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Abstract: In this paper, two mixture models are proposed for modeling heterogeneous

regions in single-look and multi-look polarimetric SAR images, along with their

corresponding maximum likelihood classifiers for land cover classification. The classical

Gaussian and Wishart models are suitable for modeling scattering vectors and covariance

matrices from homogeneous regions, while their performance deteriorates for regions that

are heterogeneous. By comparison, the proposed mixture models reduce the modeling

error by expressing the data distribution as a weighted sum of multiple component

distributions. For single-look and multi-look polarimetric SAR data, complex Gaussian and

complex Wishart components are adopted, respectively. Model parameters are determined

by employing the expectation-maximization (EM) algorithm. Two maximum likelihood

classifiers are then constructed based on the proposed mixture models. These classifiers are

assessed using polarimetric SAR images from the RADARSAT-2 sensor of the Canadian

Space Agency (CSA), the AIRSAR sensor of the Jet Propulsion Laboratory (JPL) and

the EMISAR sensor of the Technical University of Denmark (DTU). Experiment results

demonstrate that the new models fit heterogeneous regions preferably to the classical

models and are especially appropriate for extremely heterogeneous regions, such as urban

areas. The overall accuracy of land cover classification is also improved due to the more

refined modeling.
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1. Introduction

In the past two decades, land cover classification has been one of the central topics in the radar remote

sensing community. Many classification schemes for polarimetric SAR images have been proposed.

The first method that utilizes the complete polarimetric information is the Bayes classifier based on

the complex Gaussian distribution for single-look polarimetric SAR data, presented by Kong [1] and

Lim [2]. Lee [3] extended their method and developed an optimal classifier for multi-look polarimetric

SAR data based on the complex Wishart distribution, namely the Wishart classifier, which is a milestone

in the research of polarimetric SAR data classification. These methods are widely applied, since they

describe each land cover type by comparatively simple probability density functions and do not require

much computation. However, these methods make the assumption that the land cover is homogeneous,

which is improper for complicated SAR scenes. Other statistical models for land cover classification

include the K-distribution [4,5] and the G-distribution [6,7], which belong to the category of product

models [8]. These models employ a positive random variable for characterizing heterogeneity of the

scattering medium and have higher accuracy than the Wishart model in heterogeneous regions.

The above-mentioned classifiers are pixel-based, i.e., the class label to a pixel is completely

determined by the pixel itself. An alternative to a pixel-based classification scheme would be that

based on regions. Typically, a region-based classification scheme explores spatial correlations between

adjacent pixels [9]. Images are first segmented into non-overlapping small regions, each of which

contains pixels with similar properties. The class label to a region is determined collectively by

all the pixels in that region. As an example, Wu [10] proposed such a method that combines the

Wishart distribution with the Markov random field (MRF). Although additional information of spatial

correlations may improve classification accuracy, it also introduces extra complexity in modeling and

computation. Pixel-based classification schemes that can achieve comparably satisfactory accuracy

are still appealing and of equal importance. Therefore, discussions will be focused on pixel-based

classification schemes in this paper.

Accurate classification of polarimetric SAR data relies on appropriate statistical modeling of each land

cover type. As pointed out by Lee [3], scattering vectors from a homogeneous region follow a complex

Gaussian distribution, and the corresponding covariance matrices have a complex Wishart distribution.

These distributions give the fundamental descriptions of single-look and multi-look polarimetric SAR

data. Classifiers based on these models achieve the optimal classification accuracy in homogeneous

regions. While in heterogeneous regions, their performance deteriorates and more refined statistical

models are needed. In research fields of image processing and computer vision, irregular distributions

are frequently approximated by the Gaussian mixture model [11,12]. Inspired by these applications,

we propose to describe heterogeneous regions in polarimetric SAR images using mixture models. For

single-look data, the true distribution of the scattering vector is approximated by a weighted sum of

complex Gaussian distributions. For multi-look data, the true distribution of the covariance matrix is

approximated by a weighted sum of complex Wishart distributions. The principle of this modeling

can be accounted for from two perspectives. From the physical point of view, heterogeneity of a

certain land cover type can be partly attributed to the blending of pixels reflecting different scattering

mechanisms [13] and partly to the finer spatial resolution [14]. The proposed model is based on the
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assumption that samples of each land cover type are a mixture of multiple subclasses, each of which

has a complex Gaussian distribution in the single-look case, or a complex Wishart distribution in the

multi-look case. From the mathematical point of view, the mixture component distributions serve as

the kernels in estimating an irregular probability density function of the data. Based on the proposed

mixture models, two maximum likelihood classifiers can be constructed. The expectation-maximization

(EM) algorithm [15] is employed to estimate the model parameters using preselected training samples.

If independence is further assumed among data from multiple radar frequencies, the classifiers can be

extended to apply to multi-frequency polarimetric SAR images with no effort.

