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Abstract: Linear spectral mixture analysis (SMA) is commonly used to infer fractional 

vegetation cover (FVC), especially for pixel dichotomy models. However, several sources 

of uncertainty including normalized difference vegetation index (NDVI) saturation  

and selection of endmembers inhibit the effectiveness of SMA for the estimation  

of FVC. In this study, Moderate-resolution Imaging Spectroradiometer (MODIS) and  

Landsat 8/Operational Land Imager (OLI) remote sensing data for the early growing 

season and in situ measurement of spectral reflectance are used to determine the value of 

endmembers including VIsoil and VIveg, with equally weighted RVI and NDVI measures 

used in combination to minimize the inherent biases in pure NDVI-based FVC. Their 

ability to improve estimates of grassland FVC is analyzed at different resolutions. These 

are shown to improve FVC estimates over NDVI-based SMA models using fixed values 

for the endmembers. Grassland FVC changes for Inner Mongolia, China from 2000 to 

2013 are then monitored using the MODIS data. The results show that changes in most 

grassland areas are not significant, but in parts of Hulunbeier, south Tongliao, middle Xilin 

Gol and Erdos, grassland FVC has increased significantly.  
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1. Introduction 

The ratio of the vertical projected area of vegetation to the total ground area, termed fractional 

vegetation cover (FVC), is a commonly used indicator for evaluating and monitoring vegetation 

degradation and desertification [1]. Several methods for retrieval of FVC using remote sensing have 

been developed including spectral mixture analysis (SMA) [2–4], artificial neural networks [5–7], 

fuzzy classifiers [8], maximum likelihood classifiers [9], regression trees [10–12], and simple 

regression based on the Normalized Difference Vegetation Index (NDVI) [13]. In particular, SMA has 

often been used to estimate FVC from multi-spectral remote sensing data [2,14–18]. 

SMA utilizes pure spectral components, called endmembers, to simulate the proportions in a pixel, 

assuming that a pixel value in multi- or hyper- spectral imagery can be decomposed into a proportional 

representation of the materials contributing to the overall pixel signal [19,20]. SMA with fixed or 

variable endmembers has been used for the estimation of FVC in various environments including 

arid/semi-arid regions [21–24] and at scales from regional to global [25–28]. For grassland, linear 

SMA models with two endmembers (vegetation and non-vegetation) or three endmembers (live grass, 

senesced grass and soil) are effective in estimating endmember fractions due to their simplicity and 

interpretability [2–4,13,29]. In particular, two-endmember models based on NDVI simplify the 

endmember selection process and substantially improve computational efficiency [30].  

The two-endmember model is assumed to have a unique spectral signature for each endmember, 

with the spectral variability within an endmember minimal and negligible [30]. However, it is always 

challenging to select representative endmembers, which are critical for the success of a mixture model. 

Several approaches have been used for the retrieval of image endmembers including the use of  

two-dimensional feature space plots [31] and the identification of pure pixels with reference to field 

data or higher-resolution remote sensing data [32]. In most cases, these approaches assume a constant 

endmember signature (e.g., for bare soil or for full vegetation cover) even with large changes in the 

land surface. To our knowledge, the impact on estimation accuracy of using a constant endmember has 

not been seriously considered.  

Another challenge for SMA is the selection of the models’ parameters. Numerous studies use a 

vegetation index (VI) as a signal or signature to maximize the differences among the endmembers. For 

example, NDVI based SMA has been used to estimate FVC in a large number of landscapes with 

various remote sensing data sources [26,33–35]. However, NDVI has been criticized because FVC 

tends to be overestimated as it approaches certain proportions [36], especially in moderately vegetated 

areas [1,37].  

To improve the ability of SMA models to estimate FVC, this study: (1) evaluates the influence of 

different VIs, including NDVI and RVI, on FVC estimation at different resolutions; (2) suggests the 

use of a weighted combination of NDVI and RVI in SMA models to cancel out the biases of NDVI or 

RVI when used alone; and (3) proposes a simplified endmember selection process for SMA models 
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through the use of remote sensing data in the early growing season and in situ measurement of  

spectral reflectance.  

2. Data and Methods 

2.1. Study Area 

The study was conducted in the Inner Mongolia grasslands of northern China (Figure 1), with 

grassland distribution determined from vegetation maps (at a scale of 1:1 million) compiled by a 

committee of the Chinese Academy of Sciences in 2001. The area has a temperate continent monsoon 

climate with mean annual temperatures decreasing from about 9 °C in the southwest to −5 °C in the 

northeast. Annual rainfall varies from 150 to 500 mm, 80% of which occurs in the May to October 

growing season. In contrast to temperature, annual rainfall increases from the southwest to the 

northeast. Topographically, the area is dominated by plateaus with the Ordos, Xilingole and Hulun 

Buir plateaus arrayed from the southwest to the northeast. Grassland covers about 70% of the area but 

most is sparsely vegetated [38,39], with desert steppe, typical steppe and meadow steppe being the 

primary types [40].  

