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Abstract: The objective of this study is to develop models based on both optical and L-band 

Synthetic Aperture Radar (SAR) data for above ground dry biomass (hereafter AGB) 

estimation in mountain forests. We chose the site of the Loveh forest, a part of the 

Hyrcanian forest for which previous attempts to estimate AGB have proven difficult. 

Uncorrected ETM+ data allow a relatively poor AGB estimation, because topography can 

hinder AGB estimation in mountain terrain. Therefore, we focused on the use of 

atmospherically and topographically corrected multispectral Landsat ETM+ and Advanced 

Land-Observing Satellite/Phased Array L-band Synthetic Aperture Radar (ALOS/PALSAR) 

to estimate forest AGB. We then evaluated 11 different multiple linear regression models 

using different combinations of corrected spectral and PolSAR bands and their derived 

features. The use of corrected ETM+ spectral bands and GLCM textures improves AGB 

estimation significantly (adjusted R
2
 = 0.59; RMSE = 31.5 Mg/ha). Adding SAR 

backscattering coefficients as well as PolSAR features and textures increase substantially 

the accuracy of AGB estimation (adjusted R
2
 = 0.76; RMSE = 25.04 Mg/ha). Our results 

confirm that topographically and atmospherically corrected data are indispensable for the 

estimation of mountain forest’s physical properties. We also demonstrate that only the joint 

use of PolSAR and multispectral data allows a good estimation of AGB in those regions. 
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1. Introduction 

In this study, we developed forest AGB models based on ETM+ and ALOS/PALSAR data in the 

Loveh forest, a mountainous and high biomass forest located in northern Iran. This forest is of interest 

because it is increasingly fragmented, degraded and converted to other forms of land use [1]. As many 

other forests in Western and Central Asia it is located in a rugged terrain. To our knowledge, limited 

studies used remote sensing approaches to investigate the biodiversity, species richness and forest 

structure in this forest [1,2]. Because of its complexity, no attempt on biomass estimation was performed 

before. Therefore, the retrieval of biophysical properties over the Loveh forest remains challenging. 

Information about forest stand structure and the quantification of AGB are of great importance to 

assess forest ecosystem productivity, determine carbon budget and support studies of the role of forests 

in the global carbon cycle [3–8]. The existing biomass estimation methods that rely on forest inventory 

data and allometric equations are accurate. However, they have two main disadvantages. First, they are 

expensive, time-consuming and they cannot provide the spatial distribution of biomass in large areas. 

Second, forest inventory data and allometric models are rarely available for specific forested 

environments [9,10]. 

Optical remote sensing data have proven to be a powerful means for biomass estimation [4,11]. 

However, the use of these data has some limitations such as model dependency on in situ data as well 

as low spectral saturation levels [9,12]. Estimation of forest biomass by means of optical remote 

sensing still remains challenging especially in a forest with dense canopy or complex structure as well 

as in high relief areas [9,12]. Active remote sensing data like SAR overcome some limitations of 

optical data. They have the advantage to be weather and daylight independent [9,13]. SAR backscatter 

correlates with forest biomass, particularly in low-medium biomass forest at lower frequencies like P 

and L-bands [14–17]. 

Polarized SAR at L-bands (e.g., ALOS/PALSAR) have been successfully used for estimating AGB 

due to the high sensitivity of the backscattered signal at L-bands to forest structure, probably because 

of strong interactions with tree trunks and branches [18–21]. Usually, L-bands fail for high amounts of 

biomass (i.e., ca. >100 Mg/ha), because of saturation problems i.e., loss of sensitivity to forest 

biophysical parameters [19,21–23].  

Previous studies show that L-band backscattering tends to increase with increasing canopy cover, 

density and size of the tree [19,24–26]. Both co-polarized (HH and VV) and cross-polarized (HV and 

VH) of L-bands are sensitive to forest biomass [19,27,28]. Usually, cross-polarized backscatter data 

display a larger dynamic range compared to co-polarized bands [19,25,29]. 

Several studies investigated the integration of SAR and multispectral remote sensing data for the 

estimation of forest biophysical properties [6,17,30]. Ahmed et al. [31] observed promising 

correlations among high AGB values (>100 Mg/ha) and radar backscatter of ALOS/PALSAR and 

NASA JPL’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) over the Harvard 
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forest in the United States, despite the fact that saturation of L-band occurs at high AGB. Thus, the 

joint usage of SAR and optical data for estimating AGB appears promising but still needs more 

investigation [6]. All of the mentioned studies were not in mountain forests probably because the 

estimation of forest structure parameters is strongly affected by the relief [5,32–35]. Heterogeneous 

topography causes changes in backscattering mechanisms and induced large surface reflectance 

variations [5,36]; hence, topographic corrections are necessary for the minimization of such effects [6]. 

The main objective of this study is to improve the estimation of biomass in rugged terrain forests. 

