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Abstract: The precise and rapid estimation of grassland biomass is an important scientific 

issue in grassland ecosystem research. In this study, based on a field survey of 1205 sites 

together with biomass data of the Xilingol grassland for the years 2005–2012 and the 

―accumulated‖ MODIS productivity starting from the beginning of growing season, we 

built regression models to estimate the aboveground biomass of the Xilingol grassland 

during the growing season, then further analyzed the overall condition of the grassland and 

the spatial and temporal distribution of the aboveground biomass. The results are 

summarized as follows: (1) The unitary linear model based on the field survey data and 

―accumulated‖ MODIS productivity data is the optimum model for estimating the 

aboveground biomass of the Xilingol grassland during the growing period, with the model 

accuracy reaching 69%; (2) The average aboveground biomass in the Xilingol grassland 

for the years 2005–2012 was estimated to be 14.35 Tg, and the average aboveground 

biomass density was estimated to be 71.32 g∙m
−2

; (3) The overall variation in the aboveground 

biomass showed a decreasing trend from the eastern meadow grassland to the western 
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desert grassland; (4) There were obvious fluctuations in the aboveground biomass of the 

Xilingol grassland for the years 2005–2012, ranging from 10.56–17.54 Tg. Additionally, 

several differences in the interannual changes in aboveground biomass were observed 

among the various types of grassland. Large variations occurred in the temperate 

meadow-steppe and the typical grassland; whereas there was little change in the temperate 

desert-steppe and temperate steppe-desert. 

Keywords: Xilingol; grassland; remote sensing; MOD17A2; aboveground biomass 

 

1. Introduction 

Grassland ecosystems are one of the most important types of terrestrial ecosystems on the planet. 

They provide the ecosystem functions of soil and water conservation, wind erosion prevention, sand 

fixation and air purification. They also play an important role in the global terrestrial circulation among 

ecosystems. In addition, grassland ecosystems are important for ―livestock production‖. China’s 

grasslands encompass an area of approximately 400 million hectares, accounting for 41.7% of the 

country’s total land area [1], and constituting the single largest type of terrestrial ecosystem in China. 

Grassland biomass is the most direct indicator of grassland’s ecological status [2]. Thus, a precise and 

rapid method for the estimation of grassland biomass is of great importance for both basic science and 

the management and protection of grasslands.  

Grassland biomass directly reflects the level of grassland productivity. Productivity refers to the 

amount of organic matter produced by autotrophic organisms in a given unit of area over a given unit of 

time. Grassland net primary productivity (NPP) is obtained by subtracting autotrophic respiration [3] 

from the total amount of organic matter fixed by grassland vegetation. Grassland biomass is defined as 

the yield of fresh grass or hay that can be harvested at a certain time, and is close to the net primary 

productivity without regard to disturbances. Productivity is the basis for the formation of biomass, and 

biomass is the manifestation of productivity. The currently available methods for the estimation of 

grassland productivity and biomass primarily include field surveys, statistical modeling [4–7], process 

modeling [8–11] and parameter modeling [12–16].  

With the development of remote sensing technology, more and more fields have begun to involve 

remote sensing technology [17,18], and the development of remote sensing technology has stimulated 

studies on vegetation productivity and biomass. Due to the simple calculations involved and the high 

accuracy of the approach, statistical regression models using remote sensing data have been widely 

applied for the estimation of grassland biomass. The essence of the method is the establishment of a 

regression model between biomass measurements and either single-band remote sensing or vegetation 

index data, using satellite remote sensing data as the input parameters to estimate biomass. Initially, as 

the use of single-band information was simple, data of this type were used for estimating grassland 

biomass. However, due to strong interference from a number of factors (e.g., air, soil, sensor 

performance and the angle of the sun), the resulting estimation accuracy was found to be poor [19].  

As such, the vegetation index is now commonly used as the form of input data for building empirical 

regression models of vegetation biomass. Piao, et al. [20] used the normalized difference vegetation 
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index (NDVI) calculated by NOAA/AVHRR to establish a grassland vegetation biomass estimation 

model for China, and used the model to study the spatial distribution characteristics of China’s grassland 

vegetation biomass. Advances in remote sensing technology have generated higher-resolution images 

that are now used to estimate grassland productivity and biomass through methods, such as the 

application of MODIS data. Xu, et al. [21] performed a systematic estimation of China’s grassland 

productivity by region using a combination of MODIS data and ground survey data for the same time 

period. For different types of grassland areas, they established relational models between NDVI and 

field survey biomass data that allowed them to estimate the distribution of grass production in China. 

