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Abstract: Powdery mildew, caused by the fungus Blumeria graminis, is a major winter 

wheat disease in China. Accurate delineation of powdery mildew infestations is necessary 

for site-specific disease management. In this study, high-resolution multispectral imagery 

of a 25 km
2
 typical outbreak site in Shaanxi, China, taken by a newly-launched satellite, 

SPOT-6, was analyzed for mapping powdery mildew disease. Two regions with high 

representation were selected for conducting a field survey of powdery mildew. Three 

supervised classification methods—artificial neural network, mahalanobis distance, and 

maximum likelihood classifier—were implemented and compared for their performance on 

disease detection. The accuracy assessment showed that the ANN has the highest overall 

accuracy of 89%, following by MD and MLC with overall accuracies of 84% and 79%, 

respectively. These results indicated that the high-resolution multispectral imagery with 
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proper classification techniques incorporated with the field investigation can be a useful 

tool for mapping powdery mildew in winter wheat.  

Keywords: powdery mildew; winter wheat; SPOT-6; maximum likelihood classifier; 

mahalanobis distance; artificial neural network 

 

1. Introduction 

Powdery mildew (Blumeria graminis) is a disease mainly infecting winter wheat. It reduces the 

plant photosynthetic ability resulting in a stunted growth, reduced productivity and poor grain quality [1]. 

Powdery mildew is one of the major threats to the worldwide wheat production nowadays; however, 

current approach of detecting this disease mainly relies on manual field scouting and visual 

assessments which is time-consuming, labor-expensive and spatially-restrictive. Remote sensing, 

especially the multispectral technology, has become an important alternative to the conventional field 

scouting for monitoring crop diseases featured with its non-destructive and rapid way of data 

collection over a large area. An early detection of the infected crop using remote sensing technology 

offers an optimal timing for fungicide application in crop management; and a post-disease remote 

sensing provides farmers and insurance companies a rapid damage assessment. Recent development of 

the remote sensing technology increased the spatial resolution of the satellite/airborne imagery while 

reducing its cost, which made it feasible for crop detection and mapping. 

Plant diseases often induce physiological changes of the plant metabolism causing variations of 

plant pigment and water contents, as well as the change of plant cell structures [2]. These biological or 

biophysical changes are the basic reason causing the alteration of plant spectral readings. For instance, 

the increase of reflectance in the visible bands is associated with the breakdown of the chloroplasts 

and some visible foliar symptoms [3,4]; whereas the reflectance increase in the mid-infrared and 

shortwave near-infrared bands could indicate water deficiency [5,6]. Current remote sensing 

technologies for disease sensing can be categorized into the hyperspectral system and the multispectral 

system in terms of the spectral bandwidth. Fletcher et al. [7] used airborne digital imagery for 

detecting Phytophthora foot rot infections on citrus trees. Apan et al. [8] evaluated the potential of 

Hyperion satellite hyperspectral imagery for detecting the orange rust disease in sugarcane. Although 

the hyperspectral system gives more detailed information for identifying feature bands responding to 

particular crop diseases, its high hardware and computational costs prohibit its application over large 

areas. Recent studies showed the prospect of using multispectral sensing systems with 3–6 broad 

bands, ranging from visible to near-infrared spectral regions, on crop disease or insect infestation 

damage mapping over large spatial areas. Zhang et al. [9] demonstrated that the airborne multispectral 

imagery can be used to detect late blight infestations in tomato fields. Landsat multispectral imagery 

was used for detecting the severe infestation of the take-all disease in wheat by Chen et al. [10]. 

Franke and Menz [11] used high-resolution multi-spectral data to detect in-field heterogeneities of crop 

vigor, and the results showed a varying performance among different growing stages. Oumar and 

Mutanga [12] demonstrated the potential of Worldview-2 sensor data in predicting bronze bug damage 
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in plantation forests. All of these studies motivate us to make an attempt to use multispectral data for 

mapping the powdery mildew in winter wheat.  

