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Abstract: Automatic extraction of building roofs from remote sensing data is important
for many applications, including 3D city modeling. This paper proposes a new method for
automatic segmentation of raw LIDAR (light detection and ranging) data. Using the ground
height from a DEM (digital elevation model), the raw LIDAR points are separated into two
groups. The first group contains the ground points that form a “building mask”. The second
group contains non-ground points that are clustered using the building mask. A cluster of
points usually represents an individual building or tree. During segmentation, the planar
roof segments are extracted from each cluster of points and refined using rules, such as the
coplanarity of points and their locality. Planes on trees are removed using information, such
as area and point height difference. Experimental results on nine areas of six different data
sets show that the proposed method can successfully remove vegetation and, so, offers a high
success rate for building detection (about 90% correctness and completeness) and roof plane
extraction (about 80% correctness and completeness), when LIDAR point density is as low
as four points/m2. Thus, the proposed method can be exploited in various applications.
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1. Introduction

Automatic extraction of buildings from aerial imagery and/or LIDAR (light detection and ranging)
data is a prerequisite for many GIS (Geographic Information System) applications, such as 3D building
modelling [1]. Building extraction implies the extraction of 2D or 3D building information, such as
individual building and roof plane boundaries. Although the problem is well understood and, in many
cases, accurate results are delivered, the major drawback is that the current level of automation in
building extraction is comparatively low [2].

Based on the usage of the input data (imagery, LIDAR data, etc.), there are three main categories
of building extraction methods. The first category [3] fully relies on high-resolution aerial imagery.
Although promising results have been shown, the imagery-only approach does not generally perform
well in densely built-up areas, partially due to shadows, occlusions and poor contrast. Consequently,
automated building extraction from aerial imagery alone is generally not reliable enough for practical
implementation [4]. The second category of methods employs LIDAR data and offers an improved level
of automation when compared to image-only methods [5,6]. Methods in the third category integrate
aerial imagery and LIDAR data to exploit the complementary information from both data sources [7].

Methods integrating LIDAR data and imagery can face one or more of the following difficulties: First,
accurately coregistered imagery and point cloud data is a prerequisite. However, good quality registered
data may not be available, and the registration of two data sources having dissimilar characteristics
can be a difficult task. Second, there can be changes in the scene when the point cloud and imagery
are captured on different, well-separated dates. Third, in a highly vegetated area, there may be dense
vegetation close to a building. Thus, the required building information in the scene may not be available
due to shadows and occlusions. Fourth, the imagery that is nowadays available usually has a high spatial
resolution, such that the level of detail in a scene can be too high for building extraction purposes. For
example, small structures (chimneys, gutters, etc.) might be well recognised in an image. Therefore, the
separation of relevant information from that which is irrelevant is difficult. As a consequence, practical
implementations of such building extraction methods tend to be semiautomatic processes, as exemplified
by the method reported in Khoshelham et al. [8]. Finally, when a true orthoimage is not available,
artifacts in the orthoimage can provide misleading information. For example, the recently developed
method by Awrangjeb et al. [7] can fail to extract a roof plane when the corresponding roof edge or ridge
line cannot be extracted from the orthoimage. Thus, the integration of aerial imagery and LIDAR data for
building extraction remains a difficult task, due to the dissimilar characteristics of the two data sources.

Recently, digital surface models (DSMs) generated via dense image matching from highly
overlapping aerial images [9] have been used as an alternative to LIDAR point clouds for building
extraction [10]. Since these DSMs are usually denser than those from LIDAR, they can be used to
enhance feature extraction [9].

The study reported in this paper utilises only LIDAR data for building roof extraction. LIDAR-only
methods fall into two main categories, depending upon the output information (building and plane
boundaries). The methods in the first category detect building boundaries or footprints [11]. The methods
in the second category extract boundaries of individual roof planes [12]. Some in the latter category
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also reconstruct individual building roof models by regularising the plane boundaries and defining the
relationships among the extracted roof planes [13].

This paper proposes an automatic technique for the extraction of building and roof plane boundaries
using LIDAR point cloud data. However, it does not consider the subsequent generation of individual
building roof models. In the proposed method, the LIDAR points are first divided into ground and
non-ground points. The ground points are used to generate a building mask. The black shapes (voids)
formed in the mask represent the ground areas covered by buildings and trees, where there are no laser
returns below a given height. Therefore, pixels corresponding to individual buildings and trees are
clustered in the building mask. The non-ground LIDAR points within each cluster are then segmented
based on their coplanarity properties and neighbourhood relationships. A new procedure is applied to
the extracted planar segments in order to reduce the problems of under- and over-segmentation. Another
procedure is applied to remove false planes, mainly constructed in trees. These “tree planes” are usually
small in size and randomly oriented. They can be removed easily using information, such as area,
long straight line segments along the plane boundary and neighbourhood relationships, as well as via
out-of-plane point “spikes” within the planar boundary. Finally, the neigbouring planes are grouped in
order to obtain the boundary of an individual building. Experimental results show that the proposed
technique can provide good building detection and roof plane extraction results.

An initial version of the proposed method was published in [14]. Here, the proposed method is
presented in more detail. The selection of values of input parameters for the proposed algorithm are
analysed, and the results obtained from six data sets are presented. Experimental results are compared
with those achieved via five existing methods. The proposed method has, in two aspects, some similarity
with the methods reported in [7,15], since a building mask is initially generated and the LIDAR points are
divided into two groups (ground and non-ground) following the procedure adopted in [7,16]. However,
unlike the method reported in Awrangjeb et al. [7], the proposed method does not use aerial imagery to
identify the building regions. Instead, points in the building mask are clustered to obtain the non-ground
objects, which are mostly buildings, but may include some dense vegetation. The non-ground points
within each cluster are further divided into coplanar and non-coplanar points. The coplanarity of a
point with respect to its neighbours is quantified using an eigenvalue analysis, similar to the approach
adopted in [15]. However, as the local surface normals are quite noisy in dense point clouds [17],
a down-sampling of the point cloud is first carried out in order to determine whether the majority of
the sampled points on a nominally planar surface are indeed coplanar. Other points around each of
the sampled points are included during the extraction of planar segments through the use of a new
region growing algorithm that exploits the coplanar points in order to define stable seed regions. New
procedures are also proposed for the refinement of the extracted building roof segments, in order to both
reduce the effect of over- and under-segmentation and to remove tree segments.

The rest of the paper is organised as follows: Section 2 presents a review of alternative methods
based on LIDAR data that have been reported in the literature for building and roof extraction.
Section 3 details the proposed building roof extraction algorithm. Section 4 presents experimental results
for nine test areas from six data sets. The selection of values for algorithmic parameters and a comparison
of results from the proposed technique with those achieved via existing methods are also discussed in
Section 4. Concluding remarks are then provided in Section 5.



Remote Sens. 2014, 6 3719

2. Related Work

Recent research into building extraction from raw LIDAR data can be divided into two major
categories [18]. The first tries to fit certain shapes to the data, while the second tries to extract shapes
present in the data. Methods in the first type are thus model-driven, since they require a predefined
catalogue of building models. Although they are robust, their performance is limited to the known
models. Methods in the second type are data-driven and, therefore, work in general for any building
shape. In this section, a review of selected recent data-driven methods is presented.

Zhang et al. [11] employed the separation of ground and non-ground points using a progressive
morphological filter. Then, buildings were separated from trees by applying a region-growing algorithm
based on a plane-fitting technique. Finally, a raw building boundary was extracted by connecting
boundary points, and this was regularised to establish a building footprint. The area omission and
commission errors were about 12% for both residential and industrial buildings. Miliaresis and
Kokkas [19] used a raster DSM, generated from LIDAR data, for the extraction of building classes
using region-growing-based segmentation and object-based classification algorithms. A major drawback
with this method was that it required user interaction to a certain level in order to set the algorithmic
parameters appropriately for different situations. Liu et al. [20] employed a neural network approach
to extract buildings from a DSM derived from LIDAR data. The grey level co-occurrence matrix and
height texture were used for the separation of buildings and trees.

Unlike Zhang et al. [11] and Miliaresis and Kokkas [19], who used a fixed window size for filters,
Cheng et al. [21] progressively changed the window size for morphological operations and achieved 5%
to 9% omission and commission errors. Nevertheless, the use of such an adaptive algorithm to select
a window size can be computationally expensive. dos Santos Galvanin and Poz [22] first segmented
a LIDAR DSM using a recursive splitting technique followed by region-growing in order to identify
buildings and trees. They then distinguished buildings from trees by optimising an energy function
using a simulated annealing algorithm. However, this method removed some buildings along with the
trees. Zhou and Neumann [23] automatically determined the principal directions of building boundaries
and used them to produce footprints. However, this method worked only for flat roofs and required user
interaction for the identification of non-flat roofs.

