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Abstract: Frame hyperspectral sensors, in contrast to push-broom or line-scanning ones,
produce hyperspectral datasets with, in general, better geometry but with unregistered
spectral bands. Being acquired at different instances and due to platform motion and
movements (UAVs, aircrafts, etc.), every spectral band is displaced and acquired with a
different geometry. The automatic and accurate registration of hyperspectral datasets from
frame sensors remains a challenge. Powerful local feature descriptors when computed
over the spectrum fail to extract enough correspondences and successfully complete the
registration procedure. To this end, we propose a generic and automated framework which
decomposes the problem and enables the efficient computation of a sufficient amount
of accurate correspondences over the given spectrum, without using any ancillary data
(e.g., from GPS/IMU). First, the spectral bands are divided in spectral groups according to
their wavelength. The spectral borders of each group are not strict and their formulation
allows certain overlaps. The spectral variance and proximity determine the applicability
of every spectral band to act as a reference during the registration procedure. The proposed
decomposition allows the descriptor and the robust estimation process to deliver numerous
inliers. The search space of possible solutions has been effectively narrowed by sorting
and selecting the optimal spectral bands which under an unsupervised manner can quickly
recover hypercube’s geometry. The developed approach has been qualitatively and
quantitatively evaluated with six different datasets obtained by frame sensors onboard aerial
platforms and UAVs. Experimental results appear promising.
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1. Introduction

Airborne and spaceborne hyperspectral remote sensing offers repetitive, consistent and comprehensive
datasets with enhanced discrimination capabilities for the characterization of subtle spectral features
and important chemical and physical properties of the observed terrain features/objects. A significant
amount of research and development has been concentrated on a variety of applications including
environmental monitoring, agricultural, forestry and geological mapping, natural resource exploration,
land-use analysis, terrain categorization, water-quality monitoring, etc. [1–3].

Moreover, due to the recent advances on optics and photopic technology, sensors’ quality (e.g., signal
to noise ratio) is improving continuously and new dual (e.g., [4]) or lightweight ones with low power
consumption for unmanned aerial vehicles (UAVs) have been developed and employed (e.g., [5–7]).
In all above applications, the continuously and enormously increasing size of acquired data requires
the development of efficient operational tools that are able to register accurately and automatically
the acquired hypercubes. The registration approach should adaptively vary to accommodate
different types of sensors (frame or push-broom) that differ in the acquisition procedure and the
resulting geometry.

On the one hand, the push-broom (line scanning) sensors capture gradually (line by line) the spatial
image domain and concurrently all spectral bands. Let us denote with I : Ω ⊂ R3 → R a hyperspectral
dataset (hypercube), where I(x, y, z) = Iz(x, y) and x, y are the spatial image dimensions and z indexes
one of the N spectral bands/channels. Push-broom sensors, at a single moment t and at every sequential
acquisition step, capture only one line along the x spatial axis but all the spectral channels across the z

spectral axis. Therefore, the acquired hypercube is heavily distorted across the two spatial axis, while
all the spectral bands are co-registered. On the other hand, the frame hyperspectral sensors acquire, at
a single time instance t, spectral information from one channel that covers the whole spatial domain
I(x, y). The spectral bands are captured sequentially at consecutive time instances t. Therefore, the
resulting hypercube is not registered across the z spectral axis. Depending on the movement and motion
of the acquisition platform the displacements are in the general case significant, as every image Iz(x, y)

was not acquired from the same principal point and with the same geometry.
Co-registration of the captured spectral bands is therefore necessary in order to account for the

misalignment due to the fact that they were acquired at different time instances. The requirement
for registration is further amplified by a number of distortion sources that include, but are not
limited to, the movement of the airborne platform upon which the sensor is mounted, the different
acquisition settings (e.g., frame rate, integration time, etc.), and the distortions that are induced
by the multi-filter optical system. As a consequence, the registration process should be able to
cope with transformations that are parametrized by an increased number of degrees of freedom,
such as the affine and the polynomial ones [8,9].
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In this paper, an automated generic co-registration framework for frame hyperspectral sensors is
introduced which is based on feature descriptors. The developed approach has been designed to address
affine transformations, but it can be easily extended to other transformations including the case of
projective or polynomial models. We focus on airborne frame hyperspectral VNIR sensors which
record wavelength bands from 400 nm to 1000 nm with a 10 nm–80 nm Full Width at Half Maximum
(FWHM), which are usually mounted onboard UAVs or manned helicopters and aircrafts. The proposed
frameworks exploits the efficiency of local feature detectors in order to effectively detect key points in
salient image regions. Aiming for a generic formulation, all the standard feature descriptor parameters
like scale octaves, initial smoothing, gaussian blur, nearest neighbor ratio, contrast/edge thresholds, etc.
have been left stable.