On 9 September 2012, a new satellite, SPOT-6 built by Astrium was successfully launched from the 

Satish Dhawan Space Center in India. SPOT-6 has a spatial resolution of 6 m with three visible bands 

(blue, green, red), a near-infrared band (6 nm) and a panchromatic band of 1.5 m (Table 1). Because of 

its band positions and spatial resolution, images taken by SPOT-6 sensor are suitable for detecting the 

powdery mildew disease. So far, few studies have been conducted on this application. Hence, the 

objectives of this study were: (1) to evaluate the potential of SPOT-6 imagery on mapping  

powdery mildew in winter wheat; (2) to compare the performance of three classification  

algorithms—mahalanobis distance (MD), maximum likelihood classifier (MLC) and artificial neural 

network (ANN)—for their capability in mapping the disease. 

Table 1. Specifications of SPOT-6 sensor.  

Category Items Information 

Parameters of sensors 

Main Sensor NAOMI (New AstroSat Optical Modular Instrument) 

Spacecraft bus AstroBus-L 

Spatial resolution (m) Pan:1.5 m; MS:6 m 

Spectral range (nm) 

Blue:455–525 

Green:530–590 

Red:625–695 

Near Infrared:760–890 

Swath width (km) 60 

Revisit time (day) 1~3 

2. Methods 

2.1. Study Area and Field Survey 

The study area (34°2′12.86″N, 107°0′48.84″E) was located in Mei County of Shaanxi province in 

China (Figure 1). Located near the Qin Mountain with a humid climate, Mei County provides a 

suitable environment for the powdery mildew pathogen to be propagated. Two typical powdery mildew 

infected regions, designated as regions 1 and 2 in Figure 1, were selected for conducting a  

field survey. 

Ground truth data were collected in 37 plots (19 healthy plots and 18 diseased plots) of region 1 and 

19 plots (10 healthy plots and 9 diseased plots) of region 2, respectively. The data collected in region 1 

were used for calibration, and the data collected in region 2 were used for validation (Table 2).  

Twenty wheat plants were randomly selected in an area of 6 m × 6 m of each plot for the disease 

survey. Since powdery mildew starts to infect plants from their bottom stems to the top canopy, an 

early stage infection would not have a detectable spectral response. Hence, we marked the plot as 

infected only if over 80% of the surveyed plants in a plot had obvious powdery mildew pustules on the 

top canopy. To minimize possible subjective error, all of the field survey was conducted by only one 

operator. The geographical coordinates of the center of each plot were recorded with a Differential 
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Global Positioning System (DGPS) sensor (Trimble GeoXT). Boundaries of all the plots in both 

regions were marked in yellow color in Figure 2.  

Figure 1. Locations of the two study regions. 

 

Table 2. Basic information for disease survey experiment. 

Location Type 
Number of Samples 

Healthy Powdery mildew Total 

Region 1 Calibration 19 18 37 

Region 2 Validation 10 9 19 

Figure 2. Maps showing survey plots in two study regions in Shaanxi. 
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2.2. Imagery Acquisition and Preprocessing 

A scene of SPOT-6 was acquired on 11 May 2013, when the powdery mildew was fully expressed 

on the winter wheat in the study regions. The SPOT-6 image was registered to the Universal 

Transverse Mercator (UTM), World Geodetic Survey 1984 (WGS-84), Zone 48N, coordinate system. 

Image preprocessing included a radiometric calibration, an atmospheric correction and a geometric 

correction. Calibration coefficients were obtained from the header file of the image. The calibrated 

data then went through an atmospheric correction using the algorithm developed by Liang et al. [13], 

which estimated the spatial distribution of atmospheric aerosols and retrieved surface reflectance under 

general atmospheric and surface conditions. The geographical registration was conducted with a set of 

ground control points (n = 56) collected using the DGPS with sub-meter accuracy by Registration 

module and Image-to-Map Ground Control Point function in ENVI 4.3. For image-map co-registration 

accuracy assessment, an independent accuracy assessment was also conducted. The image was  