Some researchers have applied the mixture model to the problem of unsupervised clustering of

polarimetric SAR data. Kersten [16] proposed an EM clustering scheme based on the Wishart mixture

model and compared it with fuzzy clustering algorithms. Doulgeris [17] developed an automated

clustering procedure using a mixture of K-distributions to accommodate non-Gaussian polarimetric

SAR data. Both clustering methods model the whole image by using a mixture model, with each

mixture component corresponding to a cluster. Therefore, each class is essentially described by a

single-component distribution. While the primary goal of this research is to investigate whether a

mixture of multiple distributions within a single class would better fit the real polarimetric SAR data

and, thus, improve the classification performance in a supervised framework. Additionally, in the above

clustering methods, it is the EM algorithm and the merging and splitting strategies that actually perform

the classification. In our method, classification is based on the maximum likelihood criterion. The EM

algorithm is employed only to determine mixture model parameters for each class.

The remainder of this paper is organized as follows. Some statistical properties of polarimetric SAR

data are summarized in Section 2, along with the principle of fundamental classifiers. In Section 3,

classification schemes based on the proposed mixture models are presented in detail. Experiment results

are given in Section 4 with discussions. Finally, the research is concluded in Section 5.

2. Background

Generally, polarimetric SAR data are provided in either of two formats: the single-look format and

the multi-look format. In this section, some statistical properties of polarimetric SAR data will be briefly

reviewed, along with the principle of fundamental classifiers for each data format.

2.1. Polarimetric SAR Data

A polarimetric SAR measures the backscattering coefficient of the scene under illumination using

multiple combinations of transmitting and receiving antenna polarizations. The most frequently used

antenna polarizations are the horizontal polarization (h) and the vertical polarization (v), which are

orthogonal. In the case of a fully polarimetric SAR, each resolution unit is described by a 2 × 2 complex

scattering matrix S, or the Sinclair matrix, as shown in Equation (1).

S =

[

Shh Shv

Svh Svv

]

(1)



Remote Sens. 2014, 6 3773

The elements Spq in the scattering matrix represent the complex scattering coefficient, with q denoting

the transmitting polarization and p denoting the receiving polarization. If reciprocity holds, the

cross-polarizations are considered as equal, i.e.,

Shv = Svh. (2)

In such a case, the scattering matrix becomes symmetric and may be reduced to a three-dimensional

single-look scattering vector :

k =
[

Shh

√
2Shv Svv

]T

(3)

where T denotes the transpose of a matrix. For the purpose of speckle reduction, scattering vectors of

adjacent resolution units are incoherently averaged, or multi-look processed, according to Equation (4).

Z =
1

n

n
∑

i=1

kik
H
i (4)

In Equation (4), H denotes the conjugate transpose of a matrix, ki are the scattering vectors to be

averaged, and n is defined as the number of looks. The resulting matrix Z is called the n-look covariance

matrix. Other forms of polarimetric SAR data include the coherency matrix and the Kennaugh matrix.

In this paper, covariance matrices are mainly dealt with.

2.2. Statistical Models of Polarimetric SAR Data

The backscatter from a distributed target is random in nature. A great many statistical models have

been proposed for single-look and multi-look polarimetric SAR data, among which, the Gaussian model

and the Wishart model are fundamental. For homogeneous regions, the scattering vector k can be

modeled as having a complex Gaussian distribution with zero mean, the probability density function

of which is:

p(k|C) =
exp {−k

H
C

−1
k}

πd|C| . (5)

In Equation (5), C denotes the covariance of the distribution. As demonstrated by Goodman [18], if

the scattering vectors in Equation (4) are independent, then Z has a complex Wishart distribution, the

probability density function of which is:

p(Z|C) =
nnd|Z|n−d exp {−nTr(C−1

Z)}
R(n, d)|C|n . (6)

In Equation (6), C denotes the centroid of the distribution and is identical to the covariance C in

Equation (5). Tr denotes the trace of a matrix. The normalization term R(n, d) in the denominator

can be evaluated according to:

R(n, d) = π
1

2
d(d−1)Γ(n) · · ·Γ(n− d+ 1). (7)

In Equation (7), Γ(·) represents the gamma function. The parameter d in Equations (5), (6) and (7) is the

dimension of the scattering vector. For a fully polarimetric SAR under reciprocity, d = 3.

The Gaussian model and the Wishart model are appropriate for modeling homogeneous regions,

while for heterogeneous regions, more advanced product models are frequently used. A product model
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employs a positive random variable with unit mean to describe the texture of the scattering medium.