Yang, et al. [22] employed enhanced vegetation index (EVI) data from MODIS to estimate aboveground 

biomass in Tibet and analyze the relationship between the grassland’s aboveground biomass and climatic 

factors. Gao, et al. [23] used the MODIS vegetation index to conduct in-depth research on the spatial 

distribution of the aboveground and underground biomass of the Xilingol grassland. 

Using a remote sensing vegetation index to estimate aboveground biomass provides accurate and 

rapid results, but the limitations of the vegetation index itself may affect the obtained grassland biomass 

estimates. Specifically, in low-coverage grasslands, due to the significant influence of the soil 

background and grassland vegetation types, the estimation results exhibit high error rates. In addition,  

in high-coverage grasslands, the NDVI shows decreased sensitivity. A ―saturation‖ phenomenon 

appears when the NDVI is higher, resulting in a decline in the accuracy of grassland biomass estimates. 

The MODIS productivity products regularly published by NASA are surface photosynthetic products 

obtained from model estimates. After processing these products, we established a relational model 

between the MODIS productivity products and field-measured aboveground biomass. We then 

estimated aboveground biomass by accepting the MODIS productivity data as input parameters to avoid 

or reduce saturation problems if the input parameters were too high. In the present study, based on this 

strategy, we used ground survey data from the Xilingol grassland for the years 2005–2012 and MODIS 

productivity data for the same time period to establish statistics-based models for estimating biomass. 

We further tested the accuracy of the models and selected the optimal model for estimating the 

aboveground biomass of the Xilingol grassland during the growing period.  

2. Materials and Methods 

2.1. Overview of the Study Area 

The Xilingol grassland, located in the central part of Inner Mongolia at 41°35′~46°46′N,  

111°09′~119°58′E (Figure 1), is a typical temperate grassland of northern China, with an arid and 

semiarid temperate continental monsoon climate. The total area of the Xilingol grassland is 192,512 km
2
, 

accounting for 95.03% of the total land area of Xilingol. The map of grassland resources in China at  

a 1:1,000,000 scale shows that the vegetation types in the grassland, ranging from east to west, are 

meadow grassland, typical grassland and desert grassland (Figure 1). The representative plants of the 

meadow grassland are Leymus chinensis and Stipa baicalensis, whereas those of the typical grassland 

are bunch grasses such as Leymus chinensis, Stipa grandis and Stipa krylovii, and those of the desert 

grassland are dwarf grasses such as Stipa klemenzii, Stipa glareosa and Cleistogenes squarrosula [24].  
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Figure 1. Grassland types and the distribution of sampling sites in the study area. The total 

number of sampling sites was 1205. 

 

2.2. Field Sampling Data 

The aboveground biomass data used in this study came from multi-year field survey data collected by 

our research group, and a large-scale field campaign organized by the Grassland Monitoring and 

Supervision Center Ministry of Agriculture of China (GMSC), primarily in July and August from 

2005–2012 [23]. The sampling sites, each of which had an area of at least 1 km
2
, were chosen to 

represent typical vegetation communities. Each sampling site was homogeneous in terms of both its 

vegetation and land types. To obtain the actual aboveground biomass of herbs, all the aboveground 

plants in the three plots (1 m × 1 m) were harvested to measure their fresh weight. To obtain the 

estimated aboveground biomass of shrubs in the homogeneous grassland, one plot (10 m × 10 m) was 

sampled. We sorted the shrub plants (clumps) into three groups by size (i.e., large, medium and small).  

A representative plant (clump) from each group was selected, and its green parts along with its branches 

were cut and weighed from the same year. For each shrub plot, we multiplied the weight of the 

representative plant from each group by the number of plants in that group. We then calculated the sum 

of the weights of the three shrub groups. Finally, we averaged the fresh weight of both the herbs and 

shrubs in the three plots at the sampling site to obtain the field sampling dataset. 

Because the estimation accuracy for the model was significantly affected by the quality of ground 

survey data, the ground survey data were strictly tested and standardized before the creation of  

the model. Based on the grassland type and average conditions over many years, certain data showing  

an abnormal performance were excluded from the dataset. Ultimately, a total of 1205 sites sampled for 

biomass data were selected, of which 975 aboveground sites were used to establish the model and  

the remaining 230 sites were employed for validating the accuracy of the model. As shown in Figure 1,  

the number of sampling sites was sufficiently large and their distribution was sufficiently even to 

accurately represent the ground biomass and obtain statistically significant biomass models. 
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2.3. Remote Sensing Data and its Processing  

2.3.1. Introduction to MODIS Productivity Data  

The MODIS satellite sensor is one of the major sensors of the U.S. Earth Observation System (EOS). 