1.1. Related Work

Image registration has been an active research field during the last decade with a key role for numerous
critical applications and in various scientific areas. Several registration approaches have been proposed
and detailed in the computer vision and remote sensing literature ([10,11] and the references therein).
Today, most commercial image registration software allow the user to manually or automatically register
two or numerous images from the visible electromagnetic spectrum which are either single panchromatic
ones (one spectral band) or RGB ones (three spectral bands). In principle, state-of-the-art algorithms
target applications with either strict requirements in precision or in computation performance/speed.

The implemented methodology consists of establishing correspondences between different images
through local feature descriptors. The pioneering scale invariant feature transform (SIFT, [12]) delivers
high quality features in the literature due to its high descriptive power and robustness to illumination
and viewpoint changes [13,14]. The literature is vast ([13,15] and the references therein); one can
mention SURF [16], ASIFT [17], LDAHash [18] for similar approaches that perform better or faster.
However, despite their success, their detection repeatability is still low. Tuytelaars et al. [13] reports
repeatability rates that are bellow 50% for RGB datasets. Furthermore, the varying radiometric and
geometric conditions, that are typical for remote sensing images, cause detectors to fail to deliver
accurate and adequate features/correspondences over the spectrum (Figure 1, [19–21]). In Figure 1, one
can observe that the incorrect correspondences (outliers) are dominating when descriptors are applied
over the entire spectrum (i.e., sensors range) even with a more sensitive parameter setting. Because
of the presence of the incorrect correspondences, the images can not be successfully aligned. Two
failures cases (Figures 1a,b is shown in Figure 1 where one can easily notice the increased number of
unrealistic correspondences.

Hyperspectral data registration is a challenging problem and a significant body of work has been
produced in order to cope with the challenges this problem poses. Among the proposed approaches,
one may cite the extension of SIFT for multispectral [19,20] and hyperspectral data [22,23], as well as
approaches that optimize the SIFT parameters in order to maximize the number of correspondences [21].
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1.2. Contributions

In this paper, we propose a generic and automated framework which can utilize any descriptor without
the need to tune its parameters. Note that for example the SIFT performance is controlled by 17 different
parameters [21,24] and their optimal tuning (if any) is an extremely complex procedure for hyperspectral
data. Moreover, allowing the delivery of more key points (e.g., increasing octaves, decreasing initial
smoothing, etc.) and correspondences results, also, to numerous outliers (Figure 1, [21]).

The focus of this work is to keep the computational complexity as low as possible allowing with
optimized coding real time applications. Therefore, the image descriptors are not computed over the
entire hypercube [23] or the entire projection space [22], but they are computed at severally bands of
the hyperspectral data. This is of significant importance if one takes into account that feature point
descriptors are already high-dimensional vectors while the vector SIFT formulation multiplies their
complexity by the number of the spectral bands.

Figure 1. Outliers dominate when descriptors are applied over the entire spectrum
(i.e., sensor’s range) even with a more sensitive parameter setting. In particular, for the
spectral bands up to approx. 700 nm the registration process cannot be completed at all.
(a) Correspondences between bands at 783 nm (left) and at 508 nm (right) based on scale
invariant feature transform (SIFT) and RANSAC; (b) Correspondences between bands at
783 nm (left) and at 657 nm (right) based on SIFT and RANSAC.

(a)

(b)
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Motivated by the observation that the success of automatic feature extraction relies on the descriptor
and the characteristics of the input data [13], the proposed approach divides the wavelength in three parts
(named Main Spectral Groups, MSG) in which terrain objects usually poses the same stable spectral
characteristics and behavior. This allows the efficient decomposition of the registration problem and the
accurate fully automated co-registration of every hypercube without using any information e.g., from the
GPS/IMU as in similar efforts [7] or propose specific spectral borders as in [7,25]. The algorithm does
not make any assumption about the type of sensor, i.e., a Fabry-Perot interferometer with this expected
intensity range, radiometric characteristics, etc. Furthermore, generic grouping rules let any dataset from
any hyperspectral frame sensor to fit in.

