes were matched together using tie lines, and the data were 

matched to the control points. The raw laser data and INS trajectories were combined together to 

produce a georeferenced point cloud. The average correction to match the control points in X, Y, Z 

was less than 10 cm and the maximum was up to 0.4 m. 

Figure 4. ALS data and mobile laser scanning (MLS) data. (Left) ALS data; (Right) MLS data. 
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3. Modeling of Railway Environments 

Railway environments contain a variety of objects, such as the ground, railways, buildings, trees, 

powerlines, poles (e.g., street lights), etc. (Figure 5). MLS used for road mapping provides detailed 

data for both sides of roads and is especially useful for modeling poles and building facades. The ALS 

data have advantages for ground-point extraction in large areas, building roof reconstruction and tree 

detection. For powerline modeling, either ALS or MLS can be used as a data source depending on the 

size of the modeling area and point density of ALS. Because of the extensive amount of points from 

MLS and ALS, there are significant computer processing, power and memory requirements. Therefore, 

preprocessing these data separately is recommended. For example, complete building reconstructions 

can be achieved by fusing the results from MLS building facades and ALS building roofs. Fusion of 

the MLS and ALS data ultimately offers a completely reconstructed scene, not only from the  

ground-based view but also from the fly-through view.  

Figure 5. Railway environment components. 

 

Figure 6 shows the work flow of modeling 3D railway environments. Because of the huge amount 

of point clouds, it is more efficient to process the ALS and MLS data separately. Objects are extracted 

from the different datasets according to their different advantages. Ground, building roofs and 

powerlines are extracted from the ALS datasets for the following reasons: (i) the ground is more 

complete because the ALS datasets cover a large area, (ii) building roofs are visible in the ALS 

datasets but not in the MLS, and (iii) the directions of powerlines that shift directions (not always 

along the corridors) are clearer. Poles or pylons may be detected from either dataset, and the dataset 

selection depends on the following: (i) the scan angles of ALS; (ii) the density of the ALS point cloud; 

and (iii) barrier objects in front of environmental features in MLS. Because of the different scan angles 

of ALS, the laser hits a pole at different angles, and in nadir view, it is possible that no points might hit 

the pole. If the density of the ALS point cloud is low, the hits on the pole are sparse and there is not 

enough information for pole extraction. For the MLS point cloud, if there are no barriers in the views 
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between the scanner and pole, the complete pole can be acquired. Therefore, the fusion of ALS and 

MLS could offer an appropriate solution for pole detection. 

Figure 6. Work flow of modeling railway environments. 

 

In our study field, we suggest that the ground, building roofs, trees, and powerlines should be 

obtained from ALS and building facades and poles should be obtained from MLS. 

3.1. Object Extraction from ALS Point Cloud 

3.1.1. Ground  

ALS was first developed as a technique for the acquisition of an accurate digital terrain model [36] 

because of its penetrating capability in vegetation canopies and multi-pulse returns. Approaches for 

ground point extraction from ALS have been produced by many researchers [37–41]. An overview of 

ground filtering algorithms for ALS was produced by Meng et al. [42]. According to the investigation, 

the methods for ground classification are mainly based on four characteristics: (i) lowest elevation;  

(ii) ground surface steepness; (iii) ground surface elevation difference; and (iv) ground surface 

homogeneity. The currently available commercial software TerraSolid has provided a reasonable 

solution for ground classification by adopting Axelsson’s [38] adaptive triangular irregular networks 

(TIN) model for automatic ground point extraction. We have applied it for ground classification. In the 

method, the seed points are initially selected within a user-defined grid, and TIN increases the density 

by adding a point at a time to each TIN facet if the parameters (e.g., distance to the facet planes and angles 

to the nodes) meet the thresholds. After evaluation, the mean error of the method is less than 0.05 m.  

3.1.2. Building roofs 

This paper proposes a simple and novel approach for building roof extraction from ALS.  

The algorithm is detailed below. 