We first evaluate the predictive power of ETM+ reflectance and ALOS/PALSAR backscattering 

intensity. We then show the effect of the terrain corrections and finally develop an approach based on 

multiple linear regressions in order to jointly use PolSAR and multispectral data and some pertinent 

derived features such as textures and PolSAR decompositions. 

First, we describe the study area as well as field and remote sensing data. Then, we detail the 

preprocessing procedures and the extraction of specific metrics allowing a better description of forest 

structures. We then develop the calculation of forest AGB based on the allometric equation and the 

multiple linear regressions used in this study.  

2. Study Area and Data 

2.1. Study Area and Field Data 

The study area is the Loveh forest, a subset of the Hyrcanian forest that stretches over the northern 

slopes of the Alborz mountains and the southern coast of the Caspian sea. The natural vegetation is a 

temperate deciduous broadleaved forest [37,38]. The Loveh forest extends from 37°14′ to 37°24′N and 

55°33′ to 55°47′E (comprises ca. 10,683 ha) in the north east of Iran (Figure 1). Based on SRTM data, 

elevation ranges from 190–1900 m above mean sea level, while slopes vary between 6° and 16° based on 

shuttle radar topography mission (SRTM) data. Annual mean temperature and precipitation are 12.2 °C and 

524 mm [39]. Its main tree species are Quercus castaneafolia, Carpinus betulus, Acer cappadocicum, 

Cerasus avium, Tilia begonifolia, Diospyros lotus, and Parrotia persica [1,39]. 

Figure 1. Location of the study area (red rectangle) in northern Iran. The land cover map is 

reclassified from 500 m MODIS land cover map. 
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This forest has been treated by the shelter-wood method since 1963. In 2003, the treatment method 

was replaced by a selective logging method. As a result, the vertical structure of the forest has been 

modified. Three different stand age classes are found due to these logging activities (Table 1). 

Preparatory and establishment cuts provided more light and space for new seedlings to grow in 

managed forest [40]. Therefore, tree densities increase in managed forest compared to natural 

forest [39]. The maximum tree density belongs to MF2, where the long treatment allows for more 

seedlings to establish. Because of the existence of some mature trees in MF1 class [41], the tree diameter 

at breast height (measured at 1.3 m; DBH) and basal area values are higher than MF2 class [39]. 

However, the largest DBH and basal areas are observed in natural forest (NF) (Figure 2) [39].  

Table 1. Characteristics of three selected forest types. 

Forest Stand Age Characteristics 

Natural forest (NF) 

The forest has not been affected by any treatment. Trees have closed crown cover. 

This forest has more developed vertical stratification, and fewer trees per ha 

compared to managed forests. It is also composed of trees with larger DBH [39]. 

Managed forest1 (MF1) 

(5–25 years)  

Forest area, which is managed by shelter-wood method. Preparatory cut, seed 

cut, and establishment cut were done according to a 25-year time plan. The 

removal cut still is not done, so some trees with large DBH can be found [39]. 

Managed forest2 (MF2) 

(25–45 years)  

Forest area which is also managed by shelter-wood method for 45 years. 

Preparatory cut, seed cut as well as establishment and removal cut were done. 

In average, density of trees (number per ha) is higher, and trees’ DBH are 

smaller compared to other classes [39]. 

Field inventory was carried out in 99 square plots (60 × 60 m) during the summer of 2004 [1]. 

Handheld GPS measurements were used to register the geographic center of each sample plot. DBH as 

well as the number of trees were measured and tree species were recorded in each plot. Trees with 

DBH below 7.5 cm were not included in the survey. 

Figure 2. The distribution of (a) mean DBH and (b) number of trees per ha for the field 

plots located in three different forest stand age classes. 

 

2.2. Remote Sensing Data 

The Landsat ETM+ scene used in this study was acquired on 10 September 2007. Six reflective 

bands consisting of visible and shortwave infrared wavelengths with 30 m spatial resolution were used 

(Table 2). Thermal and panchromatic bands were not included in this investigation. 
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ALOS/PALSAR fine beam double polarization (FBD) at HH and HV was acquired on 

27 September 2007 (Table 2). The scene was delivered in slant range single look complex (SLC) 

format (level 1.1). Our first concern was SAR data availability; therefore, there is inevitable time shift 

between field data and remote sensing data. We accepted this time shift as one of the limitation for 

developing AGB estimation model. Given our knowledge of forest growth in this area, the delay 

between remote sensing data acquisition and field survey will not affect biomass prediction. 

Table 2. Remote sensing data used in this study. 

Satellite Sensor Image Acquisition Date  Spatial Resolution 

Landsat7/ETM+ 10 September 2007 
Six visible and shortwave infrared bands with 30 m 

spatial resolution 

ALOS/PALSAR 
27 September 2007 

L-band HH and HV  
With 12.5 m pixel spacing (resample to 30 m) 

DEM  90 m spatial resolution (resample to 30 m) 

Digital elevation model (DEM) from SRTM with 3 arc-second spatial resolution (90 m) from U.S. 

