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Abstract: Extensive sea ice over Arctic regions is largely involved in heat, moisture, and 

momentum exchanges between the atmosphere and ocean. Some previous studies have 

been conducted to develop statistical models for the status of Arctic sea ice and showed 

considerable possibilities to explain the impacts of climate changes on the sea ice extent. 

However, the statistical models require improvements to achieve better predictions by 

incorporating techniques that can deal with temporal variation of the relationships between 

sea ice concentration and climate factors. In this paper, we describe the statistical 

approaches by ordinary least squares (OLS) regression and a time-series method for 

modeling sea ice concentration using satellite imagery and climate reanalysis data for the 

Barents and Kara Seas during 1979–2012. The OLS regression model could summarize the 

overall climatological characteristics in the relationships between sea ice concentration and 

climate variables. We also introduced autoregressive integrated moving average (ARIMA) 

models because the sea ice concentration is such a long-range dataset that the relationships 

may not be explained by a single equation of the OLS regression. Temporally varying 
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relationships between sea ice concentration and the climate factors such as skin 

temperature, sea surface temperature, total column liquid water, total column water vapor, 

instantaneous moisture flux, and low cloud cover were modeled by the ARIMA method, 

which considerably improved the prediction accuracies. Our method may also be worth 

consideration when forecasting future sea ice concentration by using the climate data 

provided by general circulation models (GCM). 

Keywords: sea ice concentration; climate reanalysis; statistical model; time series 

 

1. Introduction 

Sea ice is an important component of the climate system. Sea ice cover can change the surface 

albedo, which in turn acts to reinforce the initial alteration in ice area [1–3]. Extensive sea ice over 

Arctic regions is largely involved in heat, moisture, and momentum exchanges between the 

atmosphere and ocean [4]. This is because the sea ice surface reflects significantly more of the incident 

solar radiation than open water and because melted water has a significant influence on oceanic 

circulation [5,6]. Therefore, changes in the extent of sea ice have great potential to influence variations 

in regional and global climatic systems [7,8]. 

Although a long-range dataset over a large-scale area is necessary to achieve reliable spatiotemporal 

analysis, it is difficult to scrutinize sea ice changes due to the lack of in-situ observations [9]. 

However, Arctic sea ice concentration, extent, and area have been continuously monitored for 

approximately 34 years. Monitoring has been ongoing since 1979 with the help of satellite-based 

multichannel passive microwave imaging systems [10] such as Scanning Multichannel Microwave 

Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and Advanced Microwave 

Scanning Radiometer (AMSR). Sea ice concentration is defined as the fraction of ice-covered areas at 

a given point in the ocean. Sea ice extent denotes the sum of ice-covered areas with concentrations of 

at least 15%, while sea ice area is the product of the ice concentration and each pixel area within the 

ice extent [11,12]. Recent satellite remote sensing studies show that there has been a significant decline 

in Arctic sea ice extent [13,14] with the possibility that global warming is occurring more rapidly than 

before. Therefore, reliable outlooks for sea ice conditions are crucial in understanding the future Arctic 

environment and global climate change [15]. 

In the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report, six climate 

models indicated that the Arctic might have sea ice-free summers in the 2030s [16,17]. However, 

significant differences were found among the results predicted by several climate models evaluating 

changes in Arctic sea ice cover [16,17]. Consequently, the mechanism behind the recent rapid decrease 

in sea ice extent, which is not yet fully understood, may result in some uncertainties in the process-based 

Arctic sea ice module of climate models [18,19]. Some other studies on sea ice changes have 

employed statistical models based on empirical relationships between sea ice conditions and several 

explanatory variables e.g., [18,20–26]. Variables in the statistical models include prior information on 

sea ice, as well as oceanic and atmospheric conditions that can influence sea ice changes. Temperature 

is reasonably expected to be a major predictor for the current loss of sea ice caused by the atmospheric 
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warming trend over the Arctic area [27,28]. However, statistical predictions require additional climatic 

variables for a more stable explanation for Arctic sea ice changes [18,29,30]. Such empirical 

knowledge can help identify the physical processes underlying Arctic sea ice changes [16,31] and can 

contribute to making reasonable outlooks even without the need for explicit physical mechanisms and 

realistic initial conditions [29]. 