2. Developed Methodology

Our goal was to design a generic and automated framework that is able to efficiently register raw
hyperspectral data from frame-type sensors. Such data usually contain tens or hundreds of images
that in general, depict the same geographic region. However, since every spectral band has been
acquired in a different moment, raw data are unregistered. The spatial content of the acquired bands
of the hypercube can vary significantly, depending on various parameters like the platform stability,
position-hold capabilities, micro-movements, speed, sensor’s integration time, etc. In particular, in most
cases the overall geometry of each spectral band differs a lot and for example just the translation can be
in the range of tens of pixels.

The developed approach is generic, automated and can account for different spatial and spectral
resolutions and different spectral ranges, narrow or broader band settings. The developed methodology
utilizes data correspondences which have been detected automatically from invariant and robust image
descriptors. Throughout our experiments three standard local feature description were employed (namely
SIFT, SURF and ASIFT). We compare the three descriptors in terms of efficiency and applicability for
frame hyperspectral data from UAVs. Depending on the application one can employ any unsupervised
local feature descriptor, robust estimation and transformation/warping algorithm. The developed
methodology is able to account for all the spatial and spectral variations and to recover data geometry
based on any transformation (like an affine one).

The corresponding flowchart of our implementation is described in Figure 2. More specifically, the
developed approach can be divided into the following three processing steps.

(i) Classify spectral bands in Main Spectral Groups (MSG):

The first step of the procedure is to separate the hypercube into the dominant spectral categories
according to the given wavelength (i.e., sensor’s sensitivity). The borders of the three main spectral
groups were determined based on our experience regarding the representative spectral signatures
of the main terrain objects. Water, impervious surfaces/man-made objects and vegetation change,
in general, their reflectance/behavior at the green-yellow and red-edge regions. Therefore, and
without sticking to a specific sensor or specific wavelenght/channels, three overlapping spectral
groups are generated. In particular, for VNIR sensors the borders are defined at the green-yellow
(550–580 nm) and red-edge (660–700 nm) regions. It should be noted that the borders are not
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exact numerical thresholds but the formulation allows one spectral band to take part in more than
one spectral groups. This formulation significantly facilitates the last co-registration step.

Figure 2. The flowchart of the developed algorithm.

Divide the dataset in three
Main Spectral Groups (MSG)

group1 <= 580 nm
↓

550 nm < group2 <= 700 nm
↓

group3 >= 660 nm

Band registration inside every MSG

Choose reference and sort the
spectral bands according to their

spectral radiometric variation
↓

run a descriptor
↓

run RANSAC
↓

calculate affine parameters
↓

apply transformations
↓

calculate FRE errors

Registration between
the three MSGs

Choose reference and
sort spectral bands

↓
run a descriptor

↓
run RANSAC

↓
calculate affine parameters

↓
apply transformations

↓
calculate FRE errors

Registered Hypercube

find the minimum error
↓

transform MSGs

(ii) Spectral bands registration in each spectral group (MSG):

During the second processing step, the spectral bands from each MSG are co-registered. Unlike
similar efforts [7], we do not a priori specify our reference bands. During the initialization
process, we calculate the standard deviation of each spectral band as an indication about the
spectral/radiometric variation of every channel. In particular, after sorting the bands of each
spectral group, the ones with the broader spectral variation are used as a reference and all the other
ones from the group are registered to this selected one through an iterative procedure. We select
the reference band with the specific unsupervised manner as it makes easier for the detectors to
find correspondences with the other bands of the group. One can employ different descriptors (like
SURF, SIFT, ASIFT, etc.) and robust estimation procedures (like RANSAC) in order to efficiently
detect enough correspondences for the (e.g., affine) transformation and spectral band registration.
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This registration procedure is demonstrated in Figure 3a–c for the three corresponding spectral
groups in which the developed approach managed to produce enough inliers for the successful
in-group registration.