Geological Survey (USGS) was obtained. We then resampled the DEM to 30 m resolution using cubic 

convolution interpolation (Table 2). 

3. Methodology 

3.1. Above Ground Biomass Calculation 

We used diameter-based allometric equations to calculate forest AGB from DBH data measured in 

the field (Equation (1), [42]). There is no specific allometric equation for the Hyrcanian forest; 

therefore, we used a general and not-site specific allometric equation which is adjusted for all tree 

species based on DBH data [43,44]. 

AGB = 𝑎 (DBH)𝑏  (1) 

𝑎 = 0.0566, 𝑏 = 2.663 [42], AGB = the total above ground tree dry biomass (kg/tree), DBH (cm). DBH: 

ranges from 3.8–63 cm [42]. 

Once forest AGB was calculated using the DBH of all trees in each plot, we summed up all the 

values and converted them to Mg/ha. We chose the above formula, which is applicable to various DBH 

values as in the study area. According to West [45], the scaling coefficient 𝑎 is not necessarily species 

and site dependent [43,46]. We chose the value of 0.0566, adopted for all tree species according 

to [42]. A universal value of around 2.66 has been suggested for the scaling exponent 𝑏 [43,45]. As the 

AGB estimation is dependent on allometric equations, we also tested the modeling of DBH.  

Table 3. Summary of field forest AGB (Mg/ha). 

Forest Stand Age  Mean  STD Range 

Natural forest 254.27 29.9 176.34–343.38 

Managed forest 1 195.93 44.74 88.22–297.44 

Managed forest 2 142.14 32.73 64.45–267.84 
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Table 3 summarizes calculated forest AGB based on field data by using the allometric equation in 

different forest stand age classes. Plots of natural forest have high AGB. Average values of AGB in these 

plots are 254.27 Mg/ha. Plots of managed forests have lower value compared to natural forest. Minimum 

AGB values belong to the MF2, and the AGB values of MF1 remain between these two classes. 

3.2. Landsat Processing 

First we corrected Landsat scene ETM+ for scan line corrector (SLC) error using one successive 

scene. The filled scene should be selected in the way that both scenes have the highest possible 

spectral, temporal and radiometric consistency [47]. The number of needed filled scenes is determined 

based on the gaps overlapping between scenes [48]. We selected the image acquired on 12 October 

2007 as the filled scene, because its acquisition date is close to that of the base image and it is mostly 

free of clouds. As the corresponding pixels of the base image are scanned on the filled scene, there was 

no need to use more filled scenes [49]. The correction was done in two steps. First, the two scenes 

have been aligned to a common frame, then the gaps caused by SLC-off were replaced with the filled 

scene [50]. After removing the SLC-off error, we calculated at sensor radiance from digital number 

(DN), taking into account the gain and bias of the sensor. In the next step, radiance was converted to 

surface reflectance using ATCOR-3 [51] and SRTM. We also evaluated the ATCOR-2 [51] without a 

DEM, in order to verify the impact of relief on the surface reflectance. In mountainous forests, relief 

can considerably affect forest reflectance, resulting in spurious relationships between AGB and 

reflectance [6]. 

Figure 3. A pseudo-color composite of the Landsat-7/ETM+ (R4:G3:B2) acquired on 

10 September 2007 (a) before and (b) after topographic correction. 

 

We show the ETM+ reflectance bands before and after topographic correction in Figure 3. Most of 

the topographic features that can be seen in the original image (Figure 3a) are removed in the corrected 

image (Figure 3b). Figure 4 shows the ETM+ reflectance before (a) and after (b) topographic 

correction at the location of field data for different forest classes. The effect of relief and shadows on 

the surface reflectance is evident. The topographic effects tend to decrease the surface reflectance in 

both near-infrared (NIR) and shortwave infrared regions (SWIR) due to the shadowing effects 

introduced by the relief (Figure 4). This is also true for the green spectral region where the reflectance 

is decreased in the uncorrected scene. At a single perspective, MF2 showed the highest reflectance due 
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to the regeneration effects after logging. The logging has led to the more homogeneous canopy 

structure in MF2; therefore, it has higher reflectance of red and NIR. On the other hand, shadows of 

emergent trees from MF1 and NF brought more shadowing effects in the canopy structure; therefore, 

the signal of red and NIR towards the sensor is decreased [52].  

Figure 4. Landsat surface reflectance based on the location of field data (a) before and 

(b) after topographic correction. 