Generalized MODIS data cover 44 types of products. The MODIS data used in this study came from  

the MOD17A2 eight-day PSNnet (net photosynthesis) product, with a resolution of 1 km, which is a 

global land vegetation net productivity product calculated by model [25] and has been validated and 

widely used in studies on productivity and biomass in different regions of the world [26–29]. 

The MOD17 product is a land productivity product calculated using the BIOME-BGC model and  

a light use efficiency model, in combination with remote sensing data. The essence of the core science in 

the MOD17 algorithm is the application of radiation conversion efficiency logic to predictions of daily 

GPP (Gross Primary Productivity) using satellite-derived FPAR (Fraction of Photosynthetically Active 

Radiation, from MOD15) and independent estimates of PAR (Absorption Ratio of Photosynthetically 

Active Radiation) and other surface meteorological fields (from the DAO). The subsequent estimates of 

maintenance and growth respiration terms are subtracted from GPP to arrive at NPP (Net Primary 

Productivity). The principles underlying daily PSNnet estimation are as follows:  

ε = εmax × TMIN_Scalar × VPD_Scalar (1) 

where, ε is the light use efficiency, εmax is the maximum light use efficiency obtained from the Biome 

Parameter Look-Up Table (BPLUT) provided by NASA; TMIN_Scalar is the daily minimum 

temperature scalar, and VPD_Scalar is the daily average vapor pressure deficit scalar, which are used to 

calculate the scalars that attenuate εmax to produce the final ε used to predict GPP. 

IPAR = SWRad × 0.45 (2) 

APAR = IPAR × FAR (3) 

GPP = ε × APAR (4) 

where, SWRad is the incident shortwave radiation provided by the Data Assimilation Office (DAO) of 

NASA; IPAR is the photosynthetically active radiation incident on the vegetative surface; FAR is the 

absorption ratio of photosynthetically active radiation; and APAR is the photosynthetically active 

radiation absorbed by vegetation. 

Leaf_Mass = LAI/SLA (5) 

where, LAI is the leaf area index obtained from the MOD15, and SLA is the projected leaf area for a 

given pixel obtained from the BPLUT. 

Leaf_MR = Leaf_Mass × leaf_mr_base × Q10_mr
[(Tavg-20.0)/10.0]

 (6) 

where, leaf_mr_base is the maintenance respiration of leaves obtained from the BPLUT and Tavg is  

the average daily temperature (°C) estimated from the DAO meteorological data; Leaf MR is the leaf 

autotrophic respiration consumption. 

Froot_Mass = Leaf_Mass × Froot_leaf_ratio (7) 

Froot_MR = Fine_Root_Mass × froot_mr_base × Q10_mr
[(Tavg-20.0)/10.0]

 (8) 
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where, Froot_leaf_ratio is the ratio of fine root to leaf mass obtained from the BPLUT; Froot_mr_base 

is the maintenance respiration per unit of fine roots at 20 °C obtained from the BPLUT; and Froot_MR 

is the fine root autotrophic respiration consumption. 

Finally, PSNnet (kg∙C∙day
−1

) can be calculated from GPP using Equation (9): 

PSNnet = GPP-Leaf_MR − Froot_MR (9) 

The process for the estimation of the MOD17A2 GPP (gross primary productivity) and PSNnet  

(net photosynthesis) products is illustrated in Figure 2. 

Figure 2. Flowchart of the PSNnet estimation process. 

 

2.3.2. Processing of Remote Sensing Data 

Prior to conducting biomass estimates using the MOD17A2 eight-day PSNnet data, preprocessing of 

the data was necessary. First, a mosaic image was obtained, and geometric projection transformation 

was performed. The administrative boundary vector data for the Xilingol grassland were then used to 

extract the data for the study area. In addition, there was noise in certain areas of the PSNnet data where 

pixels were filled with the invalid value 32,767. In this study, the noise mostly appeared in desert 

grasslands, which essentially have no vegetation cover. Therefore, to ensure the accuracy of the final 

estimates during processing, all these invalid values were set to 0. Because there were many ground 

sampling sites selected for this study and they were evenly distributed, setting the values in a few areas 

to 0 does not have a significant effect on the statistical results. Further, to obtain a more accurate start 

time for the growing season and to ensure the accuracy of the accumulated productivity data, a statistical 

analysis of the productivity time series of the Xilingol grassland for the years 2005–2012 was conducted. 

The start time of PSNnet value every eight-day great than 0 was defined the start of growing season 

here, and the analytical results indicated a start time for the growing season of early to mid-March. 