Figure 3. Band registration for every Main Spectral Group (MSG). The calculated
registration errors (FRE) were relatively low i.e., from 0.001 to 0.10. (a) Inliers (number
of correspondences: 290) during the registration of the 1st spectral group. Bands: 510.2
nm (left) and 515.4 nm (right). (b) Inliers (number of correspondences: 72) during the
registration of the 2nd spectral group. Bands: 601.7 nm (left) and 588.6 nm (right).
(c) Inliers (number of correspondences: 75) during the registration of the 3rd spectral group.
Bands: 783 nm (left) and 715 nm (right).

(a)

(b)

(c)
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(iii) Co-registration of the spectral groups (MSG):

At this point the spectral bands of each group are registered and the next processing step is to
perform the co-registration between the MSGs. Therefore, we propose an iterative approach in
order to seek for the appropriate representative bands based on both their spectral variance and
proximity to each group. Under such an unsupervised manner the appropriate optimal bands
(or series of bands) are selected and correspondences are computed for the co-registration task
(e.g., the correspondences between the first and second MSG are shown in Figure 4a while the
ones between the first and third shown at Figure 4b). In particular, the algorithm sorts the bands
of each group according to their variation (standard deviation) and proximity (spectral distance
between the individual bands) in the following manner. First in the list are the bands which served
as a reference (larger variation) in the previous step, then follow the bands which are closer to them
(with a small spectral distance) and then the rest of the bands according to their standard deviation.
This type of sorting enables the convergence usually after just a couple of iterations.

Figure 4. Main Spectral Groups (MSGs) co-registration. The quantitative evaluation
(Table 1) resulted in an overall sub-pixel registration accuracy of approximately 0.35 pixels
(dataset # 6). (a) Inliers (number of correspondences: 84) during the co-registration of
the 1st and 2nd MSG. Bands: 550.5 nm (left) and 588.6 nm (right) (b) Inliers (number of
correspondences: 7) during the co-registration of the 2nd and 3rd MSG. Bands: 550.5 nm
(left) and 715.7 nm (right).

(a)

(b)
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Under the proposed formulation we narrow effectively the search space of solutions (image pairs) by
selecting in an unsupervised manner the spectral bands which can lead quickly to the required solution.
The key values for VNIR sensors are placed near the borders of the green/yellow and the red-edge
regions. These regions are defining and determining the band classification in coherent groups. Note
that we allow spectral overlaps.

Moreover, in the second and third step, a robust estimation procedure like RANSAC (RANdom
SAmple Consensus) is used in order to detect outliers. Throughout our experiments, we account for
affine transformations [X = a(1, 1)×x+a(1, 2)×y+a(1, 3); Y = a(2, 1)×x+a(2, 2)×y+a(2, 3)] since
it is the model that is commonly used during registration and ortho-rectification procedures. However,
other simpler or more complex models can be straight forwardly applied.

In order to evaluate quantitatively the performance of each procedure, the Fiducial Registration Error
(FRE) was calculated in every case and for all spectral bands [26]. FRE gives an indication of how
well the detected correspondences are matched together. The FRE error is giving an indication of how
correct the inliers are, how correct the correspondences serve globally the given transformation. More
specifically, FRE is the average ratio calculated by finding the sum difference of all the corresponding
points between the reference and the registered image and the sum difference of the reference and the
test image.

FRE =

√
1

N

N∑
i=1

ω2
i |Rxi + t− yi|2

where N is the number of correspondences, R and t are the parameters of the calculated transformation,
xi is the position of the point at the test image, the yi is the position of the point at the reference image
and ωi is a non-negative weighting factor, which may be used to decrease the influence of less reliable

points and it is calculated by the formula ωi =
1

< LEi >2
where LEi is the difference between the

position of the point at the test and reference initial image.
FRE acts as an indicator of the overall registration errors. Briefly, given a certain set of point

correspondences, which can be a priori defined, the registration can performed by selecting an
appropriate transformation that aligns these point sets (fiducial points or ficucials). In either views of
the image, the chosen fiducial points are displaced from their correct locations (localization error, LE).

Through an iterative process and by sorting spectral bands based on the possibility to deliver numerous
and correct correspondences across the spectral range of each group, an optimal search path is proposed
which can be interrupted as soon as the process reaches an accepted maximum error (FRE). In addition,
by allowing spectral overlaps, certain (common) bands are classified in more than one group and
therefore in the third step the process may end up to a fully constrained warping i.e., register two groups
based on the same spectral band. Therefore, by introducing a generic spectral grouping and by allowing
spectral overlaps the possibilities to have a concrete co-registration step are significant. However, in
cases that the common bands differ a lot for the group and during the registration procedure large FRE
errors are calculated, then they are excluded from the group.