(i) Grid the data and separate the data into two sub-datasets (processing the points grid by grid): 

Dlower and Dupper, where Dlower refers to the points that their height differences from the lowest 

 

Trees Power
lines 

Position
and height 
parameter

Powerline 
and pylon 
models 

Position 
and height 
parameter

Pole 
models 

Ground 
model 

simplification 

Ground 

Ground 
models 

Orthophoto ALS

Building  
facades 

Building 
roofs

Building
models

MLS 

Poles 



Remote Sens. 2014, 6 3084 

 

point of the grid are less than or equal to 2.5 m, Dupper is the points that their height differences from 

the lowest point of the grid are less than 2.5 m. 

(ii) Transform Dlower (–xy plane view) into a binary image and accept objects as 0 and no objects as 1. 

(iii) Process the binary image and remove the noise points by thresholding the parameters of image 

processing, which are the area and shape of each region. 

(iv) Transform the cleaned binary image back to a 3D point cloud (the reverse process in step (ii)). 

(v) Construct the TIN to remove the scattered noise points. 

(vi) Utilize histograms to find the clusters and remove the small cluster points.  

Figure 7. Building extraction from the ALS point cloud. (a) ALS point cloud; (b) Data 

with height difference from the lowest points of the grid less than or equal to 2.5m; (c) Data 

with height difference from the lowest points of the grid greater than 2.5m; (d) Binary 

image from the complementary of (b): Empty is 1; ~empty is 0; (e) Binary image after 

noise is removed; (f) 3D building points. 

 

 

In the first step, we separate the data in n * n grids. For each grid, data are split into two height 

levels: Zi − Zmin > 2.5 m and Zi − Zmin ≤ 2.5 m, where Zi is the height of a point and Zmin is the 
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minimum height value in the grid. Thus, two sub-datasets are formed: Dlower and Dupper. Because of 

the characteristics of ALS (see Figure 7a), one laser pulse hits the building surface and produces one 

echo. Therefore, there are no laser hits on the bottom part of the building (see Figure 7b). Figure 7c 

shows the points which are at least 2.5 m higher than ground. Next, Dlower is transformed into a 

binary image according to the predefined pixel size. The binary image accepts a pixel as zero when 

there are objects located in the grid; otherwise, a pixel is 1. Figure 7d illustrates the derived binary 

image. From a visual interpretation, it contains not only buildings but also non-building points. 

Therefore, certain parameter constraints of regional properties are applied to the binary image 

processing so that the noise points can be properly removed. In the test data, the constraint parameters 

include “Area”, “MinorAxisLength”, “Eccentricity” and “Extent”, where “Area” refers to the actual 

number of pixels in the region; “MinorAxisLength” is the length (in pixels) of the minor axis of the 

ellipse that has the same normalized second central moments as the region; “Eccentricity” is the ratio 

of the distance between the foci of the ellipse and its major axis length; “Extent” is the ratio of pixels 

in the region to pixels in the total bounding box (the smallest rectangle containing the region). After 

image processing, the noise points are removed (Figure 7e), and the cleaned image is transformed back 

to a 3D point cloud (Figure 7f). However, it is still possible for certain noise points to be close to the 

detected buildings, and such points cannot be removed from images. For example, in the case of noise 

points above roofs, when all points are projected onto the –xy plane, the noise points, such as trees, 

above a building’s roof are overlapped with the roof in –xy plane or close to the edges of the roof.  

A triangulated irregular network (TIN) is then constructed, and the lengths of the edges are thresholded 

to remove the scattered noise points, and histograms are analyzed for the clusters. To remove the small 

cluster points, we analyze the histograms for different projections: xy plane, xz plane and yz plane.  

3.1.3. Powerlines  

High-voltage powerlines play an important role in railway environments. Manual monitoring of 

powerlines is costly, time consuming and does not guarantee security. In recent decades, powerline 

data were mainly acquired by aerial images taken by manual or semi-automated methods. Currently, 

the ALS data with 49.62 points/m2 offers detailed information for powerline modeling. The algorithm 

developed for ALS provides a fully automated method of modeling powerlines and detecting their 

elements. Figure 8 shows the ALS point cloud and extracted powerlines and racks.  