 

After preprocessing of the ETM+ scene, we calculated the normalized difference vegetation index 

(NDVI) [53], the principal component analysis (PCA) [54], a tasseled cap transformation 

(TCT) [55,56] and the gray level co-occurrence matrix (GLCM) [57]. NDVI has been in use for many 

years to measure and monitor plant growth, vegetation cover and biomass production from 

multispectral satellite data [53]. However, NDVI loses its sensitivity to dense vegetation because of the 

saturation in red and near infrared wavelength [11,58–60]. PCA allows redundant data to be 

compacted into fewer bands. The bands of PCA data (components) are non-correlated and 

independent, and often can be interpreted better than the source data [54]. However, the first few bands 

account for a high proportion of the variance in the data [61]. TCT brightness, greenness, and wetness 

define the vegetation information content [55,56] and are calculated by the linear combination of 

ETM+ bands. GLCM textures describe the spatial variation of the spectral information in the 

image [57,62]. As many images contain regions characterized by variation in brightness rather than a 

unique value, textures can improve image classification [57]. In this study, we used texture filters 

based on co-occurrence measures by the window size of 11 × 11 pixels with horizontal and vertical 

offset of one. These metrics have been widely used to predict stand forest structure and biomass from 

remote sensing data [8,59,63].  

3.3. ALOS/PALSAR Processing 

In order to enhance radiometric resolution and to square the pixels in ground range geometry at 

similar spatial resolution (i.e., 30 m for Landsat), the amplitude images were multi-looked eight times 

(i.e., four looks in azimuth and two looks in range) for the dual-polarization scene [64]. After  

multi-looking, we performed refined Lee filter using a window size of 7 × 7 in order to minimize 

speckle [65,66]. The performance of the filter and selection of the optimal window size was evaluated 

with the speckle suppression and mean preservation index (SMPI; [67]).  
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The intensity scenes were converted in their corresponding backscattering coefficients (Sigma 

nought (dB); σ°) values (Equation (2), [68,69]). The study area is mountainous, and a strong relief 

effect is observed. Heterogeneous topography changes the dominant ground-trunk double-bounce 

scattering mechanism, subsequently the backscatter from forest will be changed [70]. Therefore, we 

performed radiometric terrain correction to compensate for the ground-topography influence on 

backscattering coefficient. The corrected backscatter in gamma-nought 𝛾° format can be obtained from 

the sigma-nought 𝜎° value according to Equation (3) [71,72]. 

 σ° =  10 × log10(I2 + Q2) + CF− 32.0 (2) 

CF (calibration factor)= −83 dB, I and Q = the real and imaginary parts of the complex SAR image 

pixel values 

𝛾° =  𝜎°
𝐴𝑓𝑙𝑎𝑡

𝐴𝑠𝑙𝑜𝑝𝑒
 
𝑐𝑜𝑠𝜃𝑟𝑒𝑓

𝑐𝑜𝑠𝜃𝑙𝑜𝑐
 
𝑛

 (3) 

𝛾°  = topographic normalized backscattering coefficient, 𝜎°  = radar backscattering coefficient,  

Aflat = PALSAR pixel size for a theoretical flat terrain, Aslope = true local PALSAR pixel size for the 

mountain terrain, 𝜃𝑙𝑜𝑐  = local incidence angle, 𝜃𝑟𝑒𝑓  = radar incidence angle at the image center. 

The exponent n is the optical canopy depth and ranges between 0 and 1. It is a site-specific factor 

and difficult to obtain in practice, therefore it is set to 1 [19,32,33,73]. 

We calculated alpha angle (α), entropy (H) and anisotropy (A) according to the decomposition 

proposed by Cloude and Pottier [74]. This method is based on the extraction of mean diffusion based 

on eigenvalues/eigenvectors decomposition of the coherence matrix in order to characterize scattering 

interactions of the beams with the targets [74]. We extracted GLCM SAR textures using a window size 

of 11 × 11 pixels with horizontal and vertical offset of one. Mean, variance, homogeneity, contrast, 

dissimilarity, second moment and correlation from both HH and HV polarization bands were extracted. 

Figure 5. (a) HH-HV backscattering (b) alpha-entropy of Cloude-Pottier decomposition on 

the location of field data for different forest classes. (Z6 and Z9 are dominated by surface 

scattering, Z2, Z5 and Z8 by volume scattering and Z1, Z4 and Z7 by multiple scattering 

mechanisms. Z3 is non-feasible region). 

 

Figure 5a shows the backscattering in HH and HV polarized bands, and Figure 5b shows the 

distribution of alpha angle and entropy on the Cloude-Pottier diagram. The results may be affected by 
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the use of dual-polarization data rather than quad-polarization data [13] that were not available for the 

area. The backscattering values in both HH and HV polarized bands (Figure 5a) tend to decrease from 

NF to the both managed forest classes due to a more clear forest floor. Less density of trees per ha might 

enhance forest backscattering (Figure 5a). In general, there is no substantial difference among different 

forest classes. This backscattering similarity could be resulted from saturation effect in backscattering 

value, which is known for forest with high AGB value (i.e., ca. > 100 Mg/ha) [19,22,75]. Alpha angle 

values are below 40 degrees, indicating predominantly surface scattering mechanism [74,76,77]. 