The covariance matrix Z is modeled as the product of the texture variable z and a Wishart distributed

matrix X, i.e.,

Z = zX. (8)

The probability density function of Z, or pZ(Z), can be determined by the following integration in

Equation (9), if a distribution pz(z) is assumed for the texture variable z.

pZ(Z) =

∫

pz(z) · pZ|z(Z|z)dz (9)

When the texture has a gamma distribution, Z has a K-distribution, the probability density function of

which is:

p(Z|α,C) =
2|Z|n−d(nα)

1

2
(α+nd)

R(n, d)|C|nΓ(α)
Kα−nd

(

2
√

nαTr(C−1Z)
)

Tr(C−1Z)−
1

2
(α−nd)

. (10)

In Equation (10), K·(·) represents the modified Bessel function of the second kind. α and C correspond

to the shape parameter of z and the centroid of X, respectively. When α tends to infinity, z becomes

a constant, and the K-distribution degrades to the Wishart distribution, as a special case. Numerous

instances fall into the category of product models [14], since different distributions of the texture variable

lead to different distributions of the covariance matrix. In this paper, discussions and comparisons are

made mainly with respect to the three models mentioned above.

2.3. The Wishart Classifier

Lee [3] has proposed an optimal Bayes classifier for multi-look polarimetric SAR data based on the

Wishart model. In his method, each land cover type is assumed to be homogeneous and is modeled by a

Wishart distribution, with the centroid characterizing the scattering property of the associated medium.

To estimate the centroid, averaging the training samples of each land cover type is simply needed. Denote

the M classes of land covers by ωm, m = 1, 2, . . . ,M , and the corresponding class priors by P (ωm).

The Wishart centroid and conditional distribution of each class are represented by Cm and p(Z|Cm), or

simply pm(Z). The Wishart classifier labels a test sample Zn with the class ωi, if:

p(Zn|Ci)P (ωi) > p(Zn|Cj)P (ωj) (11)

holds for all j 6= i. For computational simplicity, the log-likelihood is actually computed instead of the

true likelihood. Furthermore, if all classes have equal prior probabilities, the Bayes classifier degrades

to a maximum likelihood classifier, i.e., a sample Zn is labeled with the class ωi, if:

p(Zn|Ci) > p(Zn|Cj) (12)

holds for all j 6= i. A distance measure is also derived by Lee [3], representing the distance between a

test sample Zn and a class ωm, i.e.,

dWishart(Zn, ωm) = log |Cm|+ Tr(C−1
m Zn) (13)

which is minimized among all classes when performing classification to Zn. The Wishart classifier

has great significance in that it is the first classification scheme for multi-look polarimetric SAR data
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that utilizes the full polarimetric information, and it does not require much computation. The classifier

proposed by Kong [1] is similar in rationale, except that it is based on the complex Gaussian distribution

and applies to single-look data. For homogeneous regions, these classifiers are optimal in the sense of

minimizing the classification error rate. In Section 4, classification results will be presented.

3. The Proposed Method

In this section, the proposed mixture models for polarimetric SAR data in heterogeneous regions

will be presented in detail, along with the maximum likelihood classifiers based on these models. The

parameter estimation procedure will also be discussed.

3.1. Mixture Modeling of Polarimetric SAR Data

The Wishart classifier for multi-look polarimetric SAR data is of great significance. It has been

extensively used as basic components in many polarimetric SAR applications [19,20], although the

homogeneity assumption usually makes it suboptimal in practice. As has been demonstrated in [5],

some homogeneous regions do not obey the Wishart distribution, due to the finer spatial resolution;

other regions to be modeled are even not homogeneous, especially the urban areas. Applying the

Wishart model to these areas would cause considerable modeling errors. The same will happen to

the Gaussian model for single-look polarimetric SAR data. To adapt to heterogeneity, we propose to

model polarimetric SAR data using mixture models. The mixture models are powerful in approximating

irregular distributions and have gained much success in various research fields, such as image processing

and computer vision [11,12]. For single-look scattering vectors and multi-look covariance matrices, the

true probability density function is estimated by a weighted sum of complex Gaussian distributions and

complex Wishart distributions, respectively.

Take the multi-look case for example. Suppose that a region is modeled by a mixture of K Wishart

components. The centroids of these Wishart components are denoted by Ck, k = 1, 2, . . . , K. Each

Wishart component is associated with a non-negative weight πk. The weights should satisfy:

K
∑

k=1

πk = 1. (14)

From a statistical point of view, each sample from the Wishart mixture distribution is considered to be

generated by one of the K Wishart components, with πk representing the probability that the sample is

drawn from the k-th component. Based on this model, the probability density function of the Wishart

mixture distribution can be expressed by:

p(Z|K,C1, . . . ,CK , πm, . . . , πK) =
K
∑

k=1

πkq(Z|Ck)

=

K
∑

k=1

πk

nnd|Z|n−d exp
{

−nTr(C−1
k Z)

}

R(n, d)|Ck|n
.