Remote Sens. 2014, 6 3418

3. Experimental Results and Evaluation

The developed methodology was qualitatively and quantitatively validated on six different datasets.
The test data were acquired from a frame hyperspectral sensor onboard a UAV (multicopter and fix-wing).
The hyperspectral sensor (Rikolar) had an horizontal and vertical FOV at 37◦ and a default spectral
range: 400–1000 nm, with a min spectral resolution (FWHM) at 10 nm. The default spatial dimensions
of it are 1024 × 1024 pixels with a power consumption less than 5 Watt and a weight less than 600 g.
Certain acquired datasets contained 42 spectral bands with a spectral range of 400–850 nm and other
from 20 to 40 spectral bands with a spectral range from 450–900 nm. The Rikola sensor is employing
a Fabry-Perot interferometer which is formed by two semi transparent mirrors placed face to face. The
use of multiple orders of the interferometer is matched to different sensitivities of the RGB pixels of
the image sensor. The Fabry-Perot interferometer is placed in the lens system in such a way that the
light goes collimated through it and the transmitted spectral bands are a function of the interferometer
air gap. By changing the air gap it is possible to acquire a new set of wavelengths for each image. With
a sequence of images captured with different air gap values the spectrum is reconstructed for every pixel
in the image [27]. The hyperspectral datasets were acquired over different regions consisting of simple
and complex landscape, multiple objects of various classes, different texture patterns and an important
terrain variability. They also may contain shadows and occlusions.

Firstly, as it is demonstrated in Figure 3 the developed algorithm can address efficiently during
the first processing step the registration of every spectral band in every MSG. After deciding the
appropriate reference, their co-registration takes place based on the detection of both enough and
correct correspondences which is indicated also by the calculated errors. For example, in Figure 3
all spectral bands, including the common ones, have been properly registered with a sufficient amount
of accurate correspondences and low registration errors. In particular, bands from the 510.2 nm,
601.7 nm and 783 nm were chosen as the reference and the maximum calculated error was (i) 0.02 with
290 correspondences for MSG #1 as it is demonstrated in Figure 3a; (ii) 0.03 with 72 correspondences
for MSG #2 as shown in Figure 3b and (iii) 0.02 with 75 correspondences for MSG #3 as shown
in Figure 3c.

Furthermore, the third processing step which is addressing the co-registration between the spectral
groups has been validated and delivers similar accurate results. Correspondences are computed between
the appropriate spectral group representatives and the co-registration of the MSG is performed (Figure 4).
This is not a trivial task, however, as the algorithm is seeking for the optimal band combination between
different groups that deliver enough correspondences and low errors. Common bands are sorted first in
the list and other depending on their spectral variance and proximity follow. For example, in Figure 4a
the spectral band at 550.5 nm, which has been successfully registered at both MSGs, was employed in
the third processing step resulting to a low registration error of 0.84 with 84 correspondences. The other
two MSGs, shown in Figure 4b, were registered based on the spectral bands at 550.5 nm and 715.7 nm
with a resulting error of 3.24 and when 7 correspondences had been calculated.

Moreover, in Figure 5 one can observe the overall performance of the developed methodology as it
has been calculated during the quantitative evaluation. In Figure 5a it is demonstrated that local feature
descriptors fail to deliver enough inliers when computed over the entire given spectrum. Both SIFT
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with standard parameter settings and SIFT with a more sensitive setup and more delivered features
points fail to calculate effective correspondences and therefore outliers dominate the result. In particular,
even with a robust model estimation the registration procedure could not converged for all the bands
up to 700 nm, while in contrast the proposed method addressed successfully the entire hypercube.
For the default SIFT setup the major parameters were those proposed by Lowe ([12]) i.e., number of
octaves: 3, edge threshold: 10 and initial gaussian blur: 1.60. For the sensitive SIFT setup: number of
octaves: 6, initial gaussian blur: 1 and nearest neighbor ratio: 0.8. Moreover, regarding the ASIFT ([17])
descriptor the parameters were the same as the default SIFT ones, while the tilt was set to 4. In a similar
way, the SURF ([16]) parameters were the default: number of octaves: 5, initial sampling step: 2 and
Hessian response threshold: 0.0002. In general, the standard SIFT and ASIFT techniques failed to detect
correspondences between the bands that were just before and after the red edge region (680–700 nm).
The SURF and the more sensitive SIFT did find more correspondences, but even after a dual RANSAC
application many outliers were dominating the result.