Figure 1. Site of spectral measurement and distribution of sample plots. 

 
  



Remote Sens. 2014, 6 4708 

 

 

2.2. Field Data 

Field data was collected in central Inner Mongolia from 20 July to 10 August 2013. A Trimble GPS 

was used to obtain the coordinates for the sample plots (see Figure 1) and fisheye camera photographs 

were acquired for FVC estimation. Plot design is shown in Figure 2. Fifty sample plots each 100 × 100 m 

were aimed at evaluating results from the Moderate-resolution Imaging Spectroradiometer (MODIS) 

data, which has a resolution of 250 m, and 250 sample plots each 10 × 10 m were aimed at evaluating 

results from Landsat 8 data, which has a resolution of 30 m. In addition, on 2–6 August 2012, at the 

Inner Mongolia Grassland Research Station (IMGERS) located at 116°42′E, 43°38′N, high resolution 

portable field spectroradiometers were used to collect spectral reflectance (which ranges from 350 to 

2500 nm, with a 25° field of view) over the vegetation canopy, together with fisheye camera 

photographs. The aim here was to obtain the signatures of endmembers (bare soil and full vegetation cover) 

and enable evaluation of results at the canopy scale. Quadrats with a diameter of approximately 0.5 m 

(shown by the red symbols in the inset image in Figure 1) were used. 

Figure 2. Design of sample plots. The sample plot is 100 × 100 m, which is made up of 

five smaller sample plots each 10 × 10 m distributed along the diagonal. Similarly,  

each 10 × 10 m plot is made up of five sites with the same distribution as the 10 × 10 m 

plots. The fisheye camera photographs are then taken around each site. 

 

The “true” value of FVC for quadrats is important for evaluating SMA models. It has been assessed 

by several methods including manual visual interpretation [37] and automatic and semi-automatic 

classification [41] of digital photographs. Alternatively, the FVC of quadrats can be measured using 

the formula: 
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where fc is the measured FVC used for evaluating the estimation accuracy of the models, VIGR is the 

normalized green vegetation index used to classify the fisheye photographs, and DNG and DNR are the 

green and red channels of the fisheye photographs.  

2.3. Remote Sensing Data 

Remote sensing data from MODIS and Landsat 8 were used in this study. MODIS is an optical 

sensor onboard the Terra and Aqua satellites, launched in December 1999 and May 2002, respectively, 

as part of the NASA Earth Observing System. MODIS scans twice daily, acquiring data in 36 spectral 

bands. Bands 1–2, 3–7 and 8–36 have spatial resolutions of 250 m, 500 m and 1000 m, respectively. 

The MODIS Land Science Team also provides a suite of standard MODIS data products to users, 

including the Surface Reflectance 8-Day product (MOD09Q1) with red band (620–670 nm) and  

near-infrared band (841–875 nm) at a spatial resolution of 250 m. There are 46 eight-day composites in 

a year, starting at 1 January each year. The MOD09Q1 data products on the accrued day of 97 (7 April 

2013) and 217 (5 August 2013) were downloaded from the website [42]. 

Landsat 8, developed jointly by the National Aeronautics and Space Administration (NASA) and 

the United States Geological Survey (USGS), is a successor satellite to Landsat 7 aimed at extending 

the almost 40-year Landsat data archive [43]. It was launched on 11 February 2013 and has two 

sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). OLI collects 

image data for nine shortwave spectral bands over a 185 km swath with a 30 m spatial resolution for 

all bands except the 15 m panchromatic band [43]. Level 1 data products containing well calibrated 

and co-registered OLI and TIRS data are available for free download from the website [44]. Based on 

the needs of this study, OLI data products between 1 April and 1 May 2013 (the earliest availability of 

Landsat 8 data products) and between 20 July and 15 August 2013 (the time of field data collection) 

were downloaded.  

Atmospheric radiometric correction of the OLI imagery was conducted using the FLAASH module 

in the ENVI 5.0 software package (with sp5, hotfix envi50sp3_r4.exe, issued 30 July 2013). This 

module, which is based on the MODTRAN4 radiometric transmission model, is considered to be one 

of the most accurate atmospheric radiometric correction methods for the preprocessing of remote 

sensing data [1].  