Among the methods employing individual roof plane extraction and/or building roof reconstruction,
Jochem et al. [12] proposed a roof plane segmentation technique from raster LIDAR data using a seed
point-based region growing technique. Perera et al. [24] used the surface growing algorithm in [25] for
the segmentation of the point cloud. A cycle graph was then employed to establish the topological
relationship among the line segments extracted along the plane boundaries. This method failed in
the absence of missing boundary lines, and it displayed low geometric accuracy. Dorninger and Pfeifer [26]
proposed a comprehensive method for the extraction, reconstruction and regularization of roof planes
from LIDAR point clouds. This method involved a coarse selection of building regions by digitizing
each building interactively, with erroneous building models being indicated and rectified by means
of commercial CAD software. Moreover, some of the algorithmic parameters were set interactively.
Sampath and Shan [15] presented a solution framework for segmentation (detection) and reconstruction
of polyhedral building roofs from high-density LIDAR data. Similar to the method in [27], the
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coplanarity of points was determined based on eigenvalue analysis using the Voronoi neighbourhood
around each point. Kim and Shan [28] also segmented the normal vectors, but they applied a multiphase
level set technique. Sun and Salvaggio [29] proposed an automated method to generate 2.5D watertight
building models from LIDAR point clouds. Only visual results were presented, so there was no
objective evaluation of this method. Oude Elberink and Vosselman [30] proposed a target based graph
matching approach that can handle both complete and incomplete laser data. Extensive and promising
experimental results were shown on four data sets.

Tarsha-Kurdi et al. [31] applied an extended robust estimation technique to the regenerated LIDAR
point cloud. After converting the original point cloud into a DSM, the missing points were estimated as
the mean of the neighbouring points. Then, a low-pass filter was applied. As a result, the regenerated
points suffered from decreased positional accuracy. Moreover, the method could not construct planes
with areas of less than 50 m2. Sohn et al. [13] clustered building points based first on height similarity
and then on planar similarity. Rectilinear lines were then extracted, and polyhedral models were
generated from the lines using a binary space partitioning tree. The method produced erroneous results,
due to either improper localisation of the extracted lines or to missing lines. In addition, it failed to
separate small roof planes in the clustering algorithm due to the use of a predefined bin size for the
height histogram.

There are also methods that classify buildings separately, along with many other objects, such as
ground, water, vegetation and roads. Richter et al. [32] segmented massive 3D point clouds using an
iterative multi-pass processing scheme, in which each pass focused on different topological features and
learned from already classified objects in the previous passes. Carlberg et al. [33] organised a cascade
of binary classifiers that first identified water using a region growing segmentation algorithm and then
applied 3D shape analysis for the classification of ground, buildings and trees. While this method used
training data sets for object classification, that proposed by Richter et al. [32] did not. The use of
training data sets can make a method susceptible to an unknown environment and, thus, less robust.
Zhou and Neumann [34] adopted an energy minimization scheme based on the characteristic that the
interior of buildings is invisible to laser scans, while trees do not possess such a characteristic, and the
LIDAR points were classified into buildings, trees and ground. Niemeyer et al. [35] used conditional
random fields in order to incorporate context knowledge from point clouds generated from full waveform
LIDAR data.

3. Proposed Automatic Extraction

Figure 1 shows an overview of the proposed building roof extraction procedure. The input data
consists of a LIDAR point cloud. In the detection step (top dashed rectangle in Figure 1), the LIDAR
points are classified into two groups: ground points, such as ground, road furniture and bushes that are
below a height threshold, and non-ground points, which represent elevated objects (such as buildings
and trees) above this threshold. The building mask, known as the “ground mask”, is generated using the
ground points. Individual buildings and trees are obtained as clusters of black pixels in the building mask,
and trees with low density canopies are removed. The coplanarity of each individual non-ground LIDAR
point with its neighbours is ascertained based on its Delaunay neighbourhood. The planar segments are
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extracted from the non-ground LIDAR points on individual buildings and trees. The extracted LIDAR
segments are then refined using a newly proposed procedure. Finally, the false planes on trees are
removed using information, such as area, and neighbourhood characteristics, such as the presence of
out-of-plane points within the planar boundary.

Figure 1. The proposed roof plane extraction technique.

Figures 2a and 3a present two sample scenes from the Vaihingen [36] and Aitkenvale [7] data sets,
respectively. They will be used to illustrate the different steps of the proposed building extraction method.
The Vaihingen scene has a point density of four points/m2, whereas the Aitkenvale scene has a much
higher point density of 40 points/m2.
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Figure 2. A sample scene from the Vaihingen data set: (a) raw LIDAR points overlaid
on an orthoimage (points at similar heights have similar colours); (b) building mask and
non-ground LIDAR points; (c) grouping and clustering of the mask grid cells; (d) clusters of
non-ground LIDAR points on buildings and large trees; (e) extracted planar segments from
Cluster 1 in (d); and (f) refined segments.
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Figure 3. Finding coplanar points on a sample scene from the Aitkenvale data set with
(a) original point density at 40 points/m2; (b) re-sampled point density at 11 points/m2

and (c) four points/m2; and (d) four points/m2 for the sample scene in Figure 2a. Yellow:
coplanar; magenta: non-coplanar; blue: other points.

3.1. LIDAR Classification and Mask Generation

If a bare-earth DEM is not available, one can be generated from the LIDAR point cloud data.
We assume that the bare-earth DEM is given as an input to the proposed technique. Then, for each
LIDAR point, the corresponding DEM height is used as the ground height, Hg. A height threshold
Th = Hg + hc, where hc is a height constant that separates low height objects from higher height objects,
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is then applied to the LIDAR data. Consequently, the point cloud is divided into two groups. The first
group contains the ground points, such as points on the ground, road furniture and bushes that are below
Th. The second group consists of the non-ground points that represent elevated objects, such as buildings
and trees with heights above Th. Many authors (e.g., [37,38]) have used hc = 2.5 m. However, for the
Vaihingen data set, it was observed that this height threshold removes many low buildings and sheds.
Therefore, hc has been set at 1 m for this study. This threshold value will then classify many points,
mainly on bushes and low height trees, as the non-ground points. These could otherwise be removed
using a high threshold value. Thus, an additional number of unwanted planes may be extracted, and they
will be removed using the procedure to be discussed in Section 3.5.

The primary or building mask, Mg, as shown in Figure 2b, is generated from the ground points
following the procedure in [38]. Mg indicates the void areas where there are no laser returns below Th,
i.e., ground areas covered by buildings and trees. Awrangjeb et al. [38] have shown that buildings and
trees are found to be thinner in Mg than in the nDSM (normalized DSM, which indicates the filled areas,
from where the laser reflects, above the same threshold, i.e., roofs and tree tops). Consequently, Mg is
used to cluster the non-ground points, as discussed below.

3.2. Clustering Non-Ground LIDAR Points

The mask, Mg, is divided into a 4× 4-pixel grid. Since the resolution of Mg is kept fixed at 0.25
m, independent of the LIDAR point density [38], each of the grid cells occupies an area of 1 m2 (same
as the minimum roof plane area, ap). Figure 2c shows the grid cells, which can be categorized into
three groups: Groups A, B and C. The cells in Group A (see the magenta dots in Figure 2c) contain
only the black pixels and represent the areas inside the building or tree boundaries. In contrast, the cells
in Group B (the cyan dots in Figure 2c) have both white and black pixels and indicate the areas along
the building and tree boundaries. The cells in Group C contain only the white pixels and represent the
ground (the empty cells in Figure 2c).

The Group A cells are now separated into clusters, such that any two cells in each cluster are connected
by other Group A cells belonging to the same cluster. As shown in Figure 2c, there are five such clusters
in the sample scene. Thereafter, the Group B cells along the cluster boundary are added to each of
the clusters. Each of the added Group B cells should have at least one Group A cell as its neighbour
(a 3 × 3 neighbourhood is considered) in the cluster.

Finally, for each of the clusters, the cluster boundary (boundary points) is obtained using the Canny
edge detector. Lines along the boundary are also extracted following the procedure in [38]. First, corners
are detected along the extracted boundary. Then, a best-fit straight line is determined via least squares
using the boundary points between two successive corners. These lines help to locate roof planes
near the building boundary. The non-ground LIDAR points within the cluster boundary are assigned
to the cluster. Figure 2d shows the clusters, their boundaries and non-ground LIDAR points for the
sample scene.