Figure 5. Quantitative Evaluation: (a) Errors for SIFT 2 (standard), SIFT 1 (more sensitive)
and the developed (MSG-based) method for the dataset shown in Figure 1 (b) Number of
inliers and registration errors (upscaled by a factor of 1000) at certain wavelengths; (c) Mean
displacements (error in pixels) before and after the automated registration process.

(a)

(b) (c)
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In Figure 5b,c it is shown that during the proposed registration procedure the number of resulted
inliers is relative large and in all cases sufficient to address the transformation. The calculated errors
(in Figure 5b), which are presented for visual reasons upscaled by a factor of 1000, stayed, also, relative
low indicating that in all cases the computed correspondences are both enough and correct. Note that the
left part of the plot in Figure 5b (499 nm–783 nm) indicates the performance of the 2nd processing step
and the right part (716 nm–499 nm) the performance of the 3rd processing step. In Figure 5c the resulting
errors, which have been computed from the manually denoted points, of every descriptor for all the
datasets are presented (Table 1). The blue line represents the initial mean measured displacement which
is more than 13 pixels for all the datasets. The other three lines show the mean errors for every descriptor
in all datasets. All descriptors managed to successfully register raw data with a mean displacement error
that was lower than 4 pixels. The ASIFT descriptor gave the best results, as the mean displacement error
was lower than 1.5 pixels in all datasets. The larger error was calculated when the SURF descriptor was
employed over the Dataset # 3 (3.51 pixels), which depicts an agricultural/rural region and the errors
appear mainly on the perimeter of the scene.

Table 1. Quantitative Evaluation: Mean displacements (in pixels) before and after the
developed automated registration process. These registration errors have been computed
from the manually denoted points which an expert had designated after a careful photo-
interpretation in every spectral band.

Datasets Initial Errors (pixels)
Registration Errors (pixels)
SURF SIFT ASIFT

# 1 18.39 2.03 1.88 1.00
# 2 14.82 2.09 1.84 1.25
# 3 13.50 3.51 1.57 1.17
# 4 50.61 2.28 1.60 1.33
# 5 17.60 0.98 0.88 0.66
# 6 33.98 1.50 0.99 0.35

In terms of computational performance, the SIFT detector is the fastest one and right after follows
the SURF. In all datasets (both agriculture and peri-urban regions) the entire registration process was
completed in a few minutes (from 5 min to 8 min) with the SIFT detector, in 10 to 15 min with the
SURF detector and it needed up 30 to 90 min when the ASIFT descriptor was employed. In Figures 6–8
one can observe the important spatial variability of raw data. By selecting randomly spectral bands
from the raw unregistered hypercube and putting them together in different sub-regions a checkerboard
image demonstrates, in the left part of each figure’s the initial displacements. Raw unregistered data
(e.g., also provided in zoom at lower rows) possess a significant spatial variation with displacements of
more than a few pixels. In particular, the initial displacements of raw data are shown in Table 1 where
the errors have been calculated by selecting manually the same discrete points in all spectral bands.
The registration errors, presented in Table 1, serve as a further quantitative evaluation component. They
have been computed from the manually denoted points which an expert had designated after a careful
photo-interpretation in every spectral band.
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More specifically, the second dataset (Figure 6) which is over an agricultural region had significant
initial displacements which are shown in Figure 6a,c. After the application of the developed algorithm all
the spectral bands aligned (Figure 6b,d) and the quantitative evaluation indicated an overall registration
error of 1.25 pixels. The registration procedure, under an unsupervised manner, employed the same
spectral band at 550 nm (with 1405 correspondences) for the registration of the first two spectral groups
and the spectral bands at 544 nm and 715 nm, with 10 correspondences, for the registration of the first
and third group. The algorithm converged after about 30 min using the ASIFT descriptor and less than
15 and 8 min for the SURF and SIFT detectors, respectively.