co-registrated using 32 ground control points (60%), and was then assessed the co-registration 

accuracy against the reserved 24 points (40%). The RMS of 4.8 m showed that the co-registration error 

was less than one pixel (6 m). Since the spectral difference between the disease plants and healthy ones 

was smaller than their difference with other ground objects (e.g., water, vegetation, impervious area) or 

the difference between plant species, the targeted plant areas were extracted prior to the subsequent 

spectral analysis. To achieve this, the boundaries of wheat parcels were extracted through a visual 

interpretation from a panchromatic image (Figure 2). 

2.3. Selection of Spectral Features for Disease Mapping 

Vegetation indices calculated from the original bands, which are used for monitoring vegetation 

health (green, and yellow), pigment indices (red), and moisture content (near-infrared), are tested to 

assess their potential in predicting powdery mildew damage using fewer but well-positioned bands. A 

number of hyperspectral vegetation indices have been proposed for disease/insect mapping (e.g., Aphid 

Index, ADHI) or have been proven to be effective in the disease/insect mapping (e.g., DWSI, SIPI, 

PRI) [8,14–16]. However, few broad-band vegetation indices (VIs) that have potential in reflecting 

crop stresses were tested for monitoring crop diseases [10,17]. In this study, in addition to the four 

original bands of SPOT-6, a total of 6 broad-band VIs were investigated for their sensitivity to 

powdery mildew including Normalized Difference Vegetation Index (NDVI), Green Normalized 

Difference Vegetation Index (GNDVI), Triangular vegetation index (TVI), Soil adjusted vegetation 

index (SAVI), Enhanced vegetation index (EVI), and Re-normalized Difference Vegetation Index 

(RDVI) (Table 3 [18–23]). Each VI applied a certain mathematical transformation from original bands 

to emphasize vegetation status whereas eliminate the background influences such as soil impact. An 

independent t-test was used to examine the sensitivity of the VIs in detecting the powdery mildew. To 

conduct such an analysis, the calculated VI values of each sample from healthy and disease-infected 

groups were used as input data. While the p-value, as an output result of t-test, was used for 

determining if a significant difference between two groups is achieved. The p-value < 0.05 indicates 

the two groups were significantly different, which in our case, can be understood as a disease sensitive 

situation. However, given those VIs were derived from the four original bands, a certain degree of 
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correlation can be expected among them. To avoid using VIs with high level of redundancy, a  

cross-correlation check was conducted. Only the VIs have lower correlation than R = 0.8 with other 

VIs were reserved for subsequent analysis.  

Table 3. Indices tested in this study for mapping powdery mildew. 

Title Definition Formula Literatures 

RB 

Original reflectance of each band of SPOT-6 

  

RG   

RR   

RNIR   

NDVI Normalized Difference Vegetation Index (RNIR − RR)/(RNIR + RR) [18] 

GNDVI Green Normalized Difference Vegetation Index (RNIR − RG)/(RNIR + RG) [19] 

TVI Triangular vegetation index 0.5[120(RNIR − RG) − 200(RR − RG)] [20]  

SAVI Soil adjusted vegetation index (1 + L) × (RNIR − RR)/(RNIR + RR + L); L = 0.5 [21] 

EVI Enhanced vegetation index 2.5(RNIR − RR)/(RNIR + 6RR − 7.5RB + 1) [22] 

RDVI Re-normalized Difference Vegetation Index (RNIR − RR)/(RNIR + RR)
0.5

 [23] 

2.4. Algorithms for Disease Mapping 

To map powdery mildew on the multispectral satellite image, three algorithms based on different 

theories were implemented and their performances were compared in this study—maximum likelihood 

classifier (MLC), mahalanobis distance (MD), and artificial neural network (ANN). All of them have 

been widely used as classification algorithms in remote sensing. In them, both the MLC and MD are 

mainstream classification methods, which are founded on relatively simple mathematical principles 

with different quantifications of distance among samples. While for ANN, as an important data mining 

tool that has relatively comprehensive mathematical mechanism, it was widely used in image 

classification in remote sensing domain. The features and corresponding literatures of the three 

algorithms were summarized in Table 4 [24–27].  