The clustering technique helps in the elimination of trees that are not dense (e.g., the tree at the
bottom of Figure 2) and/or small in area. In addition, dense vegetation can be separated into small parts
(e.g., trees at the top-left corner of Figure 2). In a small vegetated area (e.g., Cluster 4 in Figure 2d),
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it will be impossible to construct a large plane. Thus, many planes constructed on trees can be easily
removed by applying the minimum plane size, as will be described in Section 3.6.

3.3. Finding Coplanar Points

Since the final results of a region growing algorithm may be affected by the selection of initial points,
there is a division into coplanar and non-coplanar points. The coplanar points are more suitable to be
used as seed points than the non-coplanar points. An individual coplanar point constructs a small seed
region with its neighbouring points. Such a seed region can then be extended in a region growing fashion
to extract a complete planar segment.

By using the Delaunay triangulation algorithm, a natural neighbourhood of non-ground LIDAR points
can be generated for either one cluster at a time or all non-ground points at the same time. The
neighbourhood of a point, P , consists of the points, Qi, 1 ≤ i ≤ n, where each line, PQi, is a side
of a Delaunay triangle. In order to avoid the Delaunay neighbours, which are far away from P , only the
neighbours for which |PQi| ≤ 2dmax are chosen, where dmax is the maximum point spacing in the data.

The coplanarity of P with respect to its neghbouring points is ascertained following the procedure
in [15], which is based on eigenvalue analysis. However, in this investigation, it has been observed that
while this procedure works well when the point density is low (e.g., four points/m2), it is less suitable at
a high point density, because the number of non-coplanar points on a nominally planar surface increases.
This observation supports the statement in [17] that local surface normals are quite noisy in dense data
sets. In cases where the material of a planar roof segment might be tiles or corrugated iron sheets, there
will be small difference in heights among neighboring LIDAR points on the same plane. Moreover,
there are generally some errors in the LIDAR generated heights. Small errors in neighbouring points of
a given point are noticeable (i.e., the plane fit is poor using the procedure in [15]) in dense point clouds
where points are close to one another. As shown in Figure 3a, in the sample scene of the Aitkenvale data
set, there are many non-coplanar points (magenta dots) on many planes, especially on the right-hand
side plane. The number of non-coplanar points on a plane decreases with a decrease in point density.
Figure 3b,c illustrates this phenomenon at two different point densities (11 and four points/m2,
corresponding to the sampled and re-sampled point spacing ds = 0.3 and 0.5 m, respectively).

The coplanarity decision therefore depends on the area of the seed region represented by P and its
neighbours. At a high point density, the seed region is small, and therefore, the procedure may fail. At a
low point density, the area of the seed region is large. Thus, the procedure has a high chance of success.
Since at a low point density, there might not be the expected number of points on a small plane, ds may
be set at 0.5 m (four points/m2) based on the assumption that the smallest plane on a roof is ap = 1 m2

in area. Figure 3d shows that this point spacing has a negligible effect on coplanar point determination
within the Vaihingen data set, since its original point density is low. The blue dots in Figure 3d are the
points that are excluded during the sampling procedure. The sampling procedure, to be discussed below,
chooses the points at a given point spacing, ds (ds ≥ dmax). At a high ds value, the number of chosen
points will be small. Thus, the point density of the input LIDAR point cloud is decreased.

The flow diagram in Figure 4a shows the resampling procedure. First, the sampling space, ds, is set as
follows. If the input LIDAR density is at least four points/m2 (i.e., dmax ≤ 0.5 m), a sampling procedure
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is followed at ds = 0.5 m. If the point density is less than four points/m2, the sampling procedure is
followed using ds = dmax. In order to find the sampled LIDAR points, a grid is then generated at a
corresponding resolution of ds. Finally, all the LIDAR points within a square grid cell are found, and the
point which is closest to the centre of the cell is chosen as the sampled point for the cell. Cells which do
not contain any points are left empty. The coplanarity of all the sampled points is determined by setting
dmax = ds.

Figure 4. Flow diagrams for: (a) resampling of the LIDAR point cloud of a scene;
and (b) extraction of a planar segment from the LIDAR point cloud of a cluster.

3.4. Extracting Planar Segments

The planar segments are iteratively extracted from the LIDAR point cloud within each of the clusters
obtained through the procedure described in Section 3.2. Figure 4b shows an iteration, where a planar
segment is initialised and extended in a region growing fashion, which will now be described.

Let the two sets of the non-ground LIDAR points from each cluster be S1, containing all the coplanar
points, and S2, containing the rest (non-coplanar and excluded points during sampling). An unused
coplanar point, P ∈ S1, is first selected as a seed point, and then a planar segment is initialised using P
and the neighbours of P . Let Sp be the set of points consisting of P and its neighbours. An initial plane,
ξ (equation: αx+ βy + γz = δ) is estimated using points in Sp, so long as |Sp| ≥ 3.

The random selection of P can result in a number of unexpected planes. In order to limit the number
of such planes, P can be initially located along the cluster boundary using the boundary lines extracted
via the method described in Section 3.2. For example, P can be the nearest coplanar point from the
midpoint of a boundary line. Later, when no coplanar points are found along the boundary lines, an
unused coplanar point is randomly selected, and a new planar segment is grown.

The new planar segment is now iteratively extended using the neighbouring points from S1 and S2.
A neighbour point set Sn ⊆ {S1 ∪ S2} is found for Sp within a distance threshold of Td = 2dmax.
A plane compatibility test is executed for each point, Q ∈ Sn, using either of the following two
approaches: the estimated height of Q using ξ is similar to its LIDAR height (within the flat threshold
Tf = 0.10 m introduced in [7]); or, the normal distance of Q to the plane is at most Tp = 0.15 m [7].
IfQ passes the plane compatibility test, it is included into Sp, and ξ is updated; otherwise, it is discarded.
Once all points in Sn are determined, a new Sn is found, and the plane is iteratively extended, until no
further points can be added to Sp.

Once the segment extension is complete, all the coplanar points within it are marked, so that none
will later be used for initiating another planar segment. As a result, the points in S2, which mainly reside
along the plane boundaries, can be used by more than one plane. The next planar segment is grown
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by using an unused coplanar point (from S1) and following the same procedure discussed above. The
iterative procedure continues, until no coplanar point remains unused.

Figure 2e shows all the extracted planes from Cluster 1 of Figure 2d. There were 14 extracted planes.
Many of the extracted planes overlap the neighbouring planes. Most importantly, one of the planes was
wrongly extracted, as shown by red dots in Figure 2e. The wrong plane was initialised by a coplanar
point near to the ridge line, where two planes intersect. As shown in the magnified part in Figure 2e,
the neighbours of the coplanar point reside on the two neighbouring planes. Consequently, the wrongly
extracted plane includes points from a total of six planes.

3.5. Refining Planar Segments

If two extracted planes have one or more LIDAR points in common, they may be coincident, parallel
or non-parallel planes. Moreover, a wrongly extracted plane, shown in Figure 2e, may intersect one or
more additional extracted plane and, thus, may have points in common with the intersected planes. In
order to refine the extracted planes, the common or overlapping points must be assigned to the most
appropriate planes. However, since the extracted planes are estimated from the input LIDAR points,
which usually have some accuracy limitation, it is hard to find the exact relationship (e.g., parallelism,
intersection lines and angle) between two planes that have overlapping points. In this study, the topology
or relationship between two such planes is obtained by using the overlapping points and the intersection
line between the planes.

The following six steps are executed sequentially for any two planes that overlap each other by
at least one point. Let the two extracted planes, A and B, consist of the LIDAR point sets, Sa
and Sb, respectively. Let So be the set of overlapping points between them. At any instance of the
refinement procedure, the plane equations (ξa and ξb) and normals (ηa and ηb) are estimated using the
non-overlapping points from A (Sc = Sa/So) and B (Sd = Sb/So). Let the normal distances from a
point Po ∈ So to the planes be `oa and `ob. Further, let the number of points that are close (within Td) to
Po from Sc and Sd be na and nb, respectively. The locality of Po with respect to A is defined by na. If Po
is far away (more than Td) from Sc, then na = 0. However if Po has neighbouring points only from Sc,
then na is high.