Some previous studies have been conducted to develop statistical models for the status of Arctic sea 

ice at seasonal to annual scales and showed considerable possibilities to explain the impacts of climate 

changes on Arctic sea ice extent. Drobot and Maslanik [20] exploited a statistical model with four 

regressors (winter multiyear ice concentration, spring total ice concentration, North Atlantic 

Oscillation index, and East Atlantic index) in order to explain summer ice conditions in the Beaufort 

Sea. Drobot [21] extended the work of Drobot and Maslanik [20] by adding more explanatory 

variables like heating degree-days to the regression model for the Beaufort-Chukchi Sea. These works 

aimed to predict the Barnett severity index (BSI) that shows the expansion of open water using surface 

and atmospheric variables. Drobot et al. [22] developed a multiple regression model to predict sea ice 

extent using satellite data such as ice concentration, surface skin temperature, surface albedo, and 

downward longwave radiative flux as explanatory variables. Drobot [18] also provided several 

regression equations for the relationship between minimum sea ice extent and satellite-observed surface 

variables including temperature, albedo, and downward longwave radiation. Lindsay et al. [23] presented a 

similar regression analysis that predicted sea ice extent by using surface variables for the Arctic Ocean. 

Årthun et al. [24] showed the correlations between Barents Sea ice area and Atlantic heats.  

Pavlova et al. [25] analyzed the impacts of winds and sea surface temperatures on the Barents Sea ice 

extent using correlation coefficients. In addition, Tivy et al. [26] analyzed July sea ice concentration in 

the Hudson Bay with the help of canonical correlation analysis using sea surface temperature, 

geopotential height, and surface air temperature. 

The characteristics of previous statistical studies on the satellite-observed sea ice change include the 

following. First, most of their techniques for modeling sea ice changes were somewhat limited by 

focusing solely on the prediction of sea ice extent [26] using variables such as sea ice concentration, 

despite the fact that sea ice extent is indeed the value directly determined by sea ice concentration, 

according to its definition. Rather, sea ice concentration itself has rarely been modeled by statistical 

methods using satellite imagery except for Tivy et al. [26] whose analyses were conducted simply for 

July. Second, the statistical models require improvements to achieve better accuracies by incorporating 

techniques that can deal with temporality or long-term variation of the relationships between sea ice 

concentration and climate factors. Indeed, 34-year satellite imagery includes 408 time series on the 

monthly basis. It is quite a long-range dataset, so the relationships between sea ice concentration and 

climate factors may not be sufficiently explained by a single equation of the ordinary least squares 

(OLS) method. Instead, time-series statistical approaches such as vector autoregression (VAR) and 

autoregressive integrated moving average (ARIMA), whose predictabilities have been proved in many 

other fields, can be an alternative to modeling sea ice changes in terms of temporally varying relationships. 

In this paper, we described the statistical modeling of the Arctic sea ice changes in relation to 

various climatic factors using recent 34 year satellite imagery and climate reanalysis data. A target 

variable to be analyzed is the sea ice concentration retrieved by the National Aeronautics and Space 

Administration (NASA) Team algorithm [11], and explanatory variables include skin temperature, sea 



Remote Sens. 2014, 6 5523 

 

 

surface temperature, total column liquid water, total column water vapor, instantaneous moisture flux, 

and low cloud cover that were obtained from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA-Interim datasets [32]. The six explanatory variables were selected by taking 

account of the correlation coefficients for sea ice concentration and multicollinearity among variables 

as well. The OLS regression models were useful in summarizing climatological patterns that can be 

found in the relationships between sea ice concentration and climate factors, and the ARIMA models 

had advantages in the improvements of prediction accuracy. Our study area is the Barents and Kara 

Seas, which have experienced considerable sea ice changes for the period. 