Table 4. Characteristics of algorithms used in this study for disease mapping. 

Methods Description Literature 

Maximum likelihood 

classifier (MLC) 

A standard parametric classifier, which assumes that the 

statistics for each class in each band are normally distributed 

and calculates the probability that a given pixel belongs to a 

specific class. 

[24,25] 

Mahalanobis distance 

(MD) 

A direction-sensitive distance classifier that uses statistics 

for each class, which assumes all class covariances are equal. 
[24,25] 

Artificial Neural 

Network (ANN) 

An artificial neural network is an interconnected group of 

nodes, akin to the vast network of neurons in a brain. A  

non-linear characteristic of ANN is a distinct advantage over 

traditional methods that allows efficient knowledge learning. 

[26,27] 
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MLC assumes that the statistics of each class in each band are normally distributed. It calculates the 

probability of a given pixel’s belongingness to a certain class. All pixels are classified with a specified 

probability threshold. Each pixel is assigned to a class with a highest probability (i.e., the maximum 

likelihood). If the highest probability is smaller than a specified threshold, the pixel would remain 

unclassified [24]. ENVI Classic implements maximum likelihood classification by calculating the 

following discriminant functions for each pixel in the image [24]: 

𝑔𝑖(𝑥) = ln 𝑝 ω𝑖 − 1
2 ln Σ𝑖 −

1
2 (𝑥 − 𝑚𝑖)

𝑖Σ𝑖
−1(𝑥 − 𝑚𝑖) (1) 

where i = class; x = n-dimensional data (where n is the number of bands); p(ωi) = probability that  

class ωi occurs in the image and is assumed the same for all classes; |∑i| = determinant of the 

covariance matrix of the data in class ωi; ∑i
−1

 = its inverse matrix; mi = mean vector.  

MD classification is a direction-sensitive distance classifier that uses statistics of each class. All 

pixels are classified to the closest reference pixels unless a distance threshold is specified. The 

Mahalanobis distance takes the co-variances into account, which lead to elliptic decision boundaries in 

the 2D case, as opposed to the circular boundary in the Euclidean case. The Euclidean distance may be 

seen as a special case of the Mahalanobis distance with equal variances of the variables. Therefore, the 

Mahananobis distance is a better way to reduce linear correlation and some scaling. It is used to 

identify and gauge the similarity of an unknown sample set to a known one [24]. MD can be written as: 

DM(𝑥D) =  (𝑥D − 𝑥H)∑−1(𝑥D − 𝑥H)T) (2) 

where xD1–n were the spectral features of the disease samples; xH1–m were the spectral features of the 

healthy samples. ∑ was the covariance matrix between xD and xH.  

ANN is a computational methodology that could perform multifactorial analyses. Motivated by 

networks of biological neurons, artificial neural network models contain layers of simple computing 

nodes that operate as nonlinear summing devices. The nonlinear characteristic of ANN allows efficient 

knowledge learning superior over traditional methods, such as predicting an output value, classifying 

an object, approximating a function, and recognizing a pattern in the multifactorial data [28]. 

A supervised feed-forward neural network was applied in this study and was trained with a  

back-propagation learning. The back-propagation learning has been demonstrated in other studies to be 

the best learning method for modeling non-linear relationships [29]. In this study, the ANN was 

implemented using ENVI Classic. The model structure and initial parameters in a ANN are usually 

determined empirically including representative training samples and to specify the training threshold 

contribution, the training rate, the momentum rate, the training RMS exit criteria, the number of hidden 

layers and training iteration. The training threshold contribution, with a range from 0 to 1.0, controls 

the contribution of the internal weight with respect to the activation level of the node. The training rate 