Furthermore, the accumulation of PSNnet data every eight days from the beginning of the growing 

season to the peak of the growing season was obtained. Specifically, we can extract the mean PSNnet 

within a 1 km range for each sampling sites from the accumulated PSNnet data and establish a database 

of PSNnet and fresh grass weight data for the corresponding time. Then, based on the database,  

a statistical model was built for inversion of the aboveground biomass. 
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2.4. Establishment and Verification of the Model  

In this study, the field sampling data was wet weight and needed to be converted to air-dried weight. 

We converted the wet weights to air-dried weights using conversion coefficients for different grassland 

types employing ―Chinese Grassland Resources‖ [30] as a reference, and we further converted the 

air-dried weights to dry weights with a 15% water content [31], as the indicator of the grassland 

aboveground biomass. 

Based on the database, regression models between the aboveground biomass and the corresponding 

accumulated PSNnet value were established. These models primarily consisted of unitary linear, 

logarithm function, power function and exponential function models (Table 1). Using the reserved 

ground sampling data (approximately 20% of the total samples), we calculated the root-mean-square 

error (RMSE) and mean relative estimation error (REE) between the estimated values and the 

ground-measured values to evaluate the accuracy of the models [32]. The equations employed for error 

calculation were as follows: 

RMSE =  
  Yi − Yi

′ 2

N
 (10) 

REE =  
   Yi − Yi

′ /Yi
′  2

N
 (11) 

where, Yi is the actual aboveground biomass (fresh weight), Yi
′  is the aboveground biomass estimated 

by the model and N is the sample size. 

Table 1. Statistical models relating aboveground biomass to accumulated PSNnet.  

Model R
2
 F Value 

RMSE 
REE 

Precision 

(g∙m
−2

) (%) 

Unitary linear function y = 1.097x − 4.776 0.55 1168.75 26.67 0.31 69 

Logarithm function y = 71.308 × lnx − 224.634 0.55 1154.46 26.77 0.40 60 

Power function y = 0.361x
1.226

 0.65 1739.58 27.43 0.39 61 

Exponential function y = 17.038 × e
0.0178x

 0.58 1315.50 34.52 0.43 57 

Note: The numbers of regression and test samples were 975 and 230, respectively; p < 0.0001;  

precision = (1 – REE) ×100%; x is the accumulated PSNnet data (C_g∙m
−2

, C presents carbon), y is the 

estimated aboveground biomass (g∙m
−2

). 

The results indicate that the precision of the exponential function model was relatively low, whereas 

the precision of the unitary linear regression model was highest, at 69%. The correlation between the 

grassland aboveground biomass estimated by the unitary linear model and the actual aboveground 

biomass was significant (Figure 3). Therefore, we selected the unitary linear regression model for 

estimating the aboveground biomass of the Xilingol grassland, and then analyzed the temporal and 

spatial characteristics of the aboveground biomass of the Xilingol grassland. 

  



Remote Sens. 2014, 6 5375 

 

Figure 3. Relationship between the estimated aboveground biomass and actual 

aboveground biomass. 

 

3. Results  

3.1. Total Aboveground Biomass and its Distribution in Different Banners  

The unitary linear regression model was selected for estimating the aboveground biomass of  

the Xilingol grassland for the years 2005–2012 (Table 2). The average aboveground biomass of  

the Xilingol grassland for the years 2005–2012 was 14.35 Tg (1 Tg = 10
12

 g). The annual average 

aboveground biomass was highest in East Ujimqin Banner (approximately 4.15 Tg), 28.92% of the total 

biomass of the Xilingol grassland. The annual average aboveground biomass in West Ujimqin Banner 

was approximately 2.58 Tg, 17.98% of the total biomass in the Xilingol grassland. As the biomass of 

these two Banners represented nearly one-half of the total biomass, the two banners play an important 

role in pasture management and in the protection of grassland resources in Xilingol. The annual average 

aboveground biomass in Erenhot City, Taibus Banner, Xianghuang Banner, Duolun County and 

Zhengxiangbai Banner were relatively low, accounting for less than 10% of the aboveground biomass of 

the Xilingol grassland. 

An analysis of the data presented in Table 3 showed that the average density of the aboveground 

biomass of the Xilingol grassland for the years 2005–2012 was 71.32 g∙m
−2

. This value is generally in 

agreement with the average aboveground biomass density estimated for the Xilingol grassland for the 

years 2001–2012 by Gao, et al. [23] using the NDVI. In addition, there was a substantial difference in 

the aboveground biomass density among the different banners. The aboveground biomass density was 

greater than 90 g∙m
−2

 in Duolun County, Taipusi Banner, West Ujimqin Banner, Zhenglan Banner and 

East Ujimqin Banner, where growth conditions for grassland vegetation are generally good. In contrast, 

the aboveground biomass density in Erenhot City, Sonid Right Banner and Sonid Left Banner were 

relatively low, as growth conditions for grassland vegetation were generally poor in these areas. 
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Table 2. Annual aboveground biomass in different banners. 