2. Data and Methods 

2.1. Satellite and Climate Datasets 

The Barents and Kara Seas area was selected to analyze sea ice changes on a regional scale. Sea ice 

concentration in this area exhibits very high variability because it is covered by relatively thin seasonal 

ice [33] impacted by highly variable Atlantic water inflow [34] and atmospheric forcing primarily 

driven by North Atlantic Oscillation [35,36]. The data for sea ice concentration produced by the NASA 

Team algorithm, which has been used in many sea ice studies, was obtained from the website of 

National Snow and Ice Data Center (NSIDC). An enhancement of the algorithm by the NASA Team 

on sea ice concentration overcomes the problem of a low ice concentration bias associated with surface 

snow effects. It is calculated based on the brightness temperature difference between 19 and 37 GHz 

channels obtained from SMMR and SSM/I [11]. We used monthly dataset with a spatial resolution of 

0.25 × 0.25 degrees in the polar stereographic projection centered on the North Pole. The Barents and 

Kara Seas area was delineated using a region mask provided by NSIDC (Figure 1), which consists of 

3912 pixels per scene. 

As climate factors affecting the changes of sea ice concentration, we used monthly means of  

ERA-Interim products, which is the latest global climate reanalysis provided by ECMWF. We first 

investigated possible explanatory variables in relation to temperature, water, radiation, wind, pressure, 

heat energy, and cloud conditions. Because monthly radiation variables (e.g., surface net solar 

radiation and surface net thermal radiation) were only provided in forecasted values not in reanalyzed 

ones, they were not included in our analyses. Wind variables (e.g., wind speed and U/V component), 

pressure variables (e.g., mean sea level pressure and surface pressure), and heat energy variables  

(e.g., sensible heat and latent heat) which showed relatively low correlations ( 𝑅 < 0.5) to sea ice 

concentration during 1979–2012 were also excluded. Hence, we divided the remaining explanatory 

variables into three groups: (1) temperature-related variables including 2-m temperature, 2-m dewpoint 

temperature, skin temperature, and sea surface temperature; (2) water-related variables including 

vertical integral of water vapor, total column liquid water, total column water vapor, total column 

water, and instantaneous moisture flux; and (3) cloud-related variables such as low, medium, and high 

cloud cover. We finally selected skin temperature, sea surface temperature, total column liquid water, 

total column water vapor, instantaneous moisture flux, and low cloud cover as appropriate explanatory 

variables by considering the correlation coefficients to sea ice concentration and multicollinearity 

between variables within the group. 
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Figure 1. The regional mask around the Arctic provided by the National Snow and Ice 

Data Center (NSIDC). It includes Arctic Ocean, Barents and Kara Seas, Greenland Sea, 

Baffin Bay/Davis Strait/Labrador Sea, Gulf of St. Lawrence, Hudson Bay, Canadian 

Archipelago, Bering Sea, and Sea of Okhotsk. 

 

The skin temperature (K) is defined as the temperature of the top skin of the sea (approximately 

≤0.01 mm), and the sea surface temperature (K) indicates the temperature of the sea at approximately 

20–30 cm depth. The total column liquid water (kg/m2) denotes vertical integral of water in the liquid 

phase from the ground to the nominal top of the atmosphere expressing the total amount of cloud 

liquid water, and the total column water vapor (kg/m2) is for the total amount of water vapor in the 

atmosphere. The instantaneous moisture flux (kg/m2/s) indicates the amount of evaporation for a unit 

area per second. Low cloud cover (0–1) is the fraction of clouds in the low layer, where the ratio of 

pressure to surface pressure is >0.8. The ERA-Interim products have been advanced by a data 

assimilation scheme based on 12 h 4D-Var, which possesses improved model physics, fast radiative 

transfer model, and better formulation of background error constraint [32]. The data is originally 

produced with a spatial resolution of 0.75 × 0.75 degrees and can be also provided on the grids  

of 0.25 × 0.25 and 0.5 × 0.5 degrees through a spatial interpolation. We used the data on the  

0.25 × 0.25-degrees grid and its geographic projection with latitude and longitude was converted into 

the polar stereographic projection in accordance with the NSIDC sea ice products. A set of map 
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projection parameters such as latitude of standard parallel, longitude of central meridian, false easting, 

and false northing was specified for the conversion [37]. 