In this paper, we propose an approach for classifying powerlines and pylons in railway 

environments. The focuses are primarily on the locations and heights of the pylons so that the 3D 

scene can be correctly modeled. The idea is that firstly according to the gradient (Fx, Fy) of each point, 

objects are separated. Objects with similar gradients form a group of points that are transformed into a 

binary image. The binary image is processed according to certain constraints of the image region 

properties, such as the region’s shape, length and area. Thus, the non-powerline objects are removed. 

Details for transforming and operating the binary images and removing the non-powerline objects can 

be found in Zhu et al. [8], which provides the details of a photorealistic building reconstruction from 

the MLS data. The steps of the algorithm are as follows: 

(i) Calculate the gradient for each point: Fx = , Fy = , where Z = F(x, y); 
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(ii) Obtain points that satisfy the conditions: |Fx| ≥ T1 and |Fx| ≤ T2, and |Fy| ≥ T1 and  

|Fy| ≤ T2, where T1 < T2; 

(iii) Transform the 3D points into a 2D binary image and use the constraints in the image region 

properties to remove non-powerline related objects; 

(iv) Transform the derived powerline image into a 3D point cloud; 

(v) For pylon detection, grid the point cloud and count the number of points (Pcnt) in each grid; 

generate the binary image: when Pcnt ≥ T, label it as 1. Otherwise, label it as zero. T is the threshold 

for the number of the points.  

(vi) Transform the binary image back to a 3D point cloud for the resulting pylons.  

(vii) The heights and positions of the pylons are derived by calculating the height difference of each 

pylon and extracting the endings of each pylon. 

 

Figure 8. Powerline and pylons extracted from ALS. (Left) Original ALS point cloud; 

(Right) Extracted powerlines and racks. 

  

Figure 9. Powerline rack extraction from ALS. 

 



Remote Sens. 2014, 6 3087 

 

Figure 9 shows the result of the pylon extraction from the ALS point cloud. The original point 

density has a significant influence on the results. 

3.1.4. Trees 

Trees are an important component of railway environments that add vitality to a 3D scene.  

Tree extraction from ALS has primary been focused on forest inventories. A summary of the methods 

used for forest inventory can be found in Hyyppa et al. [43]. A recent paper by Kaartinen et al. [44]  

on individual tree detection and extraction using ALS compared different methods and evaluated test 

areas with different point densities (2, 4, and 8 points per m2). The comparison was implemented 

internationally by 8 partners: Germany, Sweden, Finland, Norway, Taiwan, USA, Italy, and 

Switzerland. In addition to the comparison, four methods were implemented and tested by the Finnish 

Geodetic Institute (FGI): FGI_LOCM (local maxima detection), FGI_MLOG (multi-scale Laplacian of 

Gaussian filtering), FGI_MCV (minimum curvature-based tree detection) and FGI_VMS (local 

maxima detection with varying window size). After the comparison, the results showed that 

FGI_MCV and FGI_LOCM were among the best methods. FGI_MCV was based on the minimum 

curvature computation of the canopy height model (CHM), whereas FGI_LOCM first searches the 

local maxima in a given neighborhood and then delineates the tree crowns using marker-controlled 

watershed transformations from the tree locations, which are used as control markers. Finally, the tree 

locations and heights were achieved by finding the highest value within each tree segment. The results 

from those methods were more accurate than manual processing. 

3.2. Object Extraction from MLS Point Cloud 

3.2.1. Building Facades 

The data collected by MLS are along railroads and extend for approximately 50 m on either side. 

However, MLS does not detect all of the buildings detected by ALS, which can be explained by the 

following reasons: (i) the buildings are too far from the scanner and (ii) dense trees in front of the 

buildings make the walls invisible. Figure 10 shows the process of building facade extraction.  