3.4. Modeling of Forest AGB 

Figure 6 illustrates the whole procedure starting from preprocessing of data in order to develop a 

forest AGB estimation model from multi-source remote sensing data. Various correlations between 

forest AGB and the reflectance or vegetation indices were found [63,78–80]. Also, many studies made 

use of the relation between SAR backscatter/texture and forest AGB [14,24,30,31,81,82]. 

Figure 6. Flowchart of mountain forest AGB estimation model. 

 

We divided the sample plots into training and validation parts. We used the training plots to develop 

forest AGB estimation models and validation plots to validate the models and calculate RMSE. In each 

class, around 30% of plots are used as validation data. All models are generated at 95% confidence 

level (α = 0.05), which means that there is a statistically significant relationship between the variables 

at 95% confidence interval. In each model, only the parameters with P value ≤ 0.05 are included. 

These parameters are statistically significant parameters to the model. We developed AGB estimation 
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model with SAR data and uncorrected ETM+ to verify the effect of topography on mountain forest 

AGB estimation. We also tested the relation of remote sensing dataset and original DBH 

measurements to overcome the bias induced by introducing empirical allometric equations. Based on 

the positive results, we then focused on developing AGB estimation models based on corrected remote 

sensing data. Table 4 summarizes the datasets and significant parameters to AGB models. Models L1–L5 

stand for the forest AGB estimation models, which use the corrected ETM+ reflectance, NDVI and 

GLCM texture. In models P1–P5, PALSAR backscattering and their textures as well as polarimetric 

features are used. Final model is the forest AGB estimation model based on ETM+, PALSAR and their 

derivatives’ metrics (Table 4). As we have a large number of independent variables in each model, 

multicollinearity (a high degree of correlation) may occur among variables. Therefore, we 

implemented variance inflation factor (VIF) test to detect and remove multicollinearity among 

variables [83]. 

Table 4. Datasets and significant parameters for different AGB estimation models. 

Model Datasets Significant Parameters * (P ≤ 0.05) 

Landsat 

L1 ETM+ bands b3, b4, b7 

L2 ETM+ bands, NDVI b4, b7, NDVI 

L3 ETM+ bands, NDVI, PCA b7, PCA-1, PCA-2 

L4 ETM+ bands, NDVI, PCA, TCT b7, PCA-1, PCA-2 

L5 
ETM+ bands, NDVI, PCA, TCT, GLCM 

textures 

b7, b4, PCA-1, variance
 
b4, variance b5, 

correlation b2, correlation b4 

PALSAR 

P1 HH, HV HH, HV 

P2 HH, HV, polarimetric features HH, HV, entropy 

P3 HH, HV, polarimetric features, texture HH HH, HV, entropy, contrast HH, mean HH 

P4 HH, HV, polarimetric features, texture HV HH, HV, entropy, mean HV 

P5 
HH, HV, polarimetric features, texture HH, 

texture HV 

HH, HV, entropy, contrast HH, mean HH, 

second moment HV 

Landsat 

& 

PALSAR 

Final 
ETM+ bands, PALSAR polarized bands, their 

derived features 
b3, b4, b7, PCA-1, HH, HV, contrast HH 

Note: * Significant parameters; parameters with P values ≤ 0.05. There are statistically significant relationships between 

these parameters and AGB at 95% confidence interval. 

Adjusted R2 and P value of each model were calculated. For validation purposes, we calculated 

RMSE of each model based on validation dataset. RMSE (Equation (4)) is a frequently used measure 

of differences between values predicted by the model and the observed values. 

𝑅𝑀𝑆𝐸 =   
1

𝑛
 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2

𝑛

𝑗  = 1

 (4) 

Normally, a model with high adjusted R2 and low RMSE values implies a good fit between the 

predicted values (calculated from developed models) and observed value in the field. For all models, 

one-way ANOVA analysis was done at 0.05 significance level [84].  
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4. Results and Discussion 

4.1. Effect of Topographic Correction on Forest AGB Estimation  

In Figures 3 and 4, we show the effect of topographic correction on reflectance in ETM+ Landsat 

bands. Reflectance in green, NIR, and SWIR is remarkably decreased because of relief effects. This 

will affect the relationship between AGB and reflectance. We evaluated final forest AGB model with 

uncorrected ETM+ data. Table 5 summarizes the model. Low adjusted 𝑅2  (i.e., 0.51), and high RMSE 

stand for unreliable model. In Figure 7, we plotted the difference between predicted and observed 

biomass versus the slope for each plot before and after topographic correction. In steeper slope (>10°), 

the differences are higher compared to gentler slope. The averages of the absolute values of difference 

between the predicted and observed AGB values for different slope class are reported in Table 6. In all 

slope groups, the difference is higher for the uncorrected data compared to corrected data. The highest 

contrast is found in very steep slope (>15°). We concluded that the topographic component has a high 

influence on AGB estimation in the mountain forest (Table 5). Therefore, we focus on developing 

AGB estimation model with topographically corrected data.  