(0–1.0) and the momentum rate (0–1.0) determine the magnitude of the adjustment of the weights. The 

setting of the two factors will influence the oscillation or convergence of the training result. A greater 

momentum rate allows users to set a higher training rate without oscillations. Over 40 different settings 

of the above factors according to the referential values from previous study cases were tested to select 

an optimal combination [30,31]. Specifically, the tested training threshold contribution varied from 0.6 

to 0.8; the tested learning rate varied from 0.1 to 0.2; the tested momentum rate ranged from 0.6 to 0.8; 

the tested training RMS threshold ranged from 0.3 to 0.4. In addition, the number of hidden layer and 
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training iteration were fixed as 1 and 10,000, respectively. Table 5 shows the results of four parameter 

combinations. The highest accuracy (overall accuracy of 89.5%) was achieved with learning rate of 0.2, 

momentum rate of 0.8, and training threshold contribution of 0.8 was adopted in this study.  

Table 5. Accuracies of four neural networks with representative settings. 

Training Threshold 

Contribution 

Training RMS Exit 

Criteria 

Learning Rate/Momentum 

Rate 

No. 

Iteration 
Test_Accu.(%) 

0.8 0.4 0.2/0.8 10,000 89.470  

0.6 0.4 0.1/0.6 10,000 73.680  

0.8 0.3 0.2/0.8 10,000 68.420  

0.6 0.3 0.1/0.6 10,000 73.680  

2.5. Accuracy Assessment of Disease Mapping 

Four error matrices of each plot were calculated for each classification algorithm by comparing the 

classification results with the ground truth to evaluate their performance on disease mapping—an 

overall accuracy (OA), a producer’s accuracy, a user’s accuracy and a kappa coefficient. The data 

collected in region 1 were used for model calibration and the data collected in region 2 were used for 

the validation of the model. Data analysis processes are summarized in Figure 3.  

Figure 3. Flowchart of data analysis and processing.  

 

3. Results and Discussion 

3.1. Selecting Optimal Indices for Mapping Powdery Mildew 

Independent t-tests were conducted between healthy and diseased samples to quantitatively evaluate 

the sensitivity of each spectral index to the powdery mildew disease. Though all VIs were sensitive to 
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the disease at a significant level of p-value < 0.05, only NDVI and TVI were reserved for subsequent 

analysis according to a cross-correlation check with a threshold of R = 0.8. The characteristic 

symptoms of powdery mildew are white, fluffy mycelia covering the leaf surface. This disease often 

causes physiological changes in plant metabolism and may alter the spectral response of the plant. The 

lesions of powdery mildew on leaves, together with destruction of chloroplast, would result in an 

increase of reflectance in the visible spectral range; while the biomass reduction due to senescence and 

defoliation would cause a decrease of canopy reflectance in the NIR spectral range. Since NDVI and 

TVI respond to the change of green biomass and variation of leaf pigments’ concentration, both VIs 

had stronger responses to the powdery mildew [18,20]. 

3.2. Mapping Powdery Mildew Using Different Classification Algorithms 

The performance of three algorithms—MD, MLC and ANN—in mapping powdery mildew were 

evaluated and compared with the six-bands image (including four original bands, NDVI and TVI) 

(Figure 4). The accuracies under the three methods were summarized in Table 6. In general, the 

disease-infected areas can be successfully identified by all the three methods, with the highest overall 

accuracy of 89% for ANN, following by MD and MLC with overall accuracy of 84% and 79%, 

respectively. For classification accuracy of each class, all three methods produced reasonable results. 

The relatively low producer’s accuracy for powdery mildew class implied that large areas of powdery 

mildew infected winter wheat were misclassified as the healthy ones. For example, MD had a 

producer’s accuracy of 77.78% and a user’s accuracy of 87.5% for powdery mildew. These values 

indicate that although 87.5% of the areas called powdery mildew on the classification map were 

actually powdery mildew, only 77.78% of the powdery mildew areas on the ground were correctly 

identified as powdery mildew on the map. Besides, a visual comparison showed that the spatial 

patterns of the identified disease infected area are generally consistent among the three tested 

classifiers (Figure 4).  