The building facades are extracted from the MLS data by using the method proposed in Zhu et al. [45]: 

data are analyzed by intercepting the different height passes to reduce the adhesions between buildings 

and trees. Based on the assumption that the walls are vertical to the ground (in a mapping ENU 

coordinate system, from the top view of the data, the building walls, which are vertical to the ground, 

are line-like. It means their x, y coordinates are clustered.), the planar coordinates of intercepted passes 

are compared and extract the points with same x, y coordinates in different passes for rough wall 

detection. These rough wall points are transformed into a binary image. Using image parameter 

constraints, the non-wall areas are removed and the image of the refined walls is transformed into 3D 

points. Figure 9 shows the results of building facade extraction. 
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Figure 10. The procedure of building facade extraction. (a) The cutoff layer in the point cloud; 

(b) Binary image of the cutoff layer; (c) Noise removed from the image; and  

(d) Building facades. 

 

3.2.2. Poles 

Pole-like objects such as street lights or traffic signal lights are essential in road environments and 

especially in railway environments. MLS with 300,000 measurements per second provides detailed 

information for pole detection and modeling. A method for pole detection from MLS has been 

proposed [46] that employs the following strategy: (i) preprocessing the point cloud to make the pole 

feature more visible; (ii) transferring the preprocessed point cloud to a binary image without 

considering the height information; (iii) removal of the noise in the binary image by image processing 

technology; and iv) transferring the binary image without noise (iii) back to a point cloud (the reverse 

process of (i)). In this paper, pole detection was implemented but without statistical analysis. 

Therefore, it was not presented in the results. 

3.3. Object Fusion and Building Planar Separation  

3.3.1. Complete Building Models 

Complete building models contain both building facades and roofs. From the previous steps, 

methods have been proposed to extract building roofs and facades from ALS and MLS data, 

respectively. The results from ALS and MLS provide complementary data. Figure 11 illustrates the 

process and results of data fusion. Because of dense points and high accuracy from both the ALS and 

MLS data, the building roofs are well-matched with the building facades. However, in the area of 

interest, additional roofs are visible compared to building facades. Therefore, complete building 

models are only achieved when both building facades and building roof are visible from both scanners 

(ALS and MLS) (Figure 12). 
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Figure 11. (a) Building roofs from ALS; (b) building facades from MLS; and (c) complete 

building model. 

 

Figure 12. The fusion of building roofs and building facades. (Left) building facades from 

MLS; (Middle) building roofs from ALS; (Right) complete buildings. 

 

3.3.2. Planar Detection of Buildings 

Because of the density of points from scanners, after complete buildings have been derived, there 

are still dense points presented as building points, which makes data post-processing, including model 

storage and rendering, less efficient. A 3D building model makes use of key points to represent the 

contours of a building and is a simplified version of all building points. To extract the key points, 

plane detection and separation are important.  

Numerous algorithms have been developed for plane detection, such as RANSAC (random sample 

consensus), the Hough transformation, plane fitting, region growing, and clustering. These algorithms 

are usually based on a certain scene or several different scenes, and it is difficult to achieve a unified 

standard for any one scene. Therefore, researchers are continuously extending or updating old 

algorithms to solve existing problems. For example, the classical Hough transformation (also called 

2D Hough transformation) is applied to an image to detect different features or shapes, such as lines, 

planes, circles and ellipses, by a voting implementation in the parameter space and then deriving the 

number of votes from an accumulator. When the number of votes in an accumulator’s bin is greater 

than a certain threshold, these points are extracted as the defined feature. Because 3D point clouds are 

widely utilized, 2D Hough transformation methods were then extended to 3D space. 3D Hough 

transformations for planar detection include the standard Hough transformation, adaptive probabilistic 

Hough transformation, progressive probabilistic Hough transformation and randomized Hough 

transformation (RHT) (Borrmann et al. [47]).  