Figure 6. Registration results after the application of the developed methodology. The
quantitative evaluation (Table 1) calculated an overall accuracy of approximately 1.25 pixels
(dataset # 2). (a) Raw Unregistered Data; (b) Registered Data; (c) Zoom at Raw Data;
(d) Zoom at Registered Data.

(a) (b)

(c) (d)

In Figure 7 the raw and resulting registered hypercubes of Dataset #5 are shown over a peri-urban
region. The acquired from a UAV raw data possessed an important spatial and geometric variation in
all spectral bands as it can be observed in Figure 7a,c. The successful application of the developed
automated co-registration algorithm managed to recover effectively the geometry of the scene and
register all spectral bands successfully (Figure 7b,d). Quantitative evaluation results indicated a sub-pixel
accuracy of 0.66 pixels (Table 1). Under an unsupervised manner the procedure selected the common
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spectral band at 559 nm for the registration of the first and second group with 4286 correspondences and
bands at 559 nm and 685 nm for the registration of the first and third group (with 2486 correspondences).

With a sub-pixel accuracy were, also, recovered the raw data from Dataset #6. In Figure 8a,c one
can observe the important initial displacements of over 33 pixels. The developed algorithm managed to
register all spectral bands and recover their geometry (Figure 8b,d). The resulting overall registration
error (Table 1) was 0.35 pixels while the spectral bands at 580 nm and 685 nm were the key ones during
the third processing step where 4117 correspondences were calculated for the first and second group
and 1583 ones for the first and third group.

Figure 7. Registration results after the application of the developed methodology. The
quantitative evaluation (Table 1) indicate an overall sub-pixel accuracy of approximately
0.66 pixels (dataset # 5) (a) Raw Unregistered Data]; (b) Registered Data; (c) Zoom at Raw
Data; (d) Zoom at Registered Data.

(a) (b)

(c) (d)
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Figure 8. Registration results after the application of the developed methodology. The
quantitative evaluation (Table 1) indicate an overall sub-pixel accuracy of approximately
0.35 pixels (dataset # 6) (a) Raw Unregistered Data; (b) Registered Data; (c) Zoom at Raw
Data; (d) Zoom at Registered Data.

(a) (b)

(c) (d)

4. Conclusions and Future Perspectives

In this paper, an algorithm for the automatic registration of frame hyperspectral data has been
developed and evaluated. The algorithm is relatively fast and efficient. It is based on feature descriptors
and the decomposition of the problem into three basic processing steps. The operated wavelength
is divided in an appropriate number of spectral groups. Then the co-registration of all the spectral
bands of each group is performed. In particular, after sorting the spectral bands in terms of spectral
variance and proximity to the key changing spectral regions, the appropriate bands are selected for the
co-registration inside and in-between the MSGs. We narrow effectively the search space of solutions
by selecting in an unsupervised manner the spectral bands which can lead quickly to the solution.
Even with much illumination changes, rotation and translation effects, the image descriptors can find
enough correspondences and result to an acceptable accuracy. In all experimental results with different
descriptors the algorithm rapidly converged with low errors. The ASIFT descriptor resulted into the best
spatial accuracy by delivering more inliers but at the same time was the slowest one. On the other hand,
the standard SIFT descriptor detected less inliers with relative low errors and lower overall processing
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time. The SURF descriptor was the more sensitive one to outliers and therefore provided the lower
co-registration accuracy. Overall, the algorithm converged in all cases in a few minutes, with the source
code written in Matlabr) allowing real-time application and real-time hypercube registration through
an optimized C/C++ implementation. In particular, the entire process using the SURF algorithm, was
completed in about 10–15 min, using the SIFT descriptor was completed in maximum 8 min. The
ASIFT descriptor required much more time i.e., from at least 30 to 90 min, depending on the number
of the detected inliers. The developed algorithm has been evaluated both qualitatively and quantitative
over different datasets, both in rural, agricultural and peri-urban areas. In particular, in agricultural areas
errors were larger since in contrast to the structured ones, their smooth structure and texture produce
a limited number of correspondences. The experimental results and their validation appear promising.
Even with significant spectral variation and important rotation and translation effects, the methodology
can deliver enough inliers with adequate accuracy.
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