Finally, using the latitude and longitude coordinates of the center of the field survey sample plots, 

spectral reflectance values were extracted from the MOD09Q1 and Landsat 8 data based on 72 m  

and 7.2 m radii, respectively, to calculate VI. 

2.4. Pixel Dichotomy Model 

The pixel dichotomy model, originally proposed by Adams, Smith and Johnson [3], assumes that 

signal response (reflectance) for a pixel in a remote sensing image consists of a mix of signals from 

multiple components which are decomposable based on the areal proportion of the components. In the 

case of grassland, vegetation and non-vegetation (that is, soil) are the main components. Therefore, 
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signal S as received by the remote sensor, can be expressed as a mixture of vegetated signal Sv and soil 

signal Ss Equation (3) according to the vegetated areal proportion fc in a pixel Equations (4) and (5).  

v sS S S   (3) 

v c vegS f S 

 
(4) 

(1 )s c soilS f S    (5) 

Sveg and Ssoil are the signals of a pure pixel, corresponding to full vegetation cover and non-vegetation 

cover (bare soil), respectively. These are termed endmembers. 

Accordingly, FVC can be estimated by the following formula:  

soil
c

veg soil

S S
f

S S





 (6) 

To further improve the ability of this model to estimate FVC, signal S can be replaced by a VI to 

maximize the differences between vegetated and non-vegetated areas and minimize atmospheric 

impact [35]. fc can then be expressed as:  

soil
c

veg soil

VI VI
f

VI VI





 (7) 

where VIsoil and VIveg are VI for pure pixels, corresponding to bare soil and full vegetation  

cover, respectively.  

Many VIs can be used to replace S in Equation (7), such as the commonly used NDVI Equation (8), 

or the seldom used RVI Equation (9):  
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where ρred and ρnir are reflectance for the red and near infrared bands, respectively.  

3. Results 

3.1. Evaluating the Pixel Dichotomy Model at the Quadrat Scale 

The quadrat grassland FVC at the site of each in situ spectral measurement (the red points in the 

Figure 1) was estimated using Equation (7), with both NDVI and RVI as the parameters of the pixel 

dichotomy models. VIsoil and VIveg pure endmembers were derived from in situ spectrum measurements 

(Table 1). NDVI and RVI were calculated from canopy spectrum, with the red and near infrared band 

resampled based on 250 m MODIS data bands. When NDVI was used, FVC was overestimated due to 

the saturation of NDVI for high FVC (Figure 3a). When RVI was used, FVC was underestimated as 

shown in Figure 3b. This is because RVI is less sensitive to low FVC than to high FVC. Figure 3c 

shows that estimation accuracy can be improved using Equation (10). This combines the two indices 

and produces a markedly lower RMSE compared with Figure 3a,b.  
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Table 1. VI values for endmembers derived from in situ measurement of canopy spectrum. 

VIs 

Endmembers  
NDVI RVI 

VIsoil 0.203 1.508 

VIveg 0.891 17.347 

Figure 3. Accuracy comparison for estimation of grassland FVC at the quadrat scale.  

(a) using NDVI and (b) using RVI and (c) averaging the results from (a) and (b).  

 

3.2. Evaluating Pixel Dichotomy Model at the Pixel Scale 

It is a greater challenge to identify the “pure” vegetation and soil pixels from an image than to 

determine endmember information at the quadrat scale [35]. Generally, VIveg and VIsoil values are 

determined by retrieving the maximum and minimum VI values from contiguous areas of high-density 

vegetation and bare soil within the image [25]. However, due to changes in roughness, soil type and 

color, this is not necessarily ideal [35]. Given the growing regime for grassland vegetation, data on the 

land surface during the early growing season represents a soil background composed of bare soil and 

senesced grass. This is usually interspersed in grassland areas even during the height of the growing 

0 20 40 60 80 100
0

20

40

60

80

100

Estimated FVC (%)

M
ea

su
re

d
 F

V
C

 (
%

)

 

 

x vs.y

y=0.96x-14.31

R2=0.66, RMSE=19.8

1:1 line

0 20 40 60 80 100
0

20

40

60

80

100

Estimated FVC (%)

M
ea

su
re

d
 F

V
C

 (
%

)

 

 

0 20 40 60 80 100
0

20

40

60

80

100

Estimated FVC (%)

M
ea

su
re

d
 F

V
C

 (
%

)

 

 

x vs. y

y=1.22x-5.32

R2=0.65, RMSE=11.4

1:1 line

x vs. y

y=1.52x+13.06

R
2
=0.58, RMSE=24.8

1:1 line

(a) (b)

(c)



Remote Sens. 2014, 6 4712 

 

 

season. Therefore, remote sensing data from the early growing season, specifically on accrued day 97 

(7 April 2013) in a year was collected to calculate VIsoil values. Equation (10) can then be expressed as:  

0 0

0 0

0.5 0.5t t
c

veg t veg t

NDVI NDVI RVI RVI
f

NDVI NDVI RVI RVI

 
   

 
 (11) 

where t0 designates remote sensing data from the early growing season and veg designates the value 

for full vegetation cover (FVC = 100%). RVI is calculated from Equation (9).  