In this paper, the plane detection is performed by an improved method of RHT. In 3D laser point 

clouds, a plane can be defined as Z = axX + ayY + R, where X, Y, Z are the coordinates of a point, ax 

and ay are the slopes in the x- and y- direction, and R is the distance between a plane to the origin of 
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the coordinate system. However, this method causes problems when the vertical plane is represented 

with infinite slope values. The equation R = XNx + YNy +ZNz, where Nx, Ny, and Nz are the 

components of the normal vector of a potential plane, was developed to avoid this problem. Each point 

votes for a sinusoidal surface, and their intersection indicates the presence of a plane. 3D Hough 

transformations have been proven effective for plane detection. However, the main drawback of this 

method is the computational cost, especially for dense laser point clouds. To reduce the computational cost, 

we employ RHT for plane detection with an initial value and a search range constraint. First,  

three points (p1, p2, p3) are selected randomly from the input data (building points) to define an initial 

plane. To make the algorithm more efficient, certain constraints are placed on the random initial points: 

(i) the distances between the points are less than 2 m; (ii) the three points are judged as being in a 

straight line or not, and only non-straight lines are used (new points are randomly selected if only 

straight lines are found); and (iii) for each point, their normals are calculated; if the normals are in similar 

directions, the selection of those initial points was a success; otherwise, new initial points are randomly 

generated again. This step increases the possibilities of plane detection and reduces the computational cost. 

After the initial points are selected successfully, the normal vector of the defined plane is determined by: 

= 111 ,	 = 111 , = 111  . 

The distance between the plane and the origin of the coordinate system is calculated as R = N × p1, 

where N = [Nx Ny Nz]. To reduce the calculation cost, the points located in the area from the center of 

the randomly selected points at approximately e.g., 35 m (the length of the longest roof edge in the 

dataset) are candidates for coplanar points for the Hough parameter calculation. The area of interest 

can also be defined according to the maximum size of the buildings in the dataset. The accumulator 

increases if |Rn − R| < T, where Rn = N × pn, T is the threshold. When the number of the accumulator 

is greater than a threshold, e.g., 50, the plane is extracted. After a plane is detected by using the Hough 

parameter accumulator, noise points may exist if the neighboring buildings are close and have the 

same slope of the planes (or the same normal vectors). Therefore, TIN is used to calculate the 

triangulation constraint for the final plane. After a plane is detected, those points are removed from the 

data. The above procedure is repeated until all points belong to a specific plane.  

After plane detection, the intersection lines of the planes are calculated. Based on the intersection 

lines, the minimum box of each plane is obtained. According to the distances between the box corners 

and nearest laser points, the shape is adjusted. The final models can be created by meshing the 

extracted key points in each plane. Figure 13 shows the results of the building plane detection by using 

our improved RHT. Different colors in the figure represent the different planes.  

3.4. Ground Model 

Ground Model Simplification 

After ground points are classified from the ALS data, the number of points is still extremely large. 

The dense ground points not only take up a significant amount of storage space, but they also result in 

low efficiency and expensive computational costs for data post-processing, e.g., surface meshing and 
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model rendering. Therefore, the ground model must be simplified. Many different types of software 

offer a reasonable solution for automatic ground extraction from ALS, and the final products are 

commonly stored in raster format. Whether the terrain is flat or undulated, raster DEMs present the 

points with uniform spaces, which produces redundant points for flat terrain and inadequate 

representation in a changing or sloped area. To overcome this drawback, a quadtree algorithm is 

applied to simplify the ground model. 

Figure13. Building plane detection by using 3D Hough transformation. (a) Planar 

detection in building facades; (b) planar detection in building roofs; and (c) the complete 

building from the fusion of building facades and roofs.  