• Step 1: Merging (coincident) planes. A plane may be extracted more than once. In this case, the
two planes share almost all the points on the plane. If A and B overlap each other by at least 90%,
they are merged into a single plane. Figure 5a shows an example (from the Vaihingen data set)
where the cyan coloured points are common to two extracted planes, and the magenta coloured
points within the light blue circle are the only difference. Figure 5b shows the merged plane.
• Step 2: Parallel planes. If A and B are parallel (when the angle, θ, between ηa and ηb is at most
Tθ =

π
32

), each point, Po ∈ So, is assigned based on its normal distances to the planes and locality.
If `oa < `ob and na > nb, Po is assigned to Plane A. If `oa > `ob and na < nb, Po is assigned to
Plane B. Otherwise, Po still remains unassigned and will be assigned in Steps 4 or 5 below. As
shown in Figure 5c,d, the overlapping region between the two parallel planes, A and B (θ = 3◦),
is rectified accordingly. The unassigned points, shown in yellow in Figure 5d, will be dealt with in
Steps 4 or 5 below.
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Figure 5. Refinement of planar segments: (a,b) coincident planes; (c,d) parallel planes;
(e,f) non-parallel planes; (g,h) using locality; (i,j) using plane intersection line; and (k,l) the
split and merge of a sparse plane.

• Step 3: Non-parallel planes. IfA andB are not parallel (i.e., θ > π
32

), each coplanar point, Po ∈ So,
is determined as follows. Let the normal at Po be ηo and the angles between ηo and the two plane
normals (ηa and ηb) be αoa and αob, respectively. If αoa < αob, Po and its neighbours are assigned
to Plane A; otherwise, to Plane B. The coplanar points among the overlapping points in Figure 5e
are assigned to Plane B, but the non-coplanar points remain unassigned, as shown in Figure 5f.
The unassigned points will be dealt with in Steps 4 or 5 below.
• Step 4: Using locality. If Po resides within Plane A, but away from Plane B, i.e., na > 0 and
nb = 0, then Po is assigned to Plane A. Conversely, if Po resides within Plane B, but away from
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Plane A, i.e., nb > 0 and na = 0, then Po is assigned to Plane B. Figure 5g,h shows that two
overlapping points have been assigned to Plane B based on locality, but one point still remains
unassigned, as this is local to both of the planes.
• Step 5: Using plane intersection. All the unassigned overlapping points are finally assigned using

the plane intersection line (between Planes A and B using ξa and ξb). If Po and Plane A reside
on the same side of the intersection line, then Po is assigned to Plane A; otherwise, to Plane B.
However, if A and B are parallel, the intersection line is not used, and Po is assigned based on
its normal distances (`oa and `ob) to the planes. If `oa < `ob, Po is assigned to Plane A; otherwise,
to Plane B. Figure 5i,j shows an example where the overlapping points between two non-parallel
planes are assigned based on the intersection line.
• Step 6: Split and merge. After the execution of all the above steps, an extracted plane, A, may be

sparse in the sense that it may have some points that reside away from other points in the same
plane. Each sparse plane is split into two or more parts (A1, A2, A3, ...), where points in each part
reside at a distance of at least Td from points in the other parts. Figure 5k shows such a sparse plane
in blue, which is split into three parts. For each point, Po, in each part, the nearest extracted plane,
B, is obtained based on its normal distances to all the neighbouring planes (within a distance of
Td). If the normal distance to B (i.e., `ob) is smaller than Tp = 0.15 m, then Po is assigned to Plane
B. If such a plane cannot be found (i.e., `ob > Tp) for some or all the points forming a part, then
this part remains as a separate extracted plane. Figure 5l shows that all the points of the sparse
plane are well assigned to the respective neighbouring planes.

Figure 2f shows the extracted planar segments for Cluster 1 in Figure 2d following the above
refinement procedure.

3.6. Removing False Planes

Figure 6a,b shows all the extracted planar segments and their boundaries on the sample scene shown
in Figure 2a. In order to find the boundary of a plane, the corresponding set of LIDAR points, Sp, is
used to generate a binary mask, Mb (similar to the building mask, Mg). The boundary of the plane is the
Canny edge around the black shape in Mb. For each edge point, the nearest LIDAR point height from Sp

is assigned.
In order to remove false positive planes, mostly constructed on trees, a new rule-based procedure is

proposed. For each extracted plane, the procedure uses information, such as plane area, straight line
segments along the plane boundary, the relation with the neighbouring planes, random point spikes,
unused (not on any estimated plane) LIDAR points and the average height difference among the LIDAR
points within the boundary. Moreover, the number of used LIDAR points within the corresponding
cluster of the plane is employed. The routines for estimating area, straight lines, random point spikes and
neighbouring planes have been adopted from [7]. In order to obtain the average height difference within
an extracted plane, the mean height difference for each non-ground LIDAR point is first calculated with
its neighbouring points (the sampled LIDAR data in Section 3.3 is used). The average height difference
for the plane is then estimated for all LIDAR points within the plane boundary, including those that are
not on the plane.
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Figure 6. Removing false planes: (a) all extracted planes; (b) all plane boundaries; (c) final
plane boundaries; and (d) building boundaries.
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Initially, all the extracted planes are marked as true roof planes. Then, in order to remove the false
positive planes, the following tests are executed sequentially. All the parameter values are listed in
Table 1.

Table 1. Parameters used by the proposed roof extraction method (“this paper” indicates that
a corresponding parameter value has been chosen in this study).

Parameters Values Sources

Ground height Hg DEM height input LIDAR data
Height threshold Th Hg + 1.0 m this paper
Mask resolution 0.25 m [38]
Straight line length 3 m [38]
Maximum point spacing dmax (from input LIDAR data) input LIDAR data
Point neighbourhood Td 2dmax related to dmax

Flat height threshold Tf 0.10 m [7]
Normal distance threshold Tp 0.15 m [7]
Shared points for coincident planes ≥ 90% this paper
Angle between parallel planes Tθ π

32 this paper
Minimum roof plane area ap 1 m2 this paper
Minimum roof plane width 1 m this paper
Small plane area threshold Ta1 2 m2 this paper
Medium plane area threshold Ta2 5 m2 this paper
Unused point ratio r 10%, 35% this paper
Used point ratio ru 60% this paper
Average height differences Thd 0.8, 0.5, 0.2 m this paper
Spike height threshold Tz 1.5 m [7]
Number of random points for spike test 10 [7]

• Area test: If the area of an extracted plane, A, is less than ap = 1 m2, it is marked as a false plane.
• Random spike test: A 3D cuboid is considered aroundA using its minimum and maximum Easting,

Northing and height values. Let the minimum and maximum heights of the cuboid be zm and
zM . Then, a number (10, in this study) of random 2D points are generated, which are uniformly
distributed within the cuboid, and their height values are estimated using the plane equation, ξa.
Usually, a small number of random points are enough for this test. A large number of points will
slow down the algorithm, so the selection of 10 random points per plane has been accepted in this
study [7]. If at least one estimated height, ze, is too low (zm − ze > Tz) or too high (ze − zM > Tz)
and the area of A is less than an area threshold, Ta1, then A is classified as a false plane.
• Unused LIDAR point test: The ratio, r, of the number of unused LIDAR points (not found on

any extracted planes) to the number of used LIDAR points (Sp) within A’s boundary is calculated.
If r ≥ 10% for a small plane (smaller than Ta2) or if r ≥ 35% for a medium plane (smaller than
3Ta2), then A may be marked as a false plane. However, if A is at least 1 m in width, has at least
one long straight line segment of at least 3 m in length and its average height difference is less than
Thd1, then A is not marked as false.
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• Average height test: If the area of A is less than Ta2 and its average height difference is more than
Thd1, then A is a tree plane.
• Used LIDAR point test: The ratio, ru, of the number of used LIDAR points to the total number

of non-ground LIDAR points within a cluster boundary is calculated. If ru < 60%, then all the
unmarked planes belonging to this cluster are further tested. If A does not have a straight line
segment of at least 3 m in length along its boundary and its width is less than 1 m, then A is
marked as a tree plane.

All planes are subjected to the tests above. If A is a plane that was marked to be removed as
false, then for an unmarked plane, B, which is a neighbour of A, the following first three tests are
executed sequentially:

• With neighbours, Test 1: If B has unused points inside its boundary (r ≥ 10%) and its average
height difference is greater than Thd2, then it is marked as false, as well. This test continues until
none of the remaining planes can be marked as false.
• With neighbours, Test 2: If B is less than 2Ta2 in area and all of its neighbours are already marked

as false, then it may also be a false plane. If B has parallel or perpendicular line segments along
its boundary and its average height difference is small (less than Thd3), it is determined to be a true
plane. Otherwise, it is marked as a false plane. This test continues, until none of the remaining
planes can be marked as false.
• Planes reside inside one another, Test 3: If A has been classified as false in any of the above tests

and if it resides within the 2D plane boundary of a bigger plane, which has not been determined
to be false, then A is marked as true. This test helps the retention of dormers as true roof planes,
though they are small in area.