Banners 
Grassland 

Area (km
2
) 

Total Aboveground Biomass (Tg) 

2005 2006 2007 2008 2009 2010 2011 2012 Average 

East Ujimqin Banner 45,060 5.72 3.79 2.49 3.90 4.06 4.15 4.11 5.00 4.15 

Abaga Banner 27,492 1.79 1.51 1.38 2.00 1.73 1.65 1.56 2.40 1.75 

West Ujimqin Banner 23,726 3.49 2.53 1.83 2.68 2.08 2.50 2.46 3.06 2.58 

Sonid Left Banner 34,814 1.21 1.00 1.01 1.30 1.20 0.95 1.05 1.54 1.15 

Xilinhot City 15,753 1.44 1.23 1.00 1.40 1.10 1.28 1.09 1.60 1.27 

Erenhot City 186 0.0029 0.0020 0.0017 0.0026 0.0020 0.0015 0.0017 0.0025 0.0021 

Sonid Right Banner 25,212 0.90 0.70 0.59 0.80 0.67 0.55 0.65 0.88 0.72 

Zhenglan Banner 10,281 1.09 1.05 0.84 1.15 0.99 0.87 1.05 1.15 1.02 

Zhengxiangbai Banner 6256 0.48 0.48 0.36 0.50 0.42 0.35 0.46 0.52 0.44 

Xianghuang Banner 5018 0.30 0.31 0.22 0.29 0.27 0.23 0.31 0.33 0.28 

Duolun County 3955 0.59 0.56 0.47 0.57 0.53 0.48 0.58 0.58 0.54 

Taipusi Banner 3496 0.43 0.47 0.36 0.50 0.39 0.38 0.46 0.48 0.43 

Total 201,249 17.44 13.62 10.56 15.07 13.42 13.39 13.79 17.54 14.35 

Table 3. Aboveground biomass in different banners. 

Banners 

Grassland 

Area (km
2
) 

Aboveground Biomass Density (g∙m
−2

) 

2005 2006 2007 2008 2009 2010 2011 2012 Average 

East Ujimqin Banner 45,060 127.04 84.20 55.26 86.54 90.03 92.13 91.20 111.03 92.18 

Abaga Banner 27,492 65.19 55.07 50.18 72.66 62.93 60.09 56.88 87.03 63.75 

West Ujimqin Banner 23,726 147.30 106.82 77.13 112.89 87.87 105.18 103.72 129.01 108.74 

Sonid Left Banner 34,814 34.62 27.98 29.09 37.37 34.37 27.31 30.24 44.28 33.16 

Xilinhot City 15,753 91.60 78.25 63.23 88.41 69.78 81.17 69.25 101.70 80.42 

Erenhot City 186 15.54 10.85 9.40 14.06 10.80 7.88 9.13 13.48 11.39 

Sonid Right Banner 25,212 35.53 27.50 23.60 31.80 26.38 21.84 25.90 34.89 28.43 

Zhenglan Banner 10,281 105.60 102.60 81.82 111.67 95.95 84.87 101.70 111.58 99.47 

Zhengxiangbai Banner 6256 76.18 76.76 57.60 79.26 66.34 55.31 73.53 83.30 71.03 

Xianghuang Banner 5018 59.94 61.44 44.64 57.57 52.96 45.02 62.25 65.43 56.16 

  



Remote Sens. 2014, 6 5377 

 

Table 3. Cont. 

Banners 

Grassland 

Area (km
2
) 

Aboveground Biomass Density (g∙m
−2

) 

2005 2006 2007 2008 2009 2010 2011 2012 Average 

Duolun County 3955 149.48 140.62 118.06 144.66 133.70 121.23 146.92 145.73 137.55 

Taipusi Banner 3496 122.19 135.71 103.88 141.70 110.21 108.85 131.52 138.07 124.02 

Total 201,249 86.66 67.67 52.48 74.90 66.66 66.51 68.53 87.15 71.32 

3.2. Spatial Distribution of Aboveground Biomass  

There were significant spatial differences in the aboveground biomass of the Xilingol grassland 

(Figure 4). The overall trend of aboveground biomass was as follows: the eastern meadow  

grassland > the central typical grassland > the western desert grassland (Table 4). The average 

aboveground biomass density for the years 2005–2012 was highest in the eastern montane meadow 