Finally, 408 monthly layers for the 34 years (1979–2012) were aggregated from the NSIDC sea ice 

products and the ECMWF reanalysis datasets in order to examine the relationships between sea ice 

concentration and climate factors such as skin temperature, sea surface temperature, total column 

liquid water, total column water vapor, instantaneous moisture flux, and low cloud cover. Explanatory 

variables were normalized in the form of z-score calculated as (𝑥𝑖 − 𝑥 )/𝜎𝑥 , where 𝑥𝑖  is an individual 

value, 𝑥  is the mean, and 𝜎𝑥  is the standard deviation for the entire pixels during 1979–2012. This is 

because normalized values allow for comparisons among the regression coefficients of explanatory 

variables even though they originally had different units. 

2.2. Statistical Models 

A regular regression model is based on the ordinary least squares method, which can be expressed 

in the Formula: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀 (1) 

where 𝑦 is a response variable and 𝑥1 to 𝑥𝑘  are explanatory variables. In remote sensing studies, 𝑦 is 

generally a remotely sensed variable and 𝑥1 to 𝑥𝑘  are environmental variables of interest. 𝛽0 represents 

the intercept, and 𝛽1 to 𝛽𝑘  are the slopes of the relationship between 𝑦 and 𝑥1 to 𝑥𝑘 . The error term 

𝜀 may include all other factors influencing the response variable 𝑦 except for the regressors 𝑥1 to 𝑥𝑘 . In 

this study, 𝑦 is the sea ice concentration and 𝑥1 to 𝑥𝑘  are skin temperature, sea surface temperature, 

total column water, total column liquid water, instantaneous moisture flux, and low cloud cover, 

respectively. The OLS regression model is often assumed to apply universally over the whole area and 

the whole period, which implies spatial and temporal stationarities in the relationship between the 

response and explanatory variables. 

Since some environmental phenomena can be explained in terms of temporality or seasonality, the 

ARIMA model may be useful in explaining complex long-range dataset. In contrast to the OLS 

approach, the ARIMA model assumes temporal non-stationarity based on the possible differences in 

the relationships between response and explanatory variables over time [38]. The model is briefly 

expressed as ARIMA 𝑝, 𝑑, 𝑞  where parameters p, d, and q are non-negative integers that refer to the 

order of autoregressive (𝑝), integrated (𝑑), and moving average (𝑞) parts of the model, respectively. 

Also, seasonal ARIMA model is denoted as ARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄) with additional parameters such 

as seasonal autoregressive order (𝑃), seasonal differencing order (𝐷), and seasonal moving average 

order (𝑄 ). These parameters can determine the predictability of an ARIMA model and can be 

optimized by minimizing the criteria such as AIC (Akaike information criterion) and BIC (Bayesian 

information criterion). A typical seasonal ARIMA model has the following form [39]: 

 1 − 𝐵 𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = 𝜇 +
𝜃(𝐵)𝜃𝑠(𝐵𝑠)

𝜙(𝐵)𝜙𝑠(𝐵𝑠)
𝑎𝑡  (2) 

where 𝐵 is the backshift operator; 𝑌𝑡  is the time series; 𝜇 is the mean term; 𝜙(𝐵) is the non-seasonal 

autoregressive operator; 𝜙𝑠(𝐵𝑠)  is the seasonal autoregressive operator; 𝜃(𝐵)  is the non-seasonal 

moving average operator; 𝜃𝑠(𝐵𝑠) is the seasonal moving average operator; 𝑎𝑡  is the random error. In 
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order to employ the ARIMA method in the time-series modeling with multiple explanatory variables, 

we can add regressors to an ARIMA equation, which literally adds the regressors to the right-hand-side 

of the equation. 