Figure 6c shows all the roof planes obtained after this removal procedure for the sample test scene.
An individual building can now be easily obtained as a group of planes. All the LIDAR points from a
group of planes are used together to extract the corresponding building boundary. Figure 6d shows the
extracted building boundaries.

4. Performance Study

In the performance study conducted to assess the proposed approach, six data sets from different
geographic locations were employed. The objective evaluation followed both the threshold-based
system [39] adopted by the ISPRS (International Society for Photogrammetry and Remote Sensing)
benchmark project [40] and an automatic and threshold-free evaluation system [41].

In both evaluation systems [39,41], three categories of evaluations (object-based, pixel-based and
geometric) have been considered. A number of metrics are used in the evaluation of each category.
While the object-based metrics (completeness, correctness, quality, under- and over-segmentation errors
and detection and reference cross-lap rates) estimate the performance by counting the number of objects
(buildings or planes in this study), the pixel-based metrics (completeness, correctness, quality, area
omission and commission errors) show the accuracy of the extracted objects by counting the number
of pixels. In addition, the geometric metric (root mean square error, RMSE) indicates the accuracy of
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the extracted boundaries and planes with respect to the reference entities. The definitions and how these
metrics are estimated have been adopted from [16,39,41]. Once the reference and extracted building
and plane boundaries are obtained, these metrics are automatically determined via the performance
evaluation techniques [39,41]. In the ISPRS benchmark [40], the minimum areas for large buildings and
planes have been set at 50 m2 and 10 m2, respectively. Thus, the object-based completeness, correctness
and quality values will be separately shown for large buildings and planes.

In addition, the efficiency of the proposed method will be shown in terms of data processing time.
Since the involved test areas differ in size and point density, computation time per area and computation
time per point will also be estimated.

4.1. Data Sets

The first data set is Vaihingen (VH) [36], from the ISPRS benchmark [40]. There are three test sites
in this data set (Figure 7a–c) and each area is covered with a point density of four points/m2. Area 1 is
characterised by dense development consisting of historic buildings having complex shapes. Area 2 is
characterised by a few high rise residential buildings surrounded by trees. Area 3 is purely residential,
with detached houses and many surrounding trees. The number of buildings (larger than 2.5 m2) in these
three areas is 37, 14 and 56, and the corresponding number of planes is 288, 69 and 235, respectively.

The second data set is Aitkenvale (AV), which has a high point density (29 to 40 points/m2), and the
third data set is Hervey Bay (HB), which has a medium point density (12 points/m2) [7]. There were two
sites in the AV data set, as shown in Figure 7d,e. The first (AV 1) covers an area of 66 m × 52 m, has a
point density of 40 points/m2 and contains five buildings comprising 26 roof planes. The second AV site
(AV 2) has a point density of 29 points/m2, covers an area of 214 m × 159 m and contains 63 buildings
(four were between four to 5 m2 and 10 were between five to 10 m2), comprising 211 roof planes. The
single site of the HB data set in Figure 7f covers 108 m × 104 m and contains 28 buildings (three were
between four to 5 m2 and six were between five to 10 m2), consisting of 166 roof planes. These three
sites contain mostly residential buildings, and they can be characterized as urban with medium housing
density and moderate tree coverage that partially covers buildings. In terms of topography, AV is flat,
while HB is moderately hilly. For all three data sets, bare-earth DEMs of 1-m horizontal resolution
were available.

The other three data sets, Eltham (EL), Hobart (HT) and Knox (KN), have point densities of five, two
and one points/m2, respectively. The three test areas, shown in Figure 7g–i, cover 393 m × 224 m,
303 m × 302 m and 205 m × 204 m, respectively. The EL data set contains 75 buildings (nine were less
than 10 m2, including five within three to 5 m2) consisting of 441 planes (46 were less than 5 m2). The
HT data set has 69 buildings (13 were less than 10 m2, including four within one to 5 m2) containing
257 planes (24 less than 5 m2). The KN data set contains 52 buildings (eight were less than 10 m2,
including four within two to 5 m2) consisting of 181 planes (48 were less than 10 m2, including 24 less
than 5 m2). These three data sets have dense vegetation and are in hilly areas. Many of the buildings are
severely occluded by the surrounding trees. Moreover, in the KN data set, some parts of the building are
at a similar height to the surrounding sloping grounds. Consequently, these parts could not be found in
the building mask.
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Figure 7. Data sets: Vaihingen (a) Area 1; (b) Area 2 and (c) Area 3; Aitkenvale
(d) Area 1 and (e) Area 2; (f) Hervey Bay; (g) Eltham (partially shown, full area is in
Figure 8a; (h) Hobart; and (i) Knox.
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The results on the VH data set have been evaluated using the threshold-based evaluation system [39].
Evaluation results for the VH data set have been confirmed by the ISPRS Commission III, Working
Group 4, and are available at [42,43] (see the method labeled as “MON”). For all other data sets,
2D reference data were created by monoscopic image measurement using the Barista software [44].
Evaluation results and data sets are available at [45]. All visible roof planes were digitized as polygons
irrespective of their size. The reference data included garden sheds and garages. These were sometimes
as small as 1 m2 in area.

4.2. Parameter Setting

Table 1 shows the list of parameters used by the proposed algorithm. Many of these parameter values
are either adopted from the existing literature or dependent upon the input LIDAR data. The setting
of values for the remaining parameters requires further explanation. For these parameters, standard
values have been chosen following a trial and error approach, applied on the first two areas of the
Vaihingen data set. The application of the adopted values to seven additional areas from six different
data sets having dissimilar point densities subsequently indicated that the parameter values are generally
insensitive to LIDAR point density. Note that only the parameter, dmax, which is dependent upon the
input LIDAR point cloud, needs to be changed across different data sets. The point neighbourhood, Td,
will be automatically altered once dmax is changed. All other parameters are kept unchanged across the
different data sets.

The value of the height threshold, Th, was Hg+2.5 m, which Awrangjeb et al. [7] had previously
employed for the AV and HB data sets. Since there may be some buildings (especially in the VH data
set) with low roof heights, Th = Hg + 1 m has been set in this study, and it also works well for the AV
and HB data sets.

For the coincident planes (when a roof plane is extracted twice), it is assumed that they share the
majority (at least 90%) of plane points, and the remaining points may be included from small roof
structures, such as chimneys or roof overhangs. The angle tolerance between two parallel planes, θ, is
set at π

32
, which is much smaller than the π

8
tolerance, previously used for obtaining the parallel lines [38].

Planes extracted on trees are usually small in size, and so, large roof planes are easily distinguishable.
Moreover, planes smaller than 1 m2 in size may not have enough LIDAR points for segmentation.
Therefore, setting the minimum roof plane area, ap, and width at 1 m2 and 1 m, respectively, is quite
reasonable. Firstly, planes smaller than 1 m2 may not have enough LIDAR points (i.e., at least three
points are required to initiate the plane equation, and at least one of the points should be coplanar with
its neighbours to form a seed region). Moreover, in this study, if an extracted plane smaller than 1 m2 is a
neighbour of a large plane, then the small plane is kept as a true roof plane. This helps to extract chimneys
and other small planes on a building roof. The size of the small roof planes is set at between one and 5 m2

(i.e., >ap and ≤Ta2) and that of medium planes is between five and 15 m2 (i.e., >Ta2 and ≤3Ta2). Any
random point spike within an extracted small plane, which is ≤Ta1 = 2 m2 in area, indicates that this
plane may be a tree plane. The number of the unused points and the height difference among the points
within a medium tree plane can be high. As the area of a tree plane increases, the number of unused
points on the tree plane also increases. Therefore, the ratio, r, of unused to used points is usually low
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for small tree planes and high for medium tree planes. In this study, r is set at 10% for small planes and
at 35% for medium planes. Conversely, the ratio, ru, of used points (for plane extraction) to the total
number of points on a non-ground object is higher for a building roof than for a tree. The value of ru is
set at 60% irrespective of the object size.