(156.07 g∙m
−2

) and temperate meadow steppe (115.23 g∙m
−2

), followed by the low-land meadow  

(86.31 g∙m
−2

) and the temperate steppe (69.10 g∙m
−2

). Among these four grassland types, the area of the 

temperate steppe was largest, accounting for 55.19% of the total area of the Xilingol grassland and 

54.19% of the total aboveground biomass in the study area. The aboveground biomass density in the 

temperate desert-steppe and the temperate steppe-desert was markedly lower than the overall average 

density (70.36 g∙m
−2

). The western temperate desert contained almost no plants. Precipitation is the 

major factor influencing the differences in the spatial distribution of grassland aboveground  

biomass [33]. The annual precipitation in most areas of the Xilingol grassland was within a range of 

200–300 mm, with an overall trend involving a gradual decrease from east to west. This trend was 

consistent with the spatial distribution pattern of the aboveground biomass [34]. 

Figure 4. Spatial distribution of the aboveground biomass of the Xilingol grassland (g∙m
−2

) 

from 2005–2012. 
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Table 4. Aboveground biomass density in the different grassland types. 

Grassland Types 
Grassland 

Area (km
2
) 

Aboveground Biomass Density (g∙m
−2

) 

2005 2006 2007 2008 2009 2010 2011 2012 Average 

Low-land meadow 25,981 109.74 83.87 62.04 88.41 79.65 80.92 84.84 101.02 86.31 

Improved grassland 472 67.42 63.52 50.80 68.73 58.06 54.71 60.26 73.89 62.17 

Montane meadow 1581 202.45 154.89 123.03 153.47 145.24 145.58 159.17 164.75 156.07 

Temperate meadow-steppe 24,875 155.81 110.19 75.29 109.83 110.44 111.83 117.66 130.82 115.23 

Temperate steppe-desert 5108 24.94 19.78 19.66 24.91 23.72 17.07 20.33 28.69 22.39 

Temperate steppe 108,488 80.40 65.11 51.62 75.06 63.34 64.82 64.39 88.02 69.10 

Temperate desert-steppe 29,598 30.68 23.36 23.89 31.03 27.79 21.17 24.20 35.71 27.23 

Temperate desert 143 22.93 16.58 16.91 22.43 18.53 14.64 16.94 23.93 19.11 

Marsh 330 126.45 71.32 55.81 83.17 75.64 84.50 84.36 97.95 84.90 

Total 196,576 85.88 66.52 51.54 73.88 65.71 65.71 67.39 86.29 70.36 

3.3. Interannual Variation in Aboveground Biomass 

There were obvious fluctuations in the aboveground biomass of the Xilingol grassland between the 

years 2005 and 2012. These biomass values ranged from 10.56–17.54 Tg. As shown in Figure 5,  

the lowest biomass occurred in 2007, at 10.56 Tg, approximately 26% lower than the mean annual 

average biomass. The highest biomass was 17.54 Tg, in 2012. There were large interannual fluctuations 

in the aboveground biomass of the Xilingol grassland from 2005–2009, with an initial decrease being 

observed prior to an increasing trend. The grassland aboveground biomass from 2009–2012 exhibited an 

increasing trend, with biomass peaking in 2012. 

Figure 5. Variation in the aboveground biomass of the Xilingol grassland from 2005–2012. 
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The aboveground biomass of different grassland types appeared to fluctuate from 2005–2012 (Figure 6). 

Large variations occurred in the temperate meadow-steppe and the typical grassland, which presented 

higher yields; whereas there was little change in the temperate desert-steppe and temperate 

steppe-desert, which showed lower yields. From 2005–2012, the overall grassland production in the 

montane meadow and the temperate meadow-steppe decreased, whereas it remained steady after 

showing fluctuations in the lowland and the temperate meadow and showed little change in the 

temperate desert-steppe and the temperate steppe-desert.  

Figure 6. Interannual variations in the aboveground biomass in different grassland types. 

 

4. Discussions 

4.1. Potentials Analysis of Model 

A significant empirical relationship was found between the accumulated PSNnet data and the 

aboveground biomass data, showing good prospects for the application of MODIS productivity data in 

combination with ground sampling data to establish models for biomass inversion. There are three 

reasons to support this conclusion, as follows: 

(1) Through the accumulation of PSNnet data every eight days from the beginning of the growing 

season to the peak of the growing season, a good correlation was achieved between the obtained 

accumulated PSNnet data and the peak growing season NDVI data for the corresponding spatial point, 

showing coefficients of determination (R
2
) up to 0.75 (Figure 7). Because there have been many 

previous studies on statistical models of the NDVI and aboveground biomass [35–38], we can assume a 

good correlation between the PSNnet data and the aboveground biomass data. Furthermore, we can 

assume that using the PSNnet data and the aboveground biomass data to build the model and then 

retrieve the aboveground biomass data is a practical method. In addition, the MODIS productivity data 

used in this study fully considered the effects of temperature, precipitation and other climatic factors 

during the process of estimating vegetation productivity. Compared with the NDVI data employed in 
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traditional methods of biomass estimation, MODIS productivity data can better reflect the effects of 

environmental stresses.  