Table 5. Statistics summary of forest AGB estimation model based on uncorrected  

ETM+ data. 

Model Dataset 
Significant Parameters *  

(P ≤ 0.05) 
RMSE Adj. 𝑹𝟐 P Value ** 

AGB model (Before 

topographic correction) 

Landsat bands, Landsat textures, 

PALSAR bands and their textures 

b4, mean b5, contrast b5, HH, HV, 

alpha, mean HH 

37.53 

(Mg/ha) 
0.51 0.0000 

Note: * Significant parameters; parameters with P values ≤ 0.05. There are statistically significant relationships between 

theses parameters and AGB at 95% confidence interval. ** When the P value is ≤ 0.05, there is a statistically significant 

relationship between the variables at 95% confidence level. 

Figure 7. Distribution of difference between predicted and observed forest AGB values 

versus slopes of each plot (a) before (b) and after topographic correction. 

 

4.2. Forest AGB Estimation from DBH Data  

We developed AGB estimation model with DBH data (Table 7). The high adjusted 𝑅2  (i.e., 0.74) 

and low RMSE (i.e., 3.61 cm) indicate that in case the only DBH data are available, they can be 



Remote Sens. 2014, 6 3704 

 

 

correlated with remote sensing derived variables to estimate forest parameters at plot level. Figure 8 

shows the predicted and observed mean DBH per plot.  

Table 6. Average of difference between predicted and observed AGB (Mg/ha) values 

before and after topographic correction. 

 Difference between Predicted and Observed AGB (Mg/ha) Values 

 Slope Before Topographic Correction After Topographic Correction 

6°–10° 32.7 25.18 

10°–15° 28.22 18.99 

>15° 48.05 21.52 

Table 7. Statistics summary of DBH estimation model. 

Model Dataset Significant Parameters * (P ≤ 0.05) RMSE Adj. 𝑹𝟐 P Value ** 

DBH 

model 

Landsat bands, Landsat 

textures, PALSAR bands 

and their textures 

b3, b4, b7, correlation b4, variance b3, 

second moment HH, 

3.61 

(cm) 
0.74 0.0000 

Note: * Significant parameters; parameters with P values ≤ 0.05. There are statistically significant relationships between 

theses parameters and AGB at 95% confidence interval. ** When the P value is ≤ 0.05, there is a statistically significant 

relationship between the variables at 95% confidence level. 

Figure 8. Predicted versus observed forest mean DBH values (validation dataset). Each 

point represents one field plot. The light blue polygon shows the area of 95% confidence 

interval and black solid line represents the regression line. 

 

4.3. Forest AGB Estimation Model Based on Corrected Data 

Table 8 summarizes the RMSE and adjusted 𝑅2 for all models. In model L1 (Table 4), we use the 

reflectance of ETM+ to generate the forest AGB estimation model. NDVI and ETM+ spectral bands 

are used in model L2. In model L3, first and second PCA components as well as ETM+ bands are 

added to the AGB estimation model (Table 4). However, the attempt to include brightness, greenness 

and wetness indices to model L4 was ineffective. None of them was statistically significant to the 

model at 95% confidence level; therefore, these indices were not added to the model (Table 4). Model 

L5 uses all textures data as well as principal components and reflectance at ETM+ bands (Table 4). 

Model L1 describes 38% the variability of forest AGB in the study area with the RMSE of 49.1 Mg/ha 

(Table 8). ANOVA test shows that there is no significant different between L1 and L2 (adjusted 𝑅2 of 
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0.39, RMSE of 49.1 Mg/ha) at 5% significance level (Table 8). This could be because of the saturation 

of vegetation indices in high biomass forest due to high reflectance [11,58,59,85]. Adding PCA 

components to the model L3 increases the adjusted 𝑅2 to 0.47 and decreases RMSE to 44.0 Mg/ha 

(Table 8). The result is the same for model L4 (Table 8). Because of the inclusion of GLCM textures, 

Model L5 shows the best result (adjusted 𝑅2 = 0.59; RMSE = 31.5 Mg/ha; Table 8). In heterogeneous 

forests, texture measures are more sensitive to the canopy structure than spectral reflectance, therefore 

they correlate better with forest AGB [11,85,86]. Band 4 (NIR) and band 7 (MIR), first principal 

components as well as variance band 4, variance band 5, correlation band 2 and correlation band 4 are 

the significant parameters (at 95% interval level) that contribute to the models based on ETM+ data. 