(15)

The mixture modeling of polarimetric SAR data relies on the assumption that heterogeneity of land

covers results from the blending of pixels with diverse scattering properties. This is true for polarimetric
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SAR images with moderate or coarse spatial resolution. For those images with very fine spatial

resolution, the non-Gaussian and non-Wishart phenomena are partly due to the lack of enough random

scatterers within each resolution unit [14]. In such a case, the mixture models are still applicable, as

the component distributions can be viewed as kernels for approximating an unknown probability density

function, from a mathematical perspective. Since the proposed mixture models take into account the

heterogeneity issue of practical radar scenes, they should fit real polarimetric SAR data more precisely.

Section 4 will validate the effectiveness of the mixture models by experiments.

3.2. Parameter Estimation Using the EM Algorithm

The EM algorithm is an iterative algorithm that solves the maximum likelihood estimation of model

parameters when the observed data are incomplete. In the case of a mixture model, each sample is

assumed to be drawn from one of the mixture components, but the definite component to which a sample

belongs to is unknown. Therefore, the EM algorithm is quite suitable for the parameter estimation

problem of mixture models, as indicated in [15]. Since the solving procedures are quite similar for the

Gaussian mixture model and the Wishart mixture model, the latter is taken for illustration. Suppose

that the set of training samples for class ωm is {Zm,1,Zm,2, . . . ,Zm,Nm
}, and the class distribution is

the weighted sum of Km Wishart components with centroids {Cm,1,Cm,2, . . . ,Cm,Km
} and weights

{πm,1, πm,2, . . . , πm,Km
}. The k-th mixture component is denoted by q(Z|Cm,k), or simply qm,k(Z). For

succinctness, the subscript m will be left out in the following derivation. Additionally assuming that the

training samples are drawn independently, the EM algorithm will maximize the likelihood function of

Equation (16) by iteratively updating Ck and πk.

L(K,C1, . . . ,CK , π1, . . . , πK) =

N
∏

n=1

K
∑

k=1

πkq(Zn|Ck) (16)

Following a similar derivation to [15], the model parameters can be solved by the following

iterative procedure.

Step 1: Specify the initial number of Wishart components K. A merging strategy will be described

later to control the number of mixture components in each iteration.

Step 2: Initialize Ck and πk, k = 1, 2, . . . , K. Ck are initialized by randomly selected Znk
from the

training samples, and πk are initialized to be equal to each other.

C
(0)
k = Znk

(17)

π
(0)
k =

1

K
(18)

Step 3: Compute γ
(i)
kn, k = 1, 2, . . . , K, n = 1, 2, . . . , N , according to Equation (19). These

are intermediate variables in the i-th iteration of the EM algorithm. The C
(i−1)
k and π

(i−1)
k used in

Equation (19) are the current values of Wishart centroids and weights.

γ
(i)
kn =

π
(i−1)
k q(Zn|C(i−1)

k )
∑K

k=1 π
(i−1)
k q(Zn|C(i−1)

k )
(19)
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Step 4: Update Wishart centroids C
(i)
k and weights π

(i)
k according to Equations (20) and (21).

C
(i)
k =

∑N

n=1 γ
(i)
knZn

∑N

n=1 γ
(i)
kn

(20)

π
(i)
k =

1

N

N
∑

n=1

γ
(i)
kn (21)

Step 5: Repeat Step 3 and Step 4 until convergence. The iteration converges if C
(i)
k and π

(i)
k do not

change much compared with C
(i−1)
k and π

(i−1)
k , according to Equations (22) and (23). The left side of

Equation (22) is a symmetrized LogDet divergence between Hermitian positive definite matrices [21].

δC and δπ are predefined thresholds.

1

2
Tr

(

C
(i)
k C

(i−1)−1
k +C

(i)−1
k C

(i−1)
k

)

− d < δC (22)

|π(i)
k − π

(i−1)
k | < δπ (23)

3.3. Determine the Number of Mixture Components

In Section 3.2, an iterative procedure is developed that alternately updates the parameters and weights

of all component distributions until convergence is reached, while how to determine the number of

mixture components K is left undiscussed. Typically, there are two approaches to determining the

number of mixture components. One can either start the iteration with only one component, splitting

and merging current components every few iterations, or initialize the iteration by many components,

merging those that are sufficiently close in further iterations. Doulgeris [17] adopted the former approach

and proposed a goodness-of-fit test based on the matrix log-cumulant to control splitting and merging,

which is theoretically sound and can be incorporated in the EM iteration. The following describes the

method used in our experiments, which falls into the latter category. At the end of every five iterations,

a merge-and-remove step (Step 6) is inserted in the iterative procedure, merging close components and

removing those with negligible weights.

Step 6: First compute the LogDet distance between each pair of Wishart centroids C
(i)
k1

and C
(i)
k2

.