Figure 7. Relationship between the accumulated PSNnet data and NDVI data. 

 
Note: x is NDVI, y is the accumulated PSNnet data (C_g∙m

−2
). 

(2) The temporal matching between remotely sensed images and ground survey greatly affects  

the accuracy of remote sensing based models for grassland biomass estimation. The database of the 

extensive filed samples and their matching remotely sensed data is the basis of improving the model 

precision and stability. In this study, a sound database combining multi-year accumulated PSNnet data 

and ground survey biomass data with strict temporal matching was developed, which was further applied 

to biomass estimation models. 

(3) Two methods are often used to evaluate model performances. One is based on the coefficient of 

determination (R
2
), another way is to assess model error. In general, a high R

2
 or a low error value often 

indicates a good fit between the model developed and the ground survey data [39]. In this study, we 

compared the correlation between NDVI data and biomass, as well as accumulated PSNnet data and 

biomass. The result showed that R
2
 between calculated PSNnet data and biomass was a little higher than 

R
2
 between NDVI data and biomass, as shown in Figure 8. We used ground survey data from the 

Xilingol grassland for the years 2005–2012 and MODIS productivity data for the same time period to 

establish statistics-based models for biomass estimation, with an overall accuracy of 69%, which is close 

to highest accuracy (74%) by Jin, et al. [38]. In addition, NDVI data are prone to an ―oversaturation‖ 

phenomenon if the vegetation coverage is higher, which decreases the sensitivity of biomass estimation, 

whereas MODIS productivity data can overcome this oversaturation problem. Therefore, in high 

vegetation cover conditions, the biomass estimation accuracy by MODIS productivity data would be 

higher than the biomass estimation accuracy by NDVI data.  
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Figure 8. R
2
 between remotely sensed data and ground survey data. 

 

4.2. Uncertainties of Model 

In this study, based on ground survey data from the Xilingol grassland for the years 2005–2012 and 

MODIS productivity data for the same time period, we developed statistical models based on the 

relationship between the PSNnet data and aboveground biomass data and then selected the optimal 

model to estimate the grassland aboveground biomass of the Xilingol grassland. However, our estimate 

still retains some uncertainties for the following reasons. First, there exists the scale effect between 

remotely sensed data and ground survey data. The spatial resolution of MODIS productivity data is  

1 km, differing from the size of quadrat. In the course of the sampling, we have taken the average value 

of multiple samples to reduce the estimation error caused by the scale effect. Second, the remotely 

sensed data used in this study came from the MOD17A2 eight-day PSNnet product, which is a global 

land vegetation net productivity product calculated by model and has been validated widely, across most 

of the world. In the process of performing these calculations, nevertheless, since some of the 

maintenance respiration costs and all of the growth respiration costs have not been accounted for in the 

daily timestep, the daily output from this algorithm is termed PSNnet (net photosynthesis), 

to differentiate it from the true daily NPP. This reason has magnified the contrast between net 

photosynthesis and actual biomass, and becomes the important uncertainty source for biomass 

estimation. In addition, although the MODIS-PSNnet dataset has been processed with a series of 

corrections, there is still a certain level of deviation, which causes uncertainty in the estimation. 

Understanding and identifying the sources of uncertainties and then devoting efforts to improving them 

are critical in improving grassland aboveground biomass estimation performance; therefore, more 

research is needed in the future for reducing the uncertainties from different sources in the aboveground 

biomass estimation procedure. 

4.3. Comparison with Previous Estimates 

As shown in Table 4, the average aboveground biomass densities were estimated to be 27.23 g∙m
−2

 

for the temperate desert steppe, 69.10 g∙m
−2

 for the temperate steppe and 115.23 g∙m
−2 

for the temperate 
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meadow steppe. A comparison of our estimates with these previous values (Table 5 [40–43]) showed 

that our estimate was significantly lower than the previous estimates, and the reasons for this difference 

could be related to the following three aspects. First, the influence on ground survey data from different 

times and regions is the major reason for this difference. For example, we used field sampling data from 

multi-year field survey data collected by our research group and a large-scale field campaign organized 

by the GMSC between 2006 and 2012, whereas Ma, et al. [41] gathered 113 field samples from 

2002–2005, Piao, et al. [42] used national grassland resource inventory data between 1982 and 1999. 