 

 

The quadtree algorithm was originally used for 2D data. Therefore, to employ this algorithm for  

3D ground points, we must first transform the 3D points to a grey image with a size of 1024 × 1024, 

for example. The image size for a quadtree algorithm should be in 2n × 2n. The ground points are 

gridded by its X and Y coordinates according to the defined image size. The height value Z of each 

cell is derived from Z = f (X, Y). The intensity value for each pixel in the image is calculated by  

g(i, j) = Z(i, j) / Zmax, where g(i, j) denotes an intensity value / a grey value, Z(i, j) is the elevation of 

a point, and Zmax is the maximum elevation over the entire area. Thus, a grey image is formed, and 

the quadtree algorithm is conducted based on the grey image. The quadtree algorithm is a tree structure 

that recursively decomposes a square or rectangular into four quadrants or regions or sub-quadrants or 

sub-regions (Figure 14) according to predefined thresholds/criteria, e.g., 0.01. A grey value of 0.01 

corresponds to the terrain elevation with a value of 0.01 × Zmax. Therefore, the height difference in 

the final sub-quadrants or sub-regions meets the predefined criteria. For our study, we may set 



Remote Sens. 2014, 6 3092 

 

different thresholds / criteria to acquire different levels of detail of the ground model. The simplified 

model still retains the primary terrain characteristics, but the size of the model is greatly reduced by up 

to 99.36% of the original data. In next section, the method will be analyzed and discussed. 

Figure 14. Quadtree algorithm. 

 

4. Results and Discussion 

The methods presented above have been applied for the area around the railway station of 

Kokemaki, Finland. The test data covers an area with a length of approximately 1000 m and a width of 

approximately 100 m (both ALS and MLS are visible). The resulting 3D scene (Figure 15) includes 

the ground, buildings, and powerline pylons. The geometry of the ground and buildings and the 

parameters of the pylons and powerlines were derived from the algorithms presented in this paper. 

Orthophoto was utilized for the ground texture and visual analysis. The software 3Ds Max was 

employed for the final model visualization.  

Figure 15. 3D model of a railway environment. 

 

The validation of the algorithms was implemented by visually comparing the classified results to 

the orthophoto with a ground resolution of 20 cm (Figure 16). Table 1 lists the comparison 

results between the detected objects and objects on the orthophoto and the accuracy of the 

detection algorithms.  
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Table 1. Evaluation of the results. 

Statistical Items 
The Number of Objects  

on the Orthophoto 

The Number of Objects  

from the Point Cloud 
Detection Accuracy 

Buildings from ALS 61 57 93.44% 

Walls from MLS 10 10 100% 

Powerline pylons 20 20 100% 

4.1. Building Classification Results 

The validation was implemented based on data from the test area. Figure 16 shows the test area 

from the orthophoto and the result of the building classified from ALS. The algorithms proposed in 

Section 3 have been applied to the test data. Table 1 shows that 57 out of 61 buildings were detected 

from the ALS data. Two buildings were missing because of their small size. When the binary image 

was filtered during building detection, the parameter “area” was adjustable. If smaller thresholds had 

been applied, all buildings could have been detected; however, small noise/non-building objects would 

probably have been misclassified as buildings and resulted in redundant buildings. Therefore,  

the selection of thresholds had a significant influence on the results. For the test field, the total 

accuracy in building roof detection was 93.44%. In the MLS data, only a few building facades were 

presented because (i) the available data were limited to 50 m away from the driving direction and  

(ii) the buildings were obstructed by trees. The building facades were successfully detected from the 

MLS data by using the method proposed by Zhu et al. [46]. When utilizing MLS data for successful 

building wall extraction, the test area should be selected based on a low amount of tree obstructions and 

reflective objects. Our test area was around a railway station, and the buildings were clearly visible from 

the scanners, which indicated the feasibility of reconstructing railway stations from MLS and ALS data.  

Figure 16. Validation of the results for the building extraction from the ALS data.  

(Left) Building extraction from the ALS data; (Right) Orthophoto. 

 

4.2. Powerlines and Pylons 

The desired result for powerlines and pylon detection was achieved in the test area primarily 

because of the (i) dense point cloud and (ii) clear cutoff edges between powerlines and trees.  
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These two requirements were essential for the algorithm. The density of the point cloud was 

particularly important for pylon detection. In our algorithm, the number of points was accumulated and 

the threshold was set for pylon detection. In the majority of cases, powerlines are located at a distance 

away from the surrounding trees and forests. Therefore, the algorithm was appropriate for areas that 

satisfied the above requirements. 