Merge them into a new component if the distance is less than the predefined threshold δC, i.e.,

1

2
Tr

(

C
(i)
k1
C

(i)−1
k2

+C
(i)−1
k1

C
(i)
k2

)

− d < δC. (24)

The Wishart centroid and weight of the new component are computed according to Equations (25)

and (26).

C
(i)
k1

⋃
k2

=
π
(i)
k1
C

(i)
k1

+ π
(i)
k2
C

(i)
k2

π
(i)
k1

+ π
(i)
k2

(25)

π
(i)
k1

⋃
k2

= π
(i)
k1

+ π
(i)
k2

(26)

Then, remove the components with weights less than the predefined threshold δπ, i.e.,

π
(i)
k < δπ. (27)
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It has been observed that the overall accuracy of land cover classification generally improves when the

number of mixture components K is increased up to 10, while there is only slight improvement if K is

further increased, at the cost of more computation. Thus, for efficiency, K is initialized to 6, δC and δπ

are set to 10−3, and the procedure usually converges within 50 iterations.

3.4. The Complete Classification Scheme

Two supervised maximum likelihood classifiers are constructed based on the proposed mixture

models for single-look and multi-look polarimetric SAR images. Training samples for each of the M

land cover types are selected manually. For each class, parameters of a Gaussian mixture model or a

Wishart mixture model are estimated using the EM algorithm, including the number of components Km,

the Gaussian covariances or Wishart centroids {Cm,1,Cm,2, . . . ,Cm,Km
}, and the associated weights

{πm,1, πm,2, . . . , πm,Km
}. Then, the distribution of each land cover type can be expressed by the weighted

sum of all components, as in Equation (15). The mixture classifiers label a test sample with the class

that has the largest likelihood value. Furthermore, the proposed classification scheme can be extended

to apply to multi-frequency polarimetric SAR images if it is assumed that the images from all radar

frequencies are independent. In Section 4, classification results produced by the mixture classifiers are

compared with those produced by classical ones.

4. Results and Discussion

To demonstrate the effectiveness of the proposed mixture models, experiment results will be presented

with discussions. These models are compared with existing models in the aspects of distribution fitting

and land cover classification using real polarimetric SAR images.

4.1. Fitting Distributions of Heterogeneous Regions

In the first experiment, distributions of heterogeneous regions are fitted for both single-look and

multi-look polarimetric SAR images using mixture models and classical models. The data set used

in this experiment is a C-band fully polarimetric SAR image acquired by the RADARSAT-2 sensor

over the San Francisco bay area. Figure 1 shows the pseudocolor image of San Francisco and its

geographic information. The original data is in single-look format, and the multi-look data is obtained

by incoherently averaging 2 × 2 (range × azimuth) neighboring pixels. The scene mainly contains three

typical land cover types, corresponding to urban areas (I), forest areas (II) and ocean areas (III), as shown

in Figure 1a. The selected urban and forest regions in Figure 1a are both heterogeneous by observation.

Applying the standard Gaussian and Wishart models to these regions will cause large modeling errors,

as will be seen later.
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Figure 1. (a) Pseudocolor image of San Francisco with three land cover types,

red = |Shh − Svv|, green = |Shv|, blue = |Shh + Svv|; (b) geographic information.

(a)

miles

0 1 2 3
Center Latitude:      37˚47'09" N

Center Longitude:   122˚30'40" W
N

(b)

In the single-look case, the mixture Gaussian model is compared with the standard Gaussian model.

For each land cover type, the distribution of real and imaginary parts of the scattering vectors is fitted.

The fitting results are shown in Figure 2, in which each row corresponds to a land cover type and each

column corresponds to a polarization channel. In the multi-look case, the mixture Wishart model is

compared with the standard Wishart model and the product model with a K-distribution. A multi-look

covariance matrix can be recognized as a nine-dimensional random vector, and visualization will be

tedious if all dimensions are concerned. Therefore, only the fitting results of the diagonal elements are

presented in Figure 3, which correspond to the scattering coefficients of HH, HV and VV channels. The

subfigures in Figure 3 are similarly arranged.

As can be observed in Figure 2a–c, in urban areas, the fitted Gaussian distribution (red dashed

line) deviates largely from the real distribution (black circle) for each polarization channel. This is

an indication that the urban area is highly heterogeneous. Applying the Gaussian model to these regions

leads to considerable modeling errors. By contrast, the distribution from the Gaussian mixture model

(blue line) coincides tightly with the real distribution for all channels, demonstrating that the Gaussian

mixture model is effective in describing heterogeneous regions. The forest areas are less heterogeneous.

In the selected forest regions, the Gaussian model could fit the HH channel with tolerable error, but is still

not so accurate as the Gaussian mixture model for the HV and VV channels, as shown in Figure 2d–f.