3. Results and Discussion 

3.1. OLS Regression Model Results 

Using the monthly data for sea ice concentration and climate variables, we derived OLS regression 

equations as follows: 

𝑆𝐼𝐶 = 𝛽0 + 𝛽𝑆𝐾𝑇𝑆𝐾𝑇 + 𝛽𝑆𝑆𝑇𝑆𝑆𝑇 + 𝛽𝑇𝐶𝐿𝑊𝑇𝐶𝐿𝑊 + 𝛽𝑇𝐶𝑊𝑉𝑇𝐶𝑊𝑉 + 𝛽𝐼𝑀𝐹𝐼𝑀𝐹 + 𝛽𝐿𝐶𝐶𝐿𝐶𝐶 (3) 

where the response variable 𝑆𝐼𝐶 denotes sea ice concentration, and the explanatory variables 𝑆𝐾𝑇, 

𝑆𝑆𝑇, 𝑇𝐶𝐿𝑊, 𝑇𝐶𝑊𝑉, 𝐼𝑀𝐹, and 𝐿𝐶𝐶 indicate skin temperature, sea surface temperature, total column 

liquid water, total column water vapor, instantaneous moisture flux, and low cloud cover, respectively. 

In order to examine seasonal characteristics of the relationships between sea ice concentration and six 

climate variables, the above equation was built into 12 different versions for each month. Our calibration 

and validation schemes employed leave-one-out method for the year 2012, 2002, 1992, and 1982: 

(1) calibration of 33-year dataset except 2012 (for validation of 2012); (2) calibration of 33 year 

dataset except 2002 (for validation of 2002); (3) calibration of 33-year dataset except 1992 

(for validation of 1992); and (4) calibration of 33-year dataset except 1982 (for validation of 1982). 

First, monthly means during 1979–2011 were aggregated for each pixel to validate the OLS model 

for 2012. The p-values of the regression coefficients (𝛽𝑆𝐾𝑇 , 𝛽𝑆𝑆𝑇 , 𝛽𝑇𝐶𝐿𝑊 , 𝛽𝑇𝐶𝑊𝑉 , 𝛽𝐼𝑀𝐹 , and 𝛽𝐿𝐶𝐶 ) 

produced by t-test were <0.01 for almost all cases (Table 1).  

Table 1. Coefficients of the OLS regression models calibrated during 1979–2011. 

𝛽0 denotes intercept, and 𝛽𝑆𝐾𝑇 , 𝛽𝑆𝑆𝑇 , 𝛽𝑇𝐶𝐿𝑊 , 𝛽𝑇𝐶𝑊𝑉 , 𝛽𝐼𝑀𝐹 , and 𝛽𝐿𝐶𝐶  are the coefficients of 

skin temperature, sea surface temperature, total column liquid water, total column water 

vapor, instantaneous moisture flux, and low cloud cover, respectively. 

Coefficient Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

𝛽0 0.595 0.718 0.864 0.739 1.255 1.558 0.749 −0.105 0.851 0.503 0.489 0.470 

𝛽𝑆𝐾𝑇  −0.040 −0.077 −0.160 −0.354 −2.344 −0.870 
*
 0.139 1.049 −2.047 −0.841 −0.290 −0.078 

𝛽𝑆𝑆𝑇  0.297 0.264 0.260 0.107 0.197 −0.401 −0.377 −0.643 0.349 0.094 0.157 0.339 

𝛽𝑇𝐶𝐿𝑊  −0.084 −0.053 0.227 
*
 0.493 0.854 −0.520 −0.080 −0.163 

*
 0.009 −0.069 −0.292 −0.126 

𝛽𝑇𝐶𝑊𝑉  −0.085 0.081 0.106 −0.051 0.364 0.055 
*
 0.032 0.265 0.628 0.512 0.339 −0.124 

𝛽𝐼𝑀𝐹  0.364 0.363 0.382 0.292 −0.512 −1.216 −0.555 −0.402 −0.296 −0.095 0.210 0.348 

𝛽𝐿𝐶𝐶  0.052 0.049 0.059 0.024 −0.041 −0.191 −0.066 0.018 0.013 0.065 0.039 0.085 

p-value < 0.01 except for the cases superscripted by 
*
. 