The average height difference, Thd, among points on a tree plane is generally greater than that on a
roof plane. Thd can be small for a small area of a tree, but it increases for a large tree area. Therefore, if
Thd is more than 0.8 m on a plane, then the plane is removed irrespective of its size. However, for small
tree planes, which have many unused points, as well (r > 10%), Thd is set at 0.2 m. If a roof plane is
partially occluded by the nearby trees, then Thd may also be large for that plane. In order to keep such
a plane, the straight line segments along the plane boundary are obtained. If the lines are parallel or
perpendicular, then the plane is kept, even if Thd grows to 0.5 m.

4.3. Results and Discussions

The results and discussions on the test data sets are presented separately for building detection and
roof plane extraction.

4.3.1. Building Detection Results

Tables 2 and 3 show the object- and pixel-based evaluation results, respectively, for the VH data set
using the evaluation system of [39]. Tables 4 and 5 show the same for the other data sets, which were
evaluated using the evaluation system of [41]. Figure 8 shows the detection results on the EL data set.
Figure 9 shows the same for Area 3 of the VH and Area 2 of the AV data sets. Both figures also show
some detection examples from the three test areas. Since the evaluation system in [39] does not provide
the area omission and commission errors, these errors, shown in Table 3, for the three areas of the VH
data sets were evaluated following the procedure in [41].

The proposed algorithm missed some small buildings in all three areas of the VH data set. However,
the large buildings were correctly extracted, as is evident from the completeness, correctness and quality
indices for buildings over 50 m2 in Table 2. A large building in the top-middle of Area 3 (shown within
the black circle in Figure 9a) was only partially detected, due to information missing in the LIDAR data,
and it was classified as a false negative by the evaluation system. That is why the completeness value for
buildings larger than 50 m2 in Table 2 is not 100% for Area 3. The under-segmentation cases occurred
when nearby buildings were found merged together. As shown in Figure 9g, two car ports were merged
with neighbouring buildings. This unexpected merging could be avoided by analysing white pixels in
between the black shapes in the building mask (Section 3.1). In all three areas, the omission errors
were higher than the commission errors. This performance indicates that while the proposed method
missed some of the small buildings and parts of the larger buildings, it successfully removed most of
the vegetation. The planimetric accuracies were close to one to two times the point spacing of the input
LIDAR data.

A similar detection trend was observed in the AV and HB data sets, as shown in Tables 4 and 5.
Although there were no under- and over-segmentation cases, as the buildings were well separated from
each other, there were omission and commission errors, specially in Area 2 of the AV data set. In this
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area, there were many small buildings surrounded by trees. As shown in Figure 9, the proposed algorithm
was capable of detecting small buildings, which were partially occluded, but it missed others, which were
either significantly occluded (Figure 9d) or had only small planes on their roofs (Figure 9f).

Table 2. Building detection results: object-based evaluation for the Vaihingen (VH) data set.
Cm = completeness, Cr = correctness and Ql = quality (Cm,50, Cr,50, Ql,50 are for buildings
over 50 m2) in percentage; 1:M = over-segmentation and N :1 = under-segmentation,
N :M = both over- and under-segmentation in the number of buildings.

Areas Cm Cr Ql Cm,50 Cr,50 Ql,50 1:M N :1 N :M

VH 1 83.8 96.9 81.6 100 100 100 0 6 0
VH 2 85.7 84.6 74.2 100 100 100 0 2 0
VH 3 78.6 97.8 77.2 97.4 100 97.4 0 7 0
Average 82.7 93.1 77.7 99.1 100 99.1 0 5 0

Table 3. Building detection results: pixel-based and geometric evaluation for the Vaihingen
(VH) data set. Cmp = completeness, Crp = correctness, Qlp = quality, Aoe = area omission
error and Ace = area commission error in percentage; RMSE = planimetric accuracy
in metres.

Areas Cmp Crp Qlp Aoe Ace RMSE

VH 1 92.7 88.7 82.9 13.9 4.6 1.11
VH 2 91.5 91 83.9 15 0.9 0.83
VH 3 93.9 86.3 81.7 15.2 1.8 0.89
Average 92.7 88.7 82.8 14.7 2.4 0.94

Table 4. Building detection results: object-based evaluation for the Aitkenvale (AV),
Hervey Bay (HB), Eltham (EL), Hobart (HT) and Knox (KN) data sets in percentage.
Cm = completeness, Cr = correctness and Ql = quality (Cm,10, Cr,10, Ql,10 are for buildings
over 10 m2); Crd = detection cross-lap (under-segmentation) and Crr = reference cross-lap
(over-segmentation) rates.

Areas Cm Cr Ql Cm,10 Cr,10 Ql,10 Crd Crr

AV 1 100 100 100 100 100 100 0 0
AV 2 67.2 100 67.2 81.1 100 81.1 0 0
HB 100 100 100 100 100 100 0 0
EL 77.6 88.2 70.3 91.8 88.2 81.8 7.1 1.4
HT 71.2 80.8 60.9 97.7 80.8 79.3 10.8 0
KN 69.2 75 56.3 87.5 68.3 62.2 15 1.9
Average 80.9 90.7 75.8 93 89.6 84.1 5.4 0.6
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Table 5. Building detection results: pixel-based and geometric evaluation for the
Aitkenvale (AV), Hervey Bay (HB), Eltham (EL), Hobart (HT) and Knox (KN) data sets.
Cmp = completeness, Crp = correctness, Qlp = quality, Aoe = area omission error and
Ace = area commission error in percentage; RMSE = planimetric accuracy in metres.

Areas Cmp Crp Qlp Aoe Ace RMSE

AV 1 96 97.4 93.6 4.1 2.6 0.44
AV 2 87.2 94.9 83.2 12.9 5.2 0.66
HB 93 94.5 88.3 7 5.5 0.68
EL 85.6 90.1 78.2 14.4 10 1.31
HT 80 80.2 66.8 20 19.9 1.33
KN 66.2 58 44.8 33.8 42 1.80
Average 84.7 85.9 75.8 15.4 14.2 1.04

Figure 8. Building detection on (a) the Eltham data set (five points/m2); (b–d) some
detection examples on complex cases; and (e–g) some missing buildings in difficult cases.
Areas marked by letters in (a) are magnified in (b) to (g).
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Figure 9. Building detection on (a) Area 3 of the VH data set and (b) Area 2 of the AV data
set. Building detection examples in: (c–f) Area 2 of the AV data set; and (g,h) Area 3 of the
VH data set. Areas marked by letters in (a) and (b) are magnified in (c) to (h).
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Compared to the VH data set, the point density of the AV and HB data sets is high. As shown in
Table 2, in the VH data set, the proposed method extracted almost all the buildings larger than 50 m2.
Table 4 shows that in the AV and HB data sets, the method also extracted all small buildings (i.e., garages
and garden sheds), which were as small as 10 m2, except in the AV 2 area, where some severely occluded
garden sheds (e.g., Figure 9d) were missed. Thus, the completeness for buildings larger than 10 m2 in
Table 4 is not a maximum for the AV 2 area. Nevertheless, the proposed method was able to extract all
buildings larger than 50 m2 in this area.

Compared to the HT data set, the EL and KN areas are more hilly and have more occluded buildings.
However, the proposed algorithm performed better in the EL data set than in the HT and KN data sets.
This is because the point density in the EL data set is higher than that in the HT and KN data sets.
In all three, some large trees could not be removed, as indicated within magenta coloured ellipses in
Figures 8 and 10. As a result, the correctness values are less than 90%, even for buildings larger
than 10 m2 in area. Some of the detected trees in the EL and KN data sets were very dense, so laser
points hardly penetrated the canopy. Some of the detected tree tops in the HT data set were not only very
dense, but also shaped such that they appeared to be flat planes. The extracted planes on these trees were
thus too large to be removed.

In pixel-based evaluation (Table 3), performance was worse in the HT and KN data sets than in the AV
and HB data sets, due to the detection of some large trees and the missing of some small and occluded
buildings. This is also evident from the high area omission and commission errors, as well as from the
branching and miss factors for these two data sets. The accuracy of the extracted building boundaries is
one to two times the maximum point spacing in the input LIDAR data. A better planimetric accuracy is
shown to be possible with high density LIDAR data.

The detection cross-lap (under-segmentation) and reference cross-lap (over-segmentation) rates
were high for the EL, KN and HT data sets, mainly due to dense vegetation in between neighbouring
buildings and garage or garden sheds that were very close to buildings. For instance, two buildings in
Figure 9d are detected jointly, because of the dense vegetation in between the buildings. The garden
shed close to one of these buildings was merged with the building (Figure 8d). In the EL data set,
there was one reference cross-lap, as well. As shown in Figure 8d, a part of a building is extracted
separately. Because of the transparent material on the roof, there were laser returns from the ground
(in between the building-part and the main building). Consequently, the building-part was found as a
separate object in the building mask.