The ocean areas are nearly homogeneous. Both models fit the data well in all channels with slight errors,

as indicated by Figure 2g–i.
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Figure 2. Fitting results for single-look data. (a–c) HH, HV and VV of urban areas; (d–f)

HH, HV and VV of forest areas; (g–i) HH, HV and VV of ocean areas.
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The fitting results for multi-look data presented in Figure 3 also support the superiority of mixture

models. It can be noticed in Figure 3a–c that the Wishart model is not satisfactory for modeling the

urban areas, since significant differences can be observed between the real distributions (black circle) and

those from the Wishart model (red dashed line). The product model with K-distribution (magenta dotted

dashed line) can handle moderate heterogeneity rather well [5], but has difficulty in describing extremely

heterogeneous regions, such as urban areas, since the gamma texture assumption does not hold anymore.

Compared with these two models, the Wishart mixture model (blue line) fits all the distributions with

less errors, not only in the forest and ocean areas, but also in the extremely heterogeneous urban areas.
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Figure 3. Fitting results for multi-look data. (a–c) HH, HV and VV of urban areas; (d–f) HH,

HV and VV of forest areas; (g–i) HH, HV and VV of ocean areas.
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4.2. Classification of Polarimetric SAR Images

In the second experiment, the classifiers based on the mixture models are evaluated using both

single-look and multi-look polarimetric SAR images. A coastal region in the San Francisco image is

of interest, as shown in Figure 4. To classify the pixels in this region into three classes that correspond

to urban, forest and ocean areas, the Gaussian classifier and its mixture version are applied to the

single-look image, while the Wishart classifier and its mixture version are applied to the multi-look

image. Figure 5 shows the classification maps produced by the four classifiers, with red, green and blue

pixels representing urban, forest and ocean areas, respectively. The confusion matrix and the overall

accuracy of each classifier are listed in Tables 1 and 2. Classification rates and overall accuracies

are boldfaced.
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Figure 4. (a) Pseudocolor image of San Francisco, red = |Shh − Svv|, green = |Shv|,
blue = |Shh + Svv|; (b) geographic information.

(a)
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Table 1. Classification results for the single-look San Francisco image; an average of

100 realizations.

Confusion Matrix (%)
Gaussian Gaussian Mixture

Urban Forest Ocean Urban Forest Ocean

Urban 56.07 40.77 3.16 65.35 31.83 2.82

Forest 11.02 79.30 9.68 17.13 75.43 7.44

Ocean 0.25 1.93 97.82 0.18 3.17 96.65

Overall Accuracy (%) 77.73 79.14

Table 2. Classification results for the multi-look San Francisco image; an average of

100 realizations.

Confusion Matrix (%)
Wishart Wishart Mixture

Urban Forest Ocean Urban Forest Ocean

Urban 68.88 31.01 0.11 80.37 19.55 0.08

Forest 8.08 89.44 2.48 11.62 87.41 0.97

Ocean 0.07 0.41 99.52 0.04 0.59 99.37

Overall Accuracy (%) 85.95 89.05
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Figure 5. Classification maps of San Francisco. (a) Gaussian classifier; (b) Gaussian

mixture classifier; (c) Wishart classifier; (d) Wishart mixture classifier; (e) legend.

(a) (b)

(c) (d)

Urban Forest Ocean

(e)

Two major points are illustrated by the classification maps in Figure 5. Firstly, multi-look processing

of polarimetric SAR images improves the classification results by reducing the speckle noise. The

classification maps produced by the multi-look image are less noisy than those produced by the

single-look image. Secondly, the mixture models enhance the classification rate of urban areas by

reducing modeling errors. More urban pixels appear in the classification maps of the mixture classifiers.

Improvement is observed more clearly from the figures in Tables 1 and 2. The classification rate of urban

areas is significantly increased by the mixture models from 56.07% to 65.35% for the single-look image,

and from 68.88% to 80.37% for the multi-look image.
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The drop in the classification rate of forest areas can be interpreted by the shift of the decision

boundary. As a one-dimensional simplification, the scattering coefficient of the HH polarization is

analyzed. As shown in Figure 6, Point B is the maximum likelihood decision boundary determined

by the Wishart model, which is apparently suboptimal. When the Wishart mixture model is applied, the

decision boundary shifts from Point B to Point A, causing more samples to be classified as urban areas.

This will increase the classification rate of urban areas, while decreasing that of forest areas. However,

since Point A is nearly optimal, improvement in the overall accuracy is guaranteed.

Figure 6. Illustration of the decision boundary shift.
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4.3. Classification of Multi-Frequency Polarimetric SAR Images

The mixture-model-based classifiers derived in Section 3 can be generalized to apply to

multi-frequency polarimetric SAR images. As mentioned by Lee [3], polarimetric SAR images of

different bands can be considered as statistically independent if the radar frequencies are sufficiently

separated. In this case, the joint log-likelihood function is the sum of the log-likelihood functions from

all bands.