The above stated results suggested that the soft computing approach (ANN) outperformed the 

statistical approach (MD and MLC) in our case. For MD and MLC, their simple, straightforward 

analyzing principles make them easier to be implemented so that they are more suitable for regions 

with less field variability. The superior performance of ANN was possibly because of the algorithm’s 

adaptability of the optimizing weights through layers. The advantage of such soft computing algorithm 

over conventional statistical method could be more obvious in monitoring crop diseases in fields with 

more field variability. These advantages of soft computing algorithms were also discovered in other 

studies [29–31] which make the soft computing algorithms become the mainstream in disease mapping. 

Since there are few studies in disease mapping at a regional level to compare with, we further 

compared our results with studies implemented at a parcel level. Zhang et al. [9] used an airborne 

multispectral image with four broad bands (similar bands with SPOT-6) to map late blight infections in 

two experimental fields. In that study, their average mapping accuracy was 86.9%. In another study by 

Franke and Menz [11] in mapping wheat diseases over an experimental field with multi-spectral 

images, the accuracy varied from 56.8% to 88.6% over different growing stages. Considering disease 

mapping at a broader scale is more complicated and challenging than that at the parcel-level, the 

accuracies varying from 79% to 89% achieved in this study is promising.  
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Figure 4. Infection maps of powdery mildew in a subset area produced by artificial neural 

network (ANN) (a,d), mahalanobis distance (MD) (b,e), maximum likelihood classifier 

(MLC) (c,f). 

 

Table 6. Confusion matrices and classification accuracies of the three algorithms with test 

samples (n = 19). 

Accuracy Indicators 

Reference     

Healthy Diseased Sum 
User 

Accuracy (%) 

Overall 

Accuracy 

Average 

Accuracy 
Kappa 

Mah 

Healthy 9 2 11 81.82  0.84  0.84  0.68  

Diseased 1 7 8 87.50     

Sum 10 9 19     

Producer 

accuracy (%) 
90.00  77.78       

Mlc 

Healthy 9 3 12 75.00  0.79  0.78  0.57  

Diseased 1 6 7 85.71     

Sum 10 9 19     

Producer 

accuracy (%) 
90.00  66.67       

ANN 

Healthy 8 0 8 100.00  0.89  0.90  0.79  

Diseased 2 9 11 81.82     

Sum 10 9 19     

Producer 

accuracy (%) 
80.00  100.00       

4. Conclusions  

The study evaluated the performance of three supervised classification methods—artificial neural 

network (ANN), mahalanobis distance (MD) and maximum likelihood classifier (MLC)—for mapping 

powdery mildew of winter wheat using high-resolution multispectral satellite imagery data (SPOT-6) 

and ancillary information at a regional scale. Our results suggested that both the soft computing 

approach (ANN) and the statistical approach (MD and MLC) are able to achieve acceptable 
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performance in mapping powdery mildew, with an overall accuracy over 79%. Among the three tested 

methods, ANN produced higher accuracy than MD and MLC. The superior capability in data fitting of 

ANN makes it an optimal solution in detecting crop anomalies in practice. The image-derived disease 

infection map could be useful for determining areas requiring intensive field survey, and can serve as a 

guide for disease control management.  

As the disease mapping at a regional level would inevitably stand a risk of being confused with 

other issues, such as other types of stresses, spectral variation due to different cultivars, and the 

microtopography influence. In the future, studies could also incorporate multi-sources information 

(e.g., climatic data, geographic data and data collected from wireless sensors network) that are able to 

eliminate the classification uncertainty. In addition, more advanced soft computing methods and some 

hybrid methods (e.g., ANN-GA, ANN-Fuzzy) could be tested to further improve the stability and 

reliability on crop disease mapping. Overall, increased availability and reduced cost make the 

application of high-resolution remote sensing data more promising now than any time before. Its 

application on disease detection will greatly benefit growers worldwide in the near future.  
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