Some building detection examples in complex cases are shown in Figure 8b–d for the EL and in
Figure 10e–f for the KN data sets. Thus, it has been demonstrated that the proposed method can extract
buildings with complex roof structures, even when they are severely occluded by the surrounding trees.
Nevertheless, the proposed method failed to detect small garden sheds, which are mostly occluded by
trees, as shown by red polygons in Figures 8e–g and 10e–f.

Overall, as shown in Tables 2 and 3, the performance of the proposed method decreases with a
decrease in LIDAR point density, and the worst performance was observed in the KN data set, where
the LIDAR point density was only one point/m2. Most of the buildings missed in the KN data set were
small in size and largely occluded by surrounding trees (see Figure 10e–f).
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Figure 10. Roof plane extraction for (a) the Knox data set (one point/m2); (b–d) some
extracted planes in complex cases; and (e–f) some extracted and missing buildings in difficult
cases. Areas marked by letters in (a) are magnified in (b–f).

4.3.2. Roof Plane Extraction Results

Tables 6 and 7 show the object- and pixel-based evaluation results, respectively, for roof plane
extraction for the VH data set using the evaluation system of [39]. Tables 8 and 9 show the same
for other data sets, which were evaluated using the evaluation system of [41]. Figure 10 shows the roof
plane extraction results for the KN data set. It also shows some samples for building detection and plane
extraction results from this data set. Figure 11 shows the results for Area 2 of the VH data set and for
the HB data set.

In the VH data set, the proposed algorithm performed better on Area 3, which comprises mainly
residential buildings and less vegetation. For all three areas, there were many under-segmentation cases,
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where small roof structures could not be separately extracted, but could be merged with the neighbouring
large planes (see Figure 11c,d). In addition, as shown in Figure 11c, some low height roof structures
were missed.

Table 6. Roof plane extraction results: object-based evaluation for the Vaihingen (VH)
data set. Cm = completeness, Cr = correctness and Ql = quality (Cm,10, Cr,10, Ql,10 are for
planes over 10 m2) in percentage; 1:M = over-segmentation and N :1 = under-segmentation;
N :M = both over- and under-segmentation in the number of planes.

Areas Cm Cr Ql Cm,10 Cr,10 Ql,10 1:M N :1 N :M

VH 1 76.4 83.3 66.3 84.4 84.9 73.3 6 42 7
VH 2 73.9 91.9 69.4 93.8 92.6 87.2 7 3 1
VH 3 82.1 93.9 78 92.7 96.7 89.9 5 45 0
Average 77.5 89.7 71.2 90.3 91.4 83.5 6 30 2.7

Table 7. Roof plane extraction results: pixel-based and geometric evaluation for the
Vaihingen (VH) data set. Cmp = completeness, Crp = correctness and Qlp = quality in
percentage; RMSE = planimetric accuracy and RMSZ = height accuracy in metres.

Areas Cmp Crp Qlp RMSE RMSZ

VH 1 90.5 91.9 83.8 1.05 0.41
VH 2 88.1 95.7 84.8 0.74 0.37
VH 3 91.5 91.9 84.7 0.89 0.27
Average 90 93.2 84.4 0.89 0.35

Table 8. Roof plane extraction results: object-based evaluation for the Aitkenvale (AV),
Hervey Bay (HB), Eltham (EL), Hobart (HT) and Knox (KN) data sets in percentage.
Cm = completeness, Cr = correctness and Ql = quality (Cm,10, Cr,10, Ql,10 are for buildings
over 10 m2); Crd = detection cross-lap (under-segmentation) and Crr = reference cross-lap
(over-segmentation) rates.

Areas Cm Cr Ql Cm,10 Cr,10 Ql,10 Crd Crr

AV 1 92.3 92.3 85.7 96 92.3 88.9 7.7 7.7
AV 2 68.6 94.8 66.1 85.9 94.8 82 16.9 4.1
HB 89.8 95.5 86.1 99.3 95.5 94.9 7.1 3
EL 79.1 87.9 71.4 92.6 87.9 82.1 10.9 5.4
HT 69.4 69.6 53.3 91 69.6 65.2 14.4 6.2
KN 56.4 59.3 40.6 76.7 59.3 50.2 23.4 3.3
Average 75.9 83.2 67.2 90.3 83.2 77.2 13.4 5.0
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Table 9. Roof plane extraction results: pixel-based and geometric evaluation for the
Aitkenvale (AV), Hervey Bay (HB), Eltham (EL), Hobart (HT) and Knox (KN) data sets.
Cmp = completeness, Crp = correctness and Qlp = quality, Aoe = area omission error and
Ace = area commission error in percentage; RMSE = planimetric and RMSZ = height
accuracies in metres.

Areas Cmp Crp Qlp Aoe Ace RMSE RMSZ

AV 1 85.6 80.8 71.1 14.4 19.2 0.49 0.032
AV 2 79.4 79.7 66.1 20.6 20.3 0.54 0.034
HB 85.5 72.1 64.2 14.5 27.9 0.52 0.029
EL 80.2 70.1 59.8 19.8 29.9 0.88 0.037
HT 72 59.2 48.1 28 40.8 1.00 0.042
KN 63.6 62.5 46.1 36.4 37.5 1.11 0.047
Average 77.7 70.7 59.2 22.3 29.3 0.76 0.037

Improved roof extraction results were observed in the AV and HB data sets (see Tables 8 and 9),
where the LIDAR point density was high. The under-segmentation cases were higher than the
over-segmentation cases, since some of the small planes were merged with neighbouring large planes.
The high area omission and commission errors in Table 9 were partially because of the misalignment
between the reference data and the roof plane extraction results. The reason for the misregistration
is that in the case of the AV and HB data sets, the reference buildings and planes were generated
from orthoimages using Barista software [44]. However, there were large registration errors (one to 2 m2)
between the orthoimagery and LIDAR data. Since the proposed algorithm extracted information
from LIDAR data only, the estimated omission and commission errors might include the registration
error. Similar to the building detection results presented above, the planimetric accuracy in roof plane
extraction was within one to two times the point spacing of the LIDAR data. The height error is only
three to 5 cm, which shows the advantage of using raw LIDAR data, instead of a raster DSM.

As can be seen in the last two columns of Table 8, there were many under- (detection cross-lap) and
over-segmentation (reference cross-lap) errors among the extracted roof planes. The under-segmentation
error was the highest for the KN data set, where many of the small planes were either missed or
merged with the neighbouring large planes. For instance, examples of missing roof planes are shown
in Figure 10b–d. One of the extracted planes in Figure 9c covered at least two neigbouring planes
(under-segmentation). In pixel-based evaluation (Table 9), the proposed method performed more poorly
in the EL, HT and KN data sets than in the AV 1 and HB test areas, which were highly vegetated and
hilly. This performance is indicated not only by lower completeness and correctness values, but also by
high area omission and commission errors. The method performed the worst in the KN data set, which
had the lowest point density.

Similar to the building detection performance, the overall roof extraction performance of the
proposed method deteriorates with a decrease in LIDAR point density. Its performance is significantly
affected at low point densities, for example, in the HT and KN data sets, where the point density was
only one to two points/m2.
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Figure 11. Roof plane extraction on (a) Area 2 of the VH data set and (b) the HB data set.
Roof plane extraction examples in: (c–e) Area 2 of the VH data set and (f–g) the HB data
set. Areas marked by letters in (a) and (b) are magnified in (c–g).

4.4. Computation Time

Table 10 shows the computation time in seconds for each data set. Since the test areas differ in size
and point density, both run time per m2 (the total time divided by the corresponding test area) and run
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time per point (the total time divided by the number of non-ground points) are shown along with the total
run time. The ground points were not considered, since they are not used at all after LIDAR classification
and mask generation in Section 3.1. Computations were performed on a Windows 7 64-bit machine with
an Intel(R) Xeon(R) CPU (E31245 @ 3.30 GHz) and 16 GB RAM.

Table 10. Computation time in seconds. Data sets: Vaihingen (VH), Aitkenvale (AV),
Hervey Bay (HB), Eltham (EL), Hobart (HT) and Knox (KN). Time = total execution time;
Timearea = time/m2; and Timepoint = time/point.