Unfortunately, obtaining VIveg pure pixel endmember information solely from moderate and low 

resolution remote sensing imagery (such as Landsat TM and MODIS) is almost impossible. In situ 

measurements and/or high-resolution remote sensing data are required. Figure 4 shows the spectral 

reflectance values of bare soil from three sources: in situ spectrum measurement, MODIS, and 

Landsat. NDVIsoil from in situ measurement is 0.203, from MODIS data it is 0.118, and from  

Landsat 8 data it is 0.117. Clearly, there is a substantial spectral signal gap between the different 

sensors in spite of the same underlying surface. The reasons for this are complex and diverse, 

including the impacts of atmospheric conditions and scale effects. In order to derive VIveg for the 

MODIS and Landsat 8 remote sensing images from the in situ measurement of spectral reflectance 

values for “pure” vegetation and soil (shown in Figure 4), the spectral signal gap for different sensors  

(ΔNDVI in Equation (12)) is assumed to be stable and constant. The pure pixel endmember value for 

vegetation for the MODIS and Landsat 8 images (denoted as NDVIpixel_veg) is then determined by using 

NDVIveg from the in situ spectral data measurements and ΔNDVI Equation (13). A corresponding set 

of equations is constructed for RVI. The results are shown in Tables 2 and 3.  

ΔNDVI = NDVIsoil − NDVIpixel_soil (12) 

NDVIpixel_veg = NDVIveg − ΔNDVI (13) 

Figure 4. Spectral reflectance of bare soil and vegetation for different data sources. 

The bare soil spectrum and full vegetation spectrum are from in situ measurements.  
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Table 2. VI values of endmembers for MODIS. 

VIs 

Endmembers 
NDVI RVI 

VIsoil 0.118 1.268 

VIveg 0.806 9.309 

Table 3. VI values of endmembers for Landsat 8. 

VIs 

Endmembers 
NDVI RVI 

VIsoil 0.119 1.27 

VIveg 0.807 9.363 

Figures 5 and 6 provide accuracy comparisons for estimating grassland FVC for the 250 m and 30 m 

pixels. Estimation accuracy is improved by using remote sensing data from the early growing season 

(Figures 5b and 6b) rather than a fixed value for NDVIsoil (Figures 5a and 6a). More importantly, it 

simplifies the selection of the endmember for NDVIsoil. However, the problems of FVC overestimation 

using NDVI and underestimation using RVI still exist (Figure 5c vs. 5b and Figure 6c vs. 6b).  

Figures 5d and 6d show that using Equation (11), which averages NDVI and RVI, can produce 

relatively good results for estimating grassland FVC with minimal RMSE.  

Figure 5. Accuracy comparisons for estimating grassland FVC for 250 m pixels. (a) uses 

NDVI as the parameters of Equation (7), where NDVIsoil is 0.118, and NDVIveg is 0.806 

(Table 2); (b) and (c) use NDVI and RVI, respectively, as the parameters of Equation (11), 

where NDVIveg is also equal to 0.806, but NDVIsoil and RVIsoil were calculated using remote 

sensing data from the early growing season (accrued day 97 for 2013) for soil background 

measurement; and (d) averages the results from (b) and (c). NDVI and RVI were extracted 

from MODIS data based on the coordinates of sample plots.  
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Figure 5. Cont. 

 

Figure 6. Accuracy comparisons for estimating grassland FVC for 30 m pixels. (a) uses 

NDVI as the parameters of Equation (7), where NDVIsoil is 0.119, and NDVIveg is 0.807 

(Table 3); (b) and (c) use NDVI and RVI, respectively, as the parameters of Equation (11), 

where NDVIveg is also equal to 0.807, but NDVIsoil and RVIsoil were calculated using remote 

sensing data from the early growing season (for 13 April, the earliest availability of 

Landsat 8 data products in 2013 for Inner Mongolia) for soil background measurement; 

and (d) averages the results from (b) and (c). NDVI and RVI were extracted from  

Landsat 8 data based on the coordinates of the sample plots.  
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4. Discussions 

4.1. Sensitivity of NDVI and RVI to FVC  

Over the past two decades, NDVI and RVI have been widely used to monitor vegetation 

biophysical properties such as leaf area index (LAI), FVC, chlorophyll content and biomass [33,45]. 