4.3. Ground Model Simplification 

The quadtree algorithm developed for model simplification not only greatly reduces the original 

data size, but it also retains the original terrain features. By using this algorithm, the data size can 

decrease by up to 0.64% of the original data size (Table 2). This algorithm is flexible and enables users 

to select the level of detail of the ground according to different applications. Figure 17 shows how the 

parameter selection affects the resulting models. The main parameter in the quadtree algorithm is the 

criteria of the sub-quadrants or sub-regions. Smaller parameters include more ground detail information.  

Figure 17. The results of the ground model simplification that was influenced by the 

parameter criteria. The criteria of the sub-quadrants or sub-regions have three levels of 

detail (LoD): 0.005, 0.01 and 0.02. In each LoD, two images are presented: ground points 

in the quadtree structure and a ground model visualization. In total, six images are included 

in this figure. 
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Figure 17. Cont. 
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Table 2. Ground model simplification evaluation. 

 Number of Original Points Number of Points after Simplification Reduction Rate 

0.005 

6,890,129 

252,339 96.34% 

0.01 181,232 97.37% 

0.02 113,165 99.36% 

Table 2 shows an example of different parameter values corresponding to the number of points after 

simplification and the reduction rate.  

Reduction rate = (number of original points − current number of points)/number of original points 

The number of original points was 6,890,129. The massive amount of original ground points could 

present a challenge for the post-processing of the model. Our algorithm produced an effective method 

of reducing the data size that preserves the original features. When the criterion of the sub-quadrants was 

set to 0.005, the number of points was reduced by 96.34%, which represented a well-defined ground 

surface. The run time of the algorithm was 51.47 seconds based on the number of points (6,890,129). 

The ALS and MLS systems have different scan geometries and provide different point densities as 

well as different data resolutions. We made full use of the different advantages from ALS and MLS in 

the 3D modeling process. Both data render complementary characteristics, especially for buildings. 

For instance, MLS shows the building facades in detail but is not able to provide complete building 

contours. ALS has a large area and provides details for roofs but not building facades. Powerlines and 

pylons can be detected from both datasets if ALS provides enough dense points (in our case, 50 points/m2). 

However, accurate MLS data have a range limitation of approximately 50 m from the target.  

If the directions of powerlines are not along corridors or are out of view of the MLS system, then 

complete powerline modeling from MLS is difficult; therefore, MLS modeling of powerlines is dependent 

on the local environment and data quality. In this paper, we developed the algorithm from only the ALS 

data. For the poles, we would recommend using MLS data for modeling detailed geometry. 

Further work will test the data from different environments. As we know, railway environments are 

complex. The terrain varies from flat areas to mountain areas. The surroundings of railway environments 

can also include tunnels and viaducts and so on. The complexity of 3D modeling in those areas will 

greatly increase. Therefore, further studies in that kind of areas are needed. 

5. Conclusions 

This paper addressed modeling an entire railway environment that contained objects such as the 

ground, railroads, buildings, powerlines and pylons, street / traffic lights, and trees by using both MLS 

and ALS datasets. New solutions were proposed for object extraction, 3D reconstruction, model 

simplification and final model 3D visualization based on image processing technology for classification, 

3D randomized Hough transformations (RHT) for planar detection, and a quadtree approach for 

ground model simplification. Some basic conclusions are as follows: 

(i) An entire railway environment was successfully reconstructed from ALS and MLS datasets.  

(ii) Automatic algorithms for modeling buildings from both ALS and MLS data were developed. 

The accuracy of building detection from ALS is 93.44% for the test data. 
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(iii) Powerlines and pylons were extracted from ALS data. An acceptable result was achieved because 

of the dense point cloud and clear cutoff edge between the powerlines and surrounding environments. 

(iv) An algorithm for ground model simplification has been proposed. The reduction of points was up to 

99.36% of the original point size, which was beneficial for model post processing and 3D visualization.  

It was especially flexible because users can select the level of ground detail in different applications.  
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