Classification experiments are run on a set of multi-look, multi-frequency polarimetric SAR images

acquired by the AIRSAR sensor with P, L and C bands over a cultivated area at Flevoland in the

Netherlands. Pseudocolor images of the three bands are presented in Figure 7, along with the associated

geographic information. According to the ground-truth data provided by Hoekman [22], there are

mainly 14 types of crops in the scene. The ground-truth data used in this experiment is visualized in

Figure 8. The Wishart classifier and the Wishart mixture classifier are employed for comparison using

various combinations of the P-, L- and C-band images. Table 3 lists the classification rates under each

experiment configuration. In Table 3, each row corresponds to a classification experiment with a certain

configuration. The first column indicates which bands are employed in the experiment. The following

14 columns list the classification rate of each type of crop. The last column shows the overall accuracy.

For easy comparison, classification results produced by the Wishart mixture classifier are boldfaced, and

the best classification rates and overall accuracy are underlined.

From Table 3, it can be noticed that the Wishart mixture classifier performs better than the Wishart

classifier in the overall classification accuracy under all configurations. The overall accuracy is improved

by at least 4.5%, and the largest improvement of 11.9% occurs at the P band. This once again
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demonstrates that the mixture model is generally a better choice for heterogeneous regions. It is obvious

that combining multiple bands for classification enhances the overall accuracy, since the information

provided by different bands are complementary. The best overall accuracy for single-band classification

using the Wishart mixture classifier is given by the L-band image as 87.4%, this is greatly increased

to 97.9% when images of all three bands are fused. Another point that worth noting is the superiority

of the L-band image over the others in crop classification, which can be explained by the property of

electromagnetic waves. P-band waves have good penetration into vegetation, though their wavelengths

are too long to discriminate between similar crops. C-band waves have shorter wavelengths, but limited

penetrating ability, so the volume scattering mechanism is not fully exploited. L-band waves are a

compromise, possessing both abilities of penetration and discrimination.

Figure 7. (a–c) P-, L- and C-band pseudocolor images of Flevoland, red = |Shh − Svv|,
green = |Shv|, blue = |Shh + Svv|; (d) geographic information.
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Figure 8. (a) Ground-truth data of Flevoland; (b) Legend.

(a)

1. Potato 2. Fruit 3. Oats

4. Beet 5. Barley 6. Onions

7. Wheat 8. Beans 9. Peas

10. Maize 11. Flax 12. Rapeseed

13. Grass 14. Lucerne

(b)

Table 3. Classification results for the Flevoland image; an average of 100 realizations. BD,

band ; OA, overall accuracy.

BD
Classification Rate (%) OA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 (%)

P
44.5 98.6 83.6 65.3 55.6 22.0 90.6 18.6 95.4 50.7 23.7 78.6 43.8 95.1 61.9

77.7 99.3 83.8 43.7 71.8 44.7 93.0 40.6 95.3 61.1 69.2 84.9 72.8 94.9 73.8

L
89.5 88.0 94.9 61.0 76.2 41.0 89.9 88.5 96.1 57.2 95.4 80.8 71.6 95.8 80.4

89.4 91.7 92.0 82.1 84.2 65.0 91.5 86.8 95.6 77.2 96.9 90.1 86.7 94.8 87.4

C
56.1 29.1 55.6 23.7 52.0 58.2 75.9 94.5 42.1 42.7 76.5 96.4 56.4 38.7 57.0

53.4 29.5 56.8 26.6 52.3 67.0 69.9 96.1 43.7 42.2 81.0 96.2 64.7 39.5 58.5

PL
96.2 99.5 97.1 85.6 84.1 39.4 98.8 89.8 99.7 65.9 94.5 92.2 75.5 99.5 87.0

98.0 100.0 96.2 87.7 92.3 78.8 99.5 89.4 99.8 84.9 96.2 98.4 96.2 99.4 94.1

PC
85.0 99.5 92.4 72.4 83.2 64.3 96.1 96.7 97.7 73.9 74.1 99.0 72.9 98.1 86.1

94.7 99.8 93.2 72.0 88.3 86.7 97.2 99.1 97.9 80.0 88.9 99.1 87.7 97.5 91.6

LC
95.3 93.6 97.6 74.3 90.7 73.1 97.7 98.0 98.2 84.7 96.6 98.9 73.7 98.6 90.8

96.0 95.2 96.0 90.5 94.0 90.3 96.8 99.4 97.8 89.5 98.4 99.4 92.5 98.1 95.3

PLC
99.0 99.7 98.8 87.3 94.1 69.0 99.5 97.4 99.8 88.7 95.8 99.8 78.4 99.9 93.4

99.7 100.0 98.2 92.5 97.3 94.8 99.9 99.2 99.9 93.3 98.1 99.9 97.7 99.8 97.9

4.4. Further Comparison with Existing Classifiers

To fully assess the performance of the mixture classifiers, comparisons based on a number of