However, they have been criticized for problems of sensitivity to the vegetation canopy [36]. For 

example, NDVI initially increases near-linearly with increasing vegetation density, but the slope of this 

relationship decreases with higher vegetation density levels, and then enters an asymptotic phase in 

which NDVI increases very slowly (green line in Figure 7a). This so-called NDVI saturation has been 

reported by numerous studies [46–50]. Several studies have also found that the relationship between 

NDVI and FVC is nonlinear [23,50,51]. Consequently, linear SMA, such as the pixel dichotomy 

model, most likely produces errors in estimating FVC. Figure 7a shows sensitivity changes for NDVI 

with increasing FVC. It is a convex curve as FVC changes, but the NDVI based pixel dichotomy 

model (red line in Figure 7a) only matches at the ends of this curve. Therefore, FVC is overestimated 

when the NDVI based pixel dichotomy model is used. Figure 7b shows that maximum positive errors 

in excess of 20% from the NDVI-based FVC occur with FVC values between 30% and 40%, and then 

lessen on either side. RVI has the opposite problem from NDVI for sensitivity (blue line in Figure 7b) 

since it is equivalent to the exponential transform of NDVI Equation (9). Figure 7a shows that FVC is 

underestimated using RVI-based FVC except for the two end points (FVC = 0 and 100%). Figure 7b 

shows that maximum negative errors, again above 20%, from the RVI-based FVC occur with FVC 

between 60% and 70%, and then lessen on either side. Combining these two indices produces 

markedly lower errors for FVC estimation (red bars in Figure 7b). Minimum errors occur with FVC 

around 0%, 40% and 100%, with maximum positive and negative errors occurring with FVC  

between 10%–20% and 70%–80%, respectively. 

Figure 7. (a) Sensitivity of NDVI and RVI with increasing FVC; (b) error distribution for 

FVC estimation using NDVI, RVI and combined NDVI-RVI based SMA models.  

 

In this study, NDVI and RVI are given equal weights in the combination (each set at 0.5). Figure 7b 

shows that the lowest estimation errors occur with a FVC of around 40%. If more weight is given to 

NDVI, and less to RVI, the lowest estimation errors migrate toward higher FVC values; if less weight 

0 10 20 30 40 50 60 70 80 90 100
-30

-20

-10

0

10

20

30

FVC (%)

E
rr

o
r 

(%
)

 

 
From NDVI

From RVI

From NDVI & RVI

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FVC (%)

N
D

V
I

 

 

2

4

6

8

10

12

14

16

18

20

R
V

I

 

 

FVC vs. NDVI

Fitting line

FVC vs. RVI

Fitting line

Line for pixel dichotomy model

(a) (b)



Remote Sens. 2014, 6 4716 

 

 

is given to NDVI, errors migrate in the opposite direction toward lower FVC values. Equal weighting 

for NDVI and RVI is simple and effective for canceling out the inherent biases in NDVI and RVI based 

FVC, although they are not necessarily the optimum weights for minimizing FVC estimation errors.  

Jiang et al. [50] concluded that the presence of shadow leads to NDVI saturation, which then results 

in the overestimation of FVC. In fact, NDVI saturation is mainly controlled by near-infrared 

reflectance from the vegetation canopy, as shown in Figure 8. Compared with red reflectance which 

ranges only from 0% to 10%, near infrared reflectance ranges from 10 to 60% and determines almost 

all NDVI change. 

Figure 8. Sensitivity of red and near-infrared reflectance to FVC. 

  

4.2. Model Comparisons 

Jiang et al. [50] analyzed the spatial scale dependencies of NDVI and the relationship between 

NDVI and FVC based on linear SMA models using experimental field data. He argued that NDVI may 

not be suitable for the retrieval of FVC because of nonlinearity and scale effects. The scaled difference 

vegetation index (SDVI), which is a scale-invariant index, was then proposed for retrieval of FVC, 

expressed as: 

soil
c

veg soil

DVI DVI
f

DVI DVI





 (14) 

where DVI is the difference vegetation index defined as the difference between near-infrared and red 

reflectance (nir-red); the subscripts, soil and veg, denote pure endmembers for bare soil and full 

vegetation cover, respectively.  