Skin temperature at the top of sea surface had a considerable seasonal variation when compared to the 

sea surface temperature at 20–30 cm depth (Figure 2). The reason of such variation is caused by the fact 

that skin temperature is controlled by solar radiation in summer and by atmospheric condition in winter 

whereas sea surface temperature is influenced by the North Atlantic current all the year round. In 

addition, seasonal changes of 𝛽𝑆𝐾𝑇  and 𝛽𝑆𝑆𝑇  were quite different (Figure 3) even though both 
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atmospheric and oceanic forcing of sea ice cover could contribute to thermodynamic melting. In 

warmer months, the skin temperature showed a sharp increase, and such rapid changes might act as a 

noise leading to the reversion of the regression coefficients: 𝛽𝑆𝐾𝑇  abruptly changed to positive in July 

and August. During the winter season (from October to April), 𝛽𝑆𝐾𝑇  and 𝛽𝑆𝑆𝑇  showed relatively similar 

values close to zero, which might be due to the weaker thermodynamic effects of skin temperature and 

sea surface temperature below the freezing point. 

Figure 2. Monthly mean skin temperature (SKT) and sea surface temperature (SST) during 

1979–2011. The values for the entire pixels were aggregated.  

 

Figure 3. Monthly changes of regression coefficients for skin temperature (SKT) and sea 

surface temperature (SST). They were calculated from the averages of the normalized 

variables during 1979–2011. 

 

Sea ice–cloud interactions and sea ice–water vapor interactions are very complicated since they are 

associated with many aspects of the energy balance and dynamics in the atmosphere. However, some 

previous studies, e.g., [40–45] put forward that cloud covers are closely related to the changes in sea 

ice concentration even if the physical mechanism of effect of cloud warming or cooling on the surface 

or top of the atmosphere may not be well explained. Although the normalized values of total column 

liquid water (in clouds) and total column water vapor were very similar throughout the months  
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(Figure 4), 𝛽𝑇𝐶𝐿𝑊  and 𝛽𝑇𝐶𝑊𝑉  showed somewhat different seasonal patterns (Figure 5). In particular, 

𝛽𝑇𝐶𝐿𝑊  increased in spring (March, April, and May) but dropped to negative values in June when the 

melting starts. It can be assumed that the warming or cooling effects of clouds were differently applied 

according to the month or season and led to such a unique pattern [44,45]. 

Figure 4. Monthly mean total column liquid water (TCLW) and total column water vapor 

(TCWV) during 1979–2011. The values for the entire pixels were aggregated. 

 

Figure 5. Monthly changes of regression coefficients for the total column liquid water 

(TCLW) and the total column water vapor (TCWV) during 1979–2011. 

 

The R2 values for explanatory power were very high in colder months (mostly >0.95 from October 

to May), but were relatively low in warmer months (approximately 0.8 from June to September)  

(Table 2) partly because of the low correlation coefficients of explanatory variables in the months 

(Table 3). Such low correlations may be related to the atmospheric and oceanic effects on the time lag 

of thermodynamic melting in warmer months [26,46]. Then, we prepared satellite-observed monthly 

sea ice concentration in the Barents and Kara Seas in 2012 (Figure 6) for the validation of the OLS 

regression models calibrated during 1979–2011. We derived the values of the monthly concentration 

of sea ice for each pixel of the Barents and Kara Seas in 2012 (Figure 7) and compared them with the 

NSIDC satellite data to examine the spatial and temporal distributions of prediction errors (Figure 8). 
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The pixels with greater errors overestimated or underestimated were found according to months.  

This implies a time-series approach based on temporally varying relationships may help diminish the 

prediction errors in the study area. The results of validation were presented in terms of mean bias and 

monthly root mean square error (RMSE) in Table 4. 