Previous studies have mainly focused on large scales, including all types of grasslands in China or Inner 

Mongolia, whereas this study only concerns grasslands in Xilingol. Second, the sampling method 

employed in these studies may have contributed to this difference. Although biomass harvest is a 

commonly used method of grassland quadrat survey, there are differences in actual practical operations. 

Different standards of sampling, including sample locations (enclosed or not) and collected objects 

(including standing dead biomass and litter biomass or not), dramatically influence sampling. The third 

aspect is the approach taken in the estimation process. For example, Ma, et al. [41] calculated the 

biomass densities for different grassland types based on field samples and further estimated the biomass 

according to different grassland types. Compared with this method, the method based on remote sensing 

can represent the spatial details of the aboveground biomass across the entire study area, thereby 

expanding the study area and reducing the uncertainty of the estimates.  

Table 5. Aboveground biomass densities from different studies. 

Researchers Study Area 

Aboveground Biomass Densities (g∙m
−2

) 

Temperate Desert 

Steppe 

Temperate 

Steppe 

Temperate Meadow 

Steppe 

Ni, et al. [40] China 45.56 88.96 146.47 

Ma, et al. [41] Inner Mongolia 56.5 133.4 196.7 

Piao, et al. [42] China 43.57 91.52 144.9 

Fan, et al. [43] China 111.11 151.11 182.22 

In addition to the studies cited above, several studies have obtained results similar to our results.  

Jin, et al. [38] estimated the average aboveground biomass density of the temperate desert steppe,  

the temperate steppe and the temperate meadow steppe in in the Xilingol grassland to be 23.1, 55.7 and  

98.6 g∙m
−2

, respectively. Gao, et al. [23] used field-based biomass samples and MODIS time series data 

sets to establish two empirical models based on the relationship of the normalized difference vegetation 

index (NDVI) to aboveground biomass in the Xilingol grasslands of northern China. The results showed 

that the average aboveground biomass densities for temperate desert-steppe, temperate steppe and 

temperate meadow-steppe were 21.2, 59.6 and 111.3 g∙m
−2

, respectively. The field biomass 

measurements obtained at the same time and from the same regions contributed to the consistency of 

these results. However, several differences remained among studies as a result of the use of different 

remotely sensed data as input parameter and different regression models. The MODIS productivity data 

is a global land vegetation net productivity product calculated by model, differing from the vegetation 
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index data. Using a remote sensing vegetation index to estimate aboveground biomass provides accurate 

and rapid results, but the limitations of the vegetation index itself may affect the obtained grassland 

biomass estimates. Compared with NDVI data, MODIS productivity data can overcome the problem of 

high error rates in low-coverage grasslands and the oversaturation problem in high-coverage grasslands. 

In addition, MODIS productivity data can better reflect the effects of environmental stresses. However, 

the method using MODIS productivity data for biomass estimation should be improved to achieve 

more accurate estimates of grassland biomass in the future. 

5. Conclusions  

This study took the Xilingol grassland as a case study and used ground survey data and MODIS 

productivity data for the growing seasons of the years 2005–2012 to build a unitary linear regression 

model to retrieve the aboveground biomass of the Xilingol grassland, and then analyze the spatial and 

temporal distribution of aboveground biomass. The grassland aboveground biomass averaged  

14.35 Tg in the Xilingol grassland during the years 2005–2012, and showed a gradually decreasing trend 

from east to the west. There were large interannual variations in the aboveground biomass, ranging from 

10.56–17.54 Tg, and the aboveground biomass showed differences among different grassland types.  

The study made up for the inadequacy of vegetation index to estimate the grassland biomass, and 

provided an improvement for grassland biomass estimation. Although the study showed promising 

results for remote sensing based grassland biomass estimation, there are limitations to the accuracy of 

biomass inversion using MODIS productivity data, therefore, further work is needed to improve the 

estimation accuracy. In addition, spatio-temporal patterns of aboveground biomass and their 

relationships with climate factors still need further research in the Xilingol grassland. Gao, et al. [23] 

have already studied the relationship between GSP (growing season total precipitation) with grassland 

biomass and the relationship between GST (growing season average temperature) with grassland 

biomass. However, the climate factors are much more than these. For example, how the growing 

season maximum and minimum temperatures affect grassland biomass and whether the temperature in 

winter affects grassland biomass need in-depth research. Therefore, the grassland response to climate 

change is complex, and deserves more detailed and deeper inquiry in future research. 
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