Figure 9 evaluates SDVI-based FVC estimation at different resolutions including 0.5 × 0.5 m 

quadrats and 250 × 250 m MODIS pixels. At both resolutions, the estimates are erratic over the  

entire 0%–100% FVC value scale primarily because DVIs from vegetation canopy spectrums derived 

from in situ measurements and satellite remote sensing are neither stable nor directly comparable. The 

impacts of atmospheric conditions and differences in the spatial resolution of data collected from 
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different sensors (evident in Figure 4) are largely responsible. Following [36,50], in Equation (14) the 

near-infrared and red reflectances for bare soil were set at 0.11 and 0.08, respectively, and for full 

vegetation cover at 0.5 and 0.05. However, these values generally change with many factors such as 

soil types, vegetation types and atmospheric conditions, as well as scaling [52]. It becomes very 

difficult to endorse this approach, especially for satellite remote sensing which is characterized by 

atmospheric effects and multi-temporal changes. In contrast, VIs with the ratio relationship such as 

RVI and NDVI can minimize these influences and enhance comparability of VIs derived from 

different remote sensing data sources and times. It further suggests that the selection of VIs for FVC 

estimation is crucial. For estimation accuracy, it is important to consider influences from the atmosphere 

and topography, as well as different remote sensing data sources.  

Figure 9. Evaluating SDVI-based FVC; (a) at the 0.5 × 0.5 m quadrat scale; and  

(b) at 250 × 250 m MODIS-pixel scale. 

 

4.3. Grassland FVC Changes in Inner Mongolia 

Based on Equation (11) and the methods for determining NDVIsoil and NDVIveg discussed in Section 3.2, 

MOD09Q1 data for the accrued days of 97 (7 April) and 217 (5 August) from 2000 to 2013 were used 

to estimate grassland FVC for all of Inner Mongolia. In 2013, Figure 10a shows that most grassland is 

sparely distributed. Areas of FVC with less than 20% grassland account for 37.3% of the total area, 

and areas with less than 50% cover 69.9%. In terms of regional distribution, FVC in middle Inner 

Mongolia is very sparely distributed with large areas of FVC less than 10%. Human activity such as 

overgrazing in these areas is still intense [39,53].  

For the period 2000–2013, Equation (15) was used to examine spatial variation in grassland FVC 

changes in Inner Mongolia, expressed as: 

i iFVC a bT   (15) 

where Ti is a time variable (i is annual values from 2000 to 2013); FVCi is FVC in year i; and a and b 

are regression coefficients. This regression trend line was calculated for each pixel and the slopes (b in 

Equation (15) are mapped in Figure 10b to explore the spatial variation in grassland FVC change for 

the 2000–2013 period. Positive values indicate an increase in FVC over time, negative values indicate 
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a decrease, and values close to zero suggest no change. The corresponding coefficient of determination 

(R
2
) is mapped in Figure 10c to provide an indicator of the strength of any trend.  

Figure 10. (a) 2003 grassland FVC in Inner Mongolia; (b) Directional change in FVC 

from 2000–2013 quantified by the slope of the regression trend line; and (c) strength of the 

trend quantified by R
2
.  

 

   

Figure 10b,c show that for most grassland areas there is no strong trend over time, either negative or 

positive, since the slope is generally close to zero and R
2
 is less than 0.1. Exceptions occur in areas of 

Hulunbeier, south Tongliao, middle Xilin Gol and Erdos, where grassland FVC increases, and in 

Daxinganling where grassland FVC exhibits a fluctuating decrease.  

5. Conclusions 

The NDVI-based pixel dichotomy model has been commonly used for retrieval of grassland FVC. 

In practice, FVC was likely overestimated using such models. Substantial positive errors of over 20% 

occurred with FVC values between 30% and 40%. If RVI is substituted for NDVI, FVC was 

underestimated, again by over 20%, with the largest errors occurring with FVC values between 60% 
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and 70%. However, incorporating the average values of both NDVI and RVI effectively cancels out 

these errors and provides a better result. For grasslands, combining remote sensing data from the early 

growing season (e.g., accrued day 97 in a year) and in situ spectral data measurements can be used to 

determine the parameters of the pixel dichotomy model including VIsoil and VIveg. This can simplify the 

selection of endmembers and improves estimation accuracy.  

In this study, the spectral signal gaps for different sensors including portable field spectroradiometers, 

MODIS and Landsat 8\OLI exist due to the impacts of atmospheric conditions and scale effects. This 

introduces uncertainties for the endmember value of VIveg. Further study should focus on reducing 

these uncertainties. Also, model validation in different regions and with different remote sensing data 

is needed. 

Acknowledgments 

We thank the five anonymous reviewers and Ronald Briggs for their constructive comments and 

suggestions on the manuscript. This research was funded by the “Strategic Priority Research Program” 

of the Chinese Academy of Sciences, Climate Change: Carbon Budget and Relevant Issues  

(Grant No. XDA05050100).  

Conflicts of Interest  

The authors declare no conflict of interest.  