ANOVA test of models against one another reveals that models L3 and L5 are significantly (at 0.05 

significance level) different from model L1. 

Results of forest AGB estimation models based on PALSAR backscattering intensity, polarimetric 

features, and PALSAR texture are as follows. In model P1, we used the backscatter intensity of HH 

and HV polarization bands (Table 4). In model P2, we also add polarimetric features to the model. 

SAR textures from HH polarized band are additional input to model P3 compared to model P2. We use 

HH and HV and SAR textures from HV in model P4. In model P5, we use HH, HV, and polarimetric 

features as well as the textures of HH and HV (Table 4). The adjusted 𝑅2 and RMSE of model P1 are 

0.16 and 58.01 Mg/ha, respectively (Table 8). The week correlation between SAR backscattering 

coefficients and forest AGB is also reported in previous studies [25,81,87]. In model P2, the adjusted 

𝑅2 is increased to 0.25 and RMSE decrease to 47.0 Mg/ha (Table 8). Model P3 describes 41% the 

variability of forest AGB in the study area (RMSE = 47.08 Mg/ha). Contrast and mean of HH are the 

statistically significant HH-texture at 95% confidence level (Table 4). In model P4 (adjusted 𝑅2 = 0.25; 

RMSE = 52.01 Mg/ha), second moment and mean are the statistically significant texture from HV 

polarized band (Table 4). HH and HV backscattering and entropy as well as contrast HH, mean HH, 

and second moment HV are the most correlated parameters derived from ALOS/PALSAR data (Table 4) 

in model P5. This model can describe the 45% variability of the data. RMSE decreases to 43.25 Mg/ha 

in this model (Table 8). Saturation of L-band that occurs at high AGB can explain the moderate 

correlation [15,19,22,88,89]. Results from ANOVA test (at 5% confidence interval) among P1–P5 

models confirm that all of the models are significantly different from one another. Higher correlation 

of model P5 compared to the other models based on PALSAR data could be explained by the 

sensitivity of SAR textures to forest canopy [90]. Our results are in agreement with the finding of 

previous studies [90–93]. 

In the final model, ETM+ and PALSAR data, NDVI and GLCM textures are used (Table 4). The 

adjusted 𝑅2 of the final model is 0.76 and RMSE is 25.04 Mg/ha (Table 8). Bands 3, 4, 7, PCA-1 as 

well as HH, HV, and contrast HH significantly correlate with AGB values (Table 9). Many references 

choose 5 as a threshold for VIF, also the other recommend 10 for each independent variable [94] or 

average VIF of 6 for the all selected variables in the model [95,96]. We preferred to keep HH—despite 

the fact that it is highly correlated with HV—because the average VIF of all selected variables is less 

than 6. Comparison among this model and the other 10 models shows that the joint process of optical 

and SAR data increase the reliability of model significantly (at 5% significance level). This model 

benefits from the complementary nature of the spectral information from ETM+ data and volume 
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information from SAR backscattering. The AGB estimation improvement from the inclusion of optical 

and SAR data is comparable to those reported previously [6,17,30]. 

Table 8. Forest AGB estimation model parameters. 

Model RMSE Adj. 𝑹𝟐 P Value * ANOVA ** 

Landsat L1 49.1 0.38 0.0000 - 

L2 49.1 0.39 0.0000 - 

L3 44.0 0.47 0.0000 ** 

L4 44.0 0.47 0.0000 ** 

L5 31.5 0.59 0.0000 ** 

PALSAR P1 58.01 0.16 0.0002 ** 

P2 47.0 0.25 0.0000 ** 

P3 47.08 0.41 0.0000 ** 

P4 52.1 0.25 0.0010 ** 

P5 43.25 0.45 0.0000 ** 

Landsat & PALSAR Final 25.04 0.76 0.0000 ** 

Note: * When the P value is ≤0.05, there is a statistically significant relationship between the variables at 95% 

confidence level. ** Represents the results of ANOVA test; it shows the models that are statistically different at 95% 

confidence level. 

Table 9. Statistics summary of final forest AGB model. 

Significant Parameters  Coefficient P Value VIF 

Band 3  21.39 0.00 1.66 

Band 4 4.85 0.04 3.13 

Band 7 −18.1 0.00 2.34 

PCA-1 14.8 0.02 1.29 

HH −6.67 0.02 11.99 

HV 2.87 0.05 9.5 

Contrast
 
HH −6.63 0.01 2.39 

4.4. Validation of Forest AGB Models 

Predicted versus observed AGB values are plotted in Figure 9 for the selected models. Figure 10 

shows the bar plot of adjusted  𝑅2  for all models. Model L5 (Figure 9a; Tables 4 and 6) yields 

moderate results; AGB values between 150 and 210 Mg/ha are modeled better compare to values out of 

this range. Underestimations are also observed for very high AGB values (>280 Mg/ha). In Figure 9b 

(model P5; Tables 4 and 6), we observe more overestimating and underestimating compared to model L5. 