recently proposed statistical models are employed in the following classification experiment, including

the K-Wishart model derived from the scale mixture of Gaussian (SMoG) distribution of scattering

vectors [8,17], the G0
p model from the inverse gamma texture [7], the KummerU model from the Fisher

texture [23,24] and the Wishart-Kotz model from the Kotz-type distribution of scattering vectors [25].
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Though the underlying assumptions of these models are different, their common destination is addressing

the heterogeneity issue by incorporating non-Gaussianity. Classification is performed on a polarimetric

SAR image acquired by the EMISAR sensor over the Foulum area in Denmark, which mainly contains

seven types of land covers. The pseudocolor image and ground-truth data [26] are depicted in Figures 9

and 10, respectively. Classification results are listed in Table 4 for each classifier, with underlined figures

indicating the best classification rates and overall accuracy. The Wishart classifier can be regarded as the

baseline classifier, since it ignores heterogeneity in the scattering medium, while the others do not.

Figure 9. (a) Pseudocolor image of Foulum, red = |Shh−Svv|, green = |Shv|, blue = |Shh+Svv|;
(b) geographic information.

(a)
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Figure 10. (a) Ground-truth data of Foulum; (b) legend.

(a)

1. Wheat 2. Rape 3. Conifer

4. Oat 5. Rye 6. Pea

7. Urban

(b)

As illustrated in Table 4, the classification rates of highly textured conifer (Class 3) and urban (Class 7)

areas are remarkably increased when heterogeneity is taken into account. The overall classification
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accuracy is improved in different degrees by the non-Gaussian classifiers, among which, the Wishart

mixture classifier gives the highest of 81.4%. Actually, the product model can be viewed as a continuous

mixture model. The weighted sum in Equation (15) is replaced by the integration in Equation (9), with

each conditional distribution pZ|z(Z|z) corresponding to a component distribution q(Z|Ck), and each

prior probability pz(z) to a component weight πk. For the product model, parameters of all conditional

distributions (e.g., the conditional Wishart centroids in the multi-look case) are identical, except for a

scalar multiplication, whereas parameters of all component distributions can take on arbitrary reasonable

values for the mixture model. Such flexibility makes the mixture models applicable to a wide range of

heterogeneous land covers in polarimetric SAR images.

Table 4. Comparison of classifiers for the Foulum image; an average of 100 realizations.

OA, overall accuracy.

Classifier
Classification Rate (%)

OA (%)
1 2 3 4 5 6 7

Wishart 93.7 91.8 77.2 96.5 69.4 68.9 46.2 77.7

K-Wishart 92.7 92.4 92.4 91.1 68.7 70.4 52.6 80.0

G0
p 89.9 87.0 92.2 92.2 69.5 69.1 48.3 78.3

KummerU 93.0 91.3 84.9 93.2 69.2 70.1 54.4 79.5

Wishart-Kotz 92.8 89.9 92.2 95.2 70.5 70.2 56.5 81.0

Wishart Mixture 92.8 92.1 88.5 94.2 72.7 71.8 57.5 81.4

5. Conclusions

In this paper, two mixture models have been proposed for modeling heterogeneous regions

in polarimetric synthetic aperture radar (SAR) images. For single-look and multi-look data, the

mixture of complex Gaussian and complex Wishart distributions were employed, respectively. The

expectation-maximization (EM) algorithm was applied for solving the model parameters. Effectiveness

of the mixture models, especially in characterizing extremely heterogeneous regions, such as urban

areas, has been validated by fitting the models to real polarimetric SAR data from the RADARSAT-2

sensor. Two maximum likelihood classifiers based upon the mixture models have been constructed and

then generalized to apply to multi-frequency polarimetric SAR images, assuming independence among

images from separate radar frequencies. These classifiers were evaluated using polarimetric SAR images

from the RADARSAT-2 sensor, the AIRSAR sensor and the EMISAR sensor. Experiment results have

demonstrated that, due to the more precise modeling of heterogeneous regions, the mixture-model-based

classifiers clearly improve the overall accuracy of land cover classification, and an average promotion

of 5% in the overall accuracy has been noticed compared with the classical Gaussian and Wishart

classifiers. By further comparison with classifiers based on recently proposed non-Gaussian statistical

models, the mixture classifier was found to give the highest overall accuracy. Beyond classification,

statistical modeling of polarimetric SAR data is equally essential in image segmentation and denoising,

where the proposed mixture models may also find their applications.
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