Author Contributions 

Fei Li was responsible for the data analysis and wrote the majority of the paper. Bingfang Wu 

supervised the research and contributed to manuscript organization. Wei Chen collected the field data 

and preprocessed remote sensing data. Yuan Zeng and Qianjun Zhao provided assistances in writing, 

editing and data analysis. 

References  

1. Jiapaer, G.; Chen, X.; Bao, A. A comparison of methods for estimating fractional vegetation cover 

in arid regions. Agric. For. Meteorol. 2011, 151, 1698–1710. 

2. Adams, J.B.; Sabol, D.E.; Kapos, V.; Almeida, R.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. 

Classification of multispectral images based on fractions of endmembers-application to land-cover 

change in the brazilian amazon. Remote Sens. Environ. 1995, 52, 137–154. 

3. Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and 

soil types at the viking lander 1 site. J. Geophys. Res. 1986, 91, 8098–8112. 

4. Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in deserts: I. A regional measure 

of abundance from multispectral images. Remote Sens. Environ. 1990, 31, 1–26. 

5. Atkinson, P.; Cutler, M.; Lewis, H. Mapping sub-pixel proportional land cover with avhrr imagery. 

Int. J. Remote Sens. 1997, 18, 917–935. 

6. Pu, R.; Xu, B.; Gong, P. Oakwood crown closure estimation by unmixing landsat tm data. Int. J. 

Remote Sens. 2003, 24, 4422–4445. 



Remote Sens. 2014, 6 4720 

 

 

7. Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level 

using AVHRR NDVI time series and neural nets. Remote Sens. 2013, 5, 1335–1354. 

8. Foody, G. Approaches for the production and evaluation of fuzzy land cover classifications from 

remotely-sensed data. Int. J. Remote Sens. 1996, 17, 1317–1340. 

9. Foody, G.M.; Campbell, N.; Trodd, N.; Wood, T. Derivation and applications of probabilistic 

measures of class membership from the maximum-likelihood classification. Photogramm. Eng. 

Remote Sens. 1992, 58, 1335–1341. 

10. DeFries, R.; Hansen, M.; Steininger, M.; Dubayah, R.; Sohlberg, R.; Townshend, J. Subpixel 

forest cover in central africa from multisensor, multitemporal data. Remote Sens. Environ. 1997, 

60, 228–246. 

11. Yang, L.; Huang, C.; Wylie, B.K.; Coan, M.J. An approach for mapping large-area impervious 

surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Can. J. Remote 

Sens. 2003, 29, 230–240.  

12. Tottrup, C.; Rasmussen, M.; Eklundh, L.; Jönsson, P. Mapping fractional forest cover across the 

highlands of mainland southeast Asia using MODIS data and regression tree modelling. Int. J. 

Remote Sens. 2007, 28, 23–46. 

13. Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying vegetation change in 

semiarid environments: Precision and accuracy of spectral mixture analysis and the Normalized 

Difference Vegetation Index. Remote Sens. Environ. 2000, 73, 87–102. 

14. Rashed, T.; Weeks, J.R.; Roberts, D.; Rogan, J.; Powell, R. Measuring the physical composition of 

urban morphology using multiple endmember spectral mixture models. Photogramm. Eng. 

Remote Sens. 2003, 69, 1011–1020. 

15. Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R. Mapping chaparral in the 

Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. 

Environ. 1998, 65, 267–279. 

16. Small, C. Estimation of urban vegetation abundance by spectral mixture analysis. Int. J.  

Remote Sens. 2001, 22, 1305–1334. 

17. Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens. 

Environ. 2003, 88, 170–186. 

18. Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. 

Remote Sens. Environ. 2003, 84, 493–505. 

19. Montandon, L.; Small, E. The impact of soil reflectance on the quantification of the green 

vegetation fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835–1845. 

20. Zhou, X.; Guan, H.; Xie, H.; Wilson, J. Analysis and optimization of NDVI definitions and areal 

fraction models in remote sensing of vegetation. Int. J. Remote Sens. 2009, 30, 721–751. 

21. Asner, G.P.; Heidebrecht, K.B. Spectral unmixing of vegetation, soil and dry carbon cover in arid 

regions: Comparing multispectral and hyperspectral observations. Int. J. Remote Sens. 2002, 23, 

3939–3958. 

22. Borel, C.C.; Gerstl, S.A. Nonlinear spectral mixing models for vegetative and soil surfaces. 

Remote Sens. Environ. 1994, 47, 403–416. 

23. Huete, A.; Jackson, R.; Post, D. Spectral response of a plant canopy with different soil 

backgrounds. Remote Sens. Environ. 1985, 17, 37–53. 