Areas T ime T imearea T imepoint

VH 1 301.3 0.00826 0.00516
VH 2 536.0 0.01143 0.00667
VH 3 322.2 0.00820 0.00550
AV 1 39.8 0.01100 0.00082
AV 2 5350.0 0.15723 0.00710
HB 81.8 0.00722 0.00157
EL 1074.6 0.01221 0.00430
HT 550.6 0.00602 0.00754
KN 268.2 0.00641 0.00722

In general, when the total run time in Table 10 is considered, the efficiency of the proposed method
varies with respect to the point density, test area size and amount of vegetation. Area 2 of the VH data
set required more time than the other two areas of the same data set, since it is larger and possesses
more vegetation. The AV 2 area took the maximum time, because of its high point density and dense
vegetation over a large area (see Figure 9b). The run time for the EL data set was second to the AV 2,
due its dense vegetation over a large area, as shown in Figure 8. The AV 1 and HB areas took the least
time, because they are small in size and have limited vegetation.

In terms of run time per m2, the three areas of the VH data set and the EL data set showed similar
performance, since their point density was similar. In spite of having high point density, the AV 1 and
HB areas took similar computation times to the VH and EL areas, since a significant parts of these two
areas comprised ground. Area 2 of the AV data set was again the slowest, since it has high point density
and dense vegetation. The HT and KN areas took the least time, because of their low point density.

As far as the run time per point is concerned, all test areas took 0.004 to 0.008 s, except the AV 1 and
HB areas run time was shorter, because of the large areas of ground with limited vegetation.

4.5. Comparison with Other Methods

Since the proposed algorithm is an automatic method and works solely with LIDAR data, the existing
methods that use LIDAR data, shown in Table 11, have been considered for comparison. The results of
the existing methods on the VH data set, shown in Tables 12 and 13, are available in [20,35,40]. The
first three methods in Table 11 are used to compare building detection results, and the remaining two and
Dorninger [26] are used to compare roof plane extraction results to those of the proposed method.
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In all three VH areas, the proposed method of building detection offered similar or better
completeness in both object- and pixel-based evaluation than the alternative methods, namely Dorninger,
Niemeyer [35] and Liu [20], except in Areas 2 and 3, in which Niemeyer gave slightly better pixel- and
object-based completeness, respectively, than the proposed method (see Table 12). Nevertheless, in terms
of object-based correctness, while Niemeyer showed significantly worse results, Dorninger provided the
best performance in all three areas. All three existing methods offered better pixel-based correctness
than the proposed method. For buildings larger than 50 m2, while Dorninger and Liu were unable to
detect some buildings, especially in Areas 1 and 3, Niemeyer and the proposed method were successful
in detecting the majority of them. However, Niemeyer still could not remove some large trees in Areas 1
and 2, as shown by low Cr,50 values in Table 12. In terms of planimetric accuracy, in all three areas, the
proposed method produced better performance than Liu, but slightly worse results than Niemeyer.

Table 11. Existing methods that have been compared with the proposed method.

Method’s Name Reference

Niemeyer Niemeyer et al. [35]
Dorninger Dorninger and Pfeifer [26]
Liu Liu et al. [20]
Oude Elberink Oude Elberink and Vosselman [30]
Sohn Sohn et al. [13]

Table 12. Comparing building detection results for the Vaihingen (VH) data set.
Object-based Cm = completeness and Cr = correctness (Cm,50 and Cr,50 are for buildings
over 50 m2) and pixel-based Cmp = completeness and Crp = correctness are in percentage;
RMSE = planimetric accuracy in metres. Results for existing methods are from [40].

Methods Cm Cr Cm,50 Cr,50 Cmp Crp RMSE

Area 1
Niemeyer 83.8 72.1 100 87.9 87 90.1 1.09
Dorninger 78.4 100 96.7 100 85.7 98.1 0.99
Liu 75.7 93.5 93.3 96.7 76.7 95.7 1.18
Proposed 83.8 96.9 100 100 92.7 88.7 1.11

Area 2
Niemeyer 78.6 52.4 100 84.6 93.8 91.4 0.71
Dorninger 85.7 100 100 100 85.4 98.4 1.17
Liu 71.4 100 90.9 100 88.5 98.9 0.71
Proposed 85.7 84.6 100 100 91.5 91 0.83

Area 3
Niemeyer 82.1 90.2 97.5 100 93.8 93.7 0.65
Dorninger 75 100 95 100 86.3 98.7 0.81
Liu 55.4 100 77.5 100 67.8 98.4 1.17
Proposed 78.6 97.8 97.4 100 93.9 86.3 0.89
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Table 13. Comparing roof plane extraction results for the Vaihingen (VH) data set.
Object-based Cm = completeness and Cr = correctness (Cm,10 and Cr,10 are for planes
over 10 m2) in percentage; 1:M = over-segmentation and N :1 = under-segmentation,
N :M = both over- and under-segmentation in the number of planes; RMSE = planimetric
accuracy and RMSZ = height accuracy in metres. Results for existing methods are
from [40].

Methods Cm Cr Cm,10 Cr,10 1:M N :1 N :M RMSE RMSZ

Area 1
Oude Elberink 65.3 97.3 63.3 97.3 0 38 3 0.94 0.55
Dorninger 72.2 96.7 77.7 96.5 7 42 6 0.79 0.65
Sohn 88.2 98.5 89.9 98.2 5 36 14 0.75 0.58
Proposed 76.4 83.3 84.4 84.9 6 42 7 1.05 0.41

Area 2
Oude Elberink 79.7 95 94 100 0 7 0 1.16 3.31
Dorninger 73.9 100 88 100 3 5 1 1.03 0.88
Sohn 73.9 100 90 100 5 3 0 0.77 1.04
Proposed 73.9 91.9 93.8 92.6 7 3 1 0.74 0.37

Area 3
Oude Elberink 64.3 100 55.9 100 0 46 0 1.04 0.42
Dorninger 76.6 99.1 74.5 99.1 3 50 0 0.84 0.38
Sohn 84.7 100 89 100 2 51 1 0.77 0.35
Proposed 82.1 93.9 92.7 96.7 5 45 0 0.89 0.27

In Areas 1 and 3 of the VH data set, the proposed roof plane extraction method offered better
object-based completeness than Oude Elberink [30] (see Table 13). In Area 2, Oude Elberink showed
better completeness than the proposed method, but as the plane size increased (>10 m2), both methods
showed similar completeness. In terms of planimetric accuracy, the proposed algorithm performed better
than Oude Elberink in Areas 2 and 3, but worse in Area 1.

A similar performance difference was found when the results were compared with those by Dorninger.
In all three VH areas, in terms of object-based evaluation, the proposed method showed better
completeness, but lower correctness, than Dorninger, even for the planes larger than 10 m2. The
under-segmentation error was lower for the proposed method. Moreover, Dorninger is a semiautomatic
method, as it applies manual preprocessing and post-processing steps.

In Area 2 of the VH data set, the proposed method offered better object-based completeness and
height accuracy than Sohn [13]. However, in terms of completeness and correctness, Sohn outperformed
the proposed method in the other two VH areas. In Area 1, the proposed method showed more
under-segmentation errors, but a lower total number of over- and under-segmentation errors than Sohn.
In Area 3, the method showed less under-segmentation errors than Sohn.
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For the extracted planes in all VH areas, the proposed method showed much better height accuracy
than Oude Elberink, Dorninger and Sohn, while Dorninger showed significantly larger height error (more
than 3.3 m) in Area 2.

5. Conclusions

A new LIDAR point cloud segmentation algorithm has been proposed for automatic extraction of 3D
building roof planes from LIDAR data. It has been shown via experimental testing that the proposed
algorithm affords high building detection rates and good roof plane extraction performance. It is not
only capable of detecting small buildings, but can also extract small roof planes on complex building
roofs. Moreover, in most cases, it can separate buildings from surrounding dense vegetation.

However, since the method uses LIDAR data alone, the planimetric accuracy is limited by the LIDAR
point density. At present, the method does not incorporate smoothing of the boundaries of extracted
planar segments. Moreover, it will not work on curved roofs. Future work will look at the development
of a regularisation procedure to smooth roof plane boundaries and to reconstruct building roof models.
The integration of image data will also help for better object extraction where LIDAR information is
missing. An extension of the proposed method could be the use of higher density point cloud data
(low density LIDAR point cloud data may be complemented with DSMs derived from dense image
matching [9]), and thus, the curved surfaces could be better approximated [26]. An alternative is to follow
a hybrid approach [46] that can incorporate both data-driven and model-driven approaches. While the
data-driven approach, presented in this paper, will aim to extract planar roof segments, the model-driven
approach will concentrate on the extraction of curved roof surfaces.
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