Relatively low adjusted  𝑅2 and high RMSE show that dual polarimetric SAR cannot properly predict 

forest AGB. Final model (Figure 9c) based on multisource data is a well-balanced model. The joint 

processing of ETM+ and ALOS/PALSAR has two significant effects on the biomass estimation. First, 

it substantially reduces the RMSE error. Second, it leads to the better prediction of medium AGB 

values ranges from 80–250 Mg/ha. High ABG values are mostly underestimated.  
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Figure 9. Predicted versus observed forest AGB (validation dataset); (a) Model L5: based 

on spectral reflectance and textures of ETM+ scene; (b) Model P5: based on backscattering 

and derived parameters of ALOS/PALSAR; and (c) Final model: based on ETM+ and 

ALOS/PALSAR data. Each point represents one field plot. The light blue polygon shows 

the area of 95% confidence interval and black solid line represents the fitted line. 

 

Figure 10. Bar plot of  𝑅2 (refer to Table 4). 

 
Note: *Final: AGB estimation model based on uncorrected data (Section 4.1). 

4.5. Limitation and Sources of Errors 

We found a reasonable relationship among ETM+ reflectances, SAR backscattering and field 

measured AGB. However, there are some limitations and sources of errors to our AGB estimation. 

These include limitation of field measurements and errors introduced by allometric equation and soil 

and vegetation moisture. 

We used the latest inventory data conducted in the study area and the closest remotely sensed data 

available. Although differences in time acquisitions may bring additional sources of errors in the 

retrieval of biomass, the inevitable difference of three years between the in-situ measurements and the 

remote sensing data used was neglected. The AGB estimations would be improved in case they were 

coincident. Real AGB can only be measured by destructive sampling that is not available for the study. 
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The calculated AGB values from allometric equations are accounted for as reference value. 

Calculations based on allometric equations are the best method when destructive sampling is not 

performed [21], despite introducing errors by using empirical equations [44]. The other deficiency in 

observed AGB is that trees with DBH <7.5 cm were excluded from field measurement. They 

contribute slightly to forest AGB and may impact the SAR backscattering [21]. 

Soil and vegetation moisture related to the precipitation events impact the SAR backscattering and 

could be a confounding factor in AGB estimation [89]. L-band SAR can penetrate more through 

vegetation; thus, the soil backscattering is involved in the total backscattering [21,97]. However, in 

low biomass densities, soil moisture has more effect on SAR backscattering, since radar signal can 

penetrate through the trees and hit the surface [15,21]. 

5. Recommendations and Conclusions  

This research was the first attempt to apply synthetic aperture radar (SAR) data for above ground 

dry biomass (AGB) estimation in the Hyrcanian forest. The multiple linear regression procedure 

clearly demonstrates the feasibility of the joint usage of ETM+ and Advanced Land-Observing 

Satellite/Phased Array L-band Synthetic Aperture Radar (ALOS/PALSAR) data for the AGB 

estimation in mountainous and high biomass forests. We conclude that relief influences the forest 

reflectance and backscatter in mountainous areas; therefore, topographic correction is essential for 

modeling forest AGB in those regions. Using non-topographically corrected data, the AGB prediction 

model captured only 51% of the biomass variability (RMSE = 37.53 Mg/ha). Adding topographic 

corrections improved the AGB estimation by up to 25%. Biomass estimation based on ETM+ data 

shows that gray level co-occurrence matrix (GLCM) textures correlate more with AGB than NDVI and 

principal component analysis (PCA). Our results showed that the coefficient of correlation could be 

increased by 0.12 when including texture information. Polarized L-band SAR features alone correlate 

weakly with AGB (adjusted 𝑅2  = 0.45, RMSE= 43.25 Mg/ha). However, SAR data can be used 

alternatively when optical data is not available or if the region is covered by clouds. Forest AGB can 

be modeled more accurately with the joint usage of optical and SAR data (adjusted 𝑅2  = 0.76,  

RMSE = 25.04 Mg/ha) rather than independently (adjusted 𝑅2 ≤ 0.59) 

The methodology can be used to produce forest AGB maps in mountainous terrain that can be 

difficult to obtain with more traditional techniques. Biomass estimations can help managers to measure 

forest productivity and give them a better vision for further activities. Additional research will explore 

the influence of full polarimetric L-band SAR data. Although no spaceborne L-band SAR is currently 

active, some missions such as ALOS/PALSAR-2, Multi-Application Purpose SAR (MAPSAR) and 

Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) are planned [20]. Our further 

research will also focus on the performance of other regression models (e.g., robust regression) for 

estimating forest AGB based on multisource remote sensing data. 
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