Remote Sens. 2014, 6 4721 

 

 

24. Huete, A.R. Separation of soil-plant spectral mixtures by factor analysis. Remote Sens. Environ. 

1986, 19, 237–251. 

25. Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data 

for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. 

26. Qi, J.; Marsett, R.; Moran, M.; Goodrich, D.; Heilman, P.; Kerr, Y.; Dedieu, G.; Chehbouni, A.; 

Zhang, X. Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agric. 

For. Meteorol. 2000, 105, 55–68. 

27. Wittich, K.; Hansing, O. Area-averaged vegetative cover fraction estimated from satellite data.  

Int. J. Biometeorol. 1995, 38, 209–215. 

28. Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evaluation 

of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 

826–839. 

29. Theseira, M.; Thomas, G.; Sannier, C. An evaluation of spectral mixture modelling applied to a 

semi-arid environment. Int. J. Remote Sens. 2002, 23, 687–700. 

30. Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover 

within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 

2005, 98, 237–250. 

31. Peterson, S.; Stow, D. Using multiple image endmember spectral mixture analysis to study 

chaparral regrowth in southern California. Int. J. Remote Sens. 2003, 24, 4481–4504. 

32. Shoshany, M.; Svoray, T. Multidate adaptive unmixing and its application to analysis of 

ecosystem transitions along a climatic gradient. Remote Sens. Environ. 2002, 82, 5–20. 

33. Leprieur, C.; Kerr, Y.; Mastorchio, S.; Meunier, J. Monitoring vegetation cover across semi-arid 

regions: Comparison of remote observations from various scales. Int. J. Remote Sens. 2000, 21, 

281–300. 

34. Messina, J.; Delamater, P. Defoliation and the war on drugs in Putumayo, Colombia. Int. J.  

Remote Sens. 2006, 27, 121–128. 

35. Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid 

environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Observ. Geoinf. 2012, 21, 

506–512. 

36. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf 

area index. Remote Sens. Environ. 1997, 62, 241–252. 

37. Delamater, P.L.; Messina, J.P.; Qi, J.; Cochrane, M.A. A hybrid visual estimation method for the 

collection of ground truth fractional coverage data in a humid tropical environment. Int. J. Appl. 

Earth Observ. Geoinf. 2012, 18, 504–514. 

38. Kawamura, K.; Akiyama, T.; Yokota, H.-O.; Tsutsumi, M.; Yasuda, T.; Watanabe, O.; Wang, S. 

Quantifying grazing intensities using geographic information systems and satellite remote sensing 

in the Xilingol steppe region, Inner Mongolia, China. Agric. Ecosyst. Environ. 2005, 107, 83–93. 

39. Li, S.G.; Harazono, Y.; Oikawa, T.; Zhao, H.L.; He, Y.Z.; Chang, X.L. Grassland desertification 

by grazing and the resulting micrometeorological changes in Inner Mongolia. Agric. For. 

Meteorol. 2000, 102, 125–137. 

40. Sun, X.F.; Yue, T.X.; Wang, Q. High accuracy surface modeling of grassland aboveground 

biomass. J. Remote Sens. 2013, 17, 1060–1076. 



Remote Sens. 2014, 6 4722 

 

 

41. Purevdorj, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation 

cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. 

42. LAADS. Available online: http://ladsweb.nascom.nasa.gov/ (accessed on 16 May 2014). 

43. Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity 

mission. Remote Sens. Environ. 2012, 122, 11–21. 

44. USGS. Available online: http://landsat.usgs.gov/ (accessed on 16 May 2014). 

45. Huete, A.R.; Liu, H.Q. An error and sensitivity analysis of the atmospheric-and soil-correcting 

variants of the NDVI for the MODIS-EOS. IEEE Trans. Geosci. Remote Sens. 1994, 32, 897–905. 

46. Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment.  

Remote Sens. Environ. 1991, 35, 161–173. 

47. Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical 

characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. 

48. Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation 

indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation 

in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. 

49. Vescovo, L.; Gianelle, D. Using the MIR bands in vegetation indices for the estimation of  

grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino 

(Italy). Adv. Space Res. 2008, 41, 1764–1772. 

50. Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled 

difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 

366–378. 

51. Colwell, J.E. Vegetation canopy reflectance. Remote Sens. Environ. 1974, 3, 175–183. 

52. Obata, K.; Wada, T.; Miura, T.; Yoshioka, H. Scaling effect of area-averaged NDVI: Monotonicity 

along the spatial resolution. Remote Sens. 2012, 4, 160–179. 

53. Zou, C.; Wang, K.; Wang, T.; Xu, W. Overgrazing and soil carbon dynamics in eastern Inner 

Mongolia of China. Ecol. Res. 2007, 22, 135–142. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