Table 2. R2 in the OLS regression models calibrated for each month during 1979–2011. 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Average 

R2 0.988 0.989 0.981 0.975 0.948 0.908 0.836 0.782 0.880 0.964 0.977 0.980 0.934 

Table 3. Pearson correlation coefficients (R) of the six explanatory variables for the sea ice 

concentration. They were calculated from the averages of the normalized variables during 

1979–2011. 

Pearson R Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

SKT −0.979 −0.966 −0.965 −0.969 −0.973 −0.941 −0.850 −0.657 −0.583 −0.800 −0.932 −0.972 

SST −0.847 −0.880 −0.890 −0.896 −0.824 −0.727 −0.570 −0.390 −0.336 −0.511 −0.663 −0.758 

TCLW −0.833 −0.809 −0.816 −0.849 −0.873 −0.852 −0.799 −0.628 −0.552 −0.740 −0.852 −0.861 

TCWV −0.874 −0.855 −0.863 −0.897 −0.913 −0.874 −0.814 −0.648 −0.578 −0.760 −0.874 −0.893 

IMF 0.976 0.987 0.986 0.978 0.942 0.878 0.728 0.515 0.448 0.666 0.833 0.917 

LCC 0.834 0.851 0.864 0.888 0.844 0.753 0.621 0.442 0.385 0.590 0.731 0.789 

p-value < 0.01 for all cases. 

Table 4. Validation of monthly sea ice concentration in 2012 using the OLS regression 

models calibrated for each month during 1979–2011. The values for the entire pixels  

were aggregated. 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Average 

Bias 0.118 0.124 0.099 −0.035 0.154 −0.396 −0.013 −0.047 −0.091 0.014 0.062 0.020 0.001 

RMSE 0.205 0.251 0.176 0.214 0.344 0.514 0.117 0.107 0.154 0.072 0.115 0.121 0.199 

In addition to year 2012, the validations were conducted for the years 2002, 1992, and 1982.  

The R2 of the OLS regression models were shown in Table 5, and the mean bias and RMSE were 

presented in Table 6, which were not significantly different from those of year 2012. Also, the seasonal 

patterns of the six regression coefficients were almost same as those in 2012. Given that climatic 

characteristics might vary according to individual years, the six explanatory variables can be 

considered representative to predict sea ice concentration under the changes of atmospheric and 

oceanic conditions. 

Table 5. R2 in the OLS regression models calibrated for validating the monthly sea ice 

concentration in 2002, 1992, and 1982. 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Average 

R2 (2002) 0.988 0.989 0.981 0.975 0.945 0.907 0.838 0.787 0.870 0.962 0.977 0.979 0.933 

R2 (1992) 0.988 0.989 0.981 0.973 0.947 0.910 0.837 0.782 0.864 0.961 0.977 0.980 0.932 

R2 (1982) 0.988 0.989 0.981 0.975 0.947 0.906 0.832 0.776 0.866 0.960 0.977 0.980 0.931 
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Table 6. Validations of sea ice concentration in 2002, 1992, and 1982 using the OLS 

regression models. The values for the entire pixels were aggregated. 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Average 

Bias (2002) −0.040 −0.070 −0.032 0.154 0.049 0.144 0.027 0.055 −0.061 −0.016 0.048 −0.043 0.018 

Bias (1992) 0.017 0.008 0.091 −0.165 0.045 0.209 0.077 −0.017 0.132 −0.087 0.007 −0.058 0.022 

Bias (1982) −0.036 0.051 0.025 0.034 −0.099 0.359 −0.053 −0.043 −0.063 −0.026 0.014 −0.015 0.012 

RMSE (2002) 0.106 0.135 0.124 0.334 0.234 0.234 0.187 0.175 0.093 0.138 0.125 0.093 0.165 

RMSE (1992) 0.111 0.112 0.152 0.267 0.271 0.420 0.198 0.161 0.189 0.187 0.107 0.149 0.193 

RMSE (1982) 0.124 0.111 0.098 0.125 0.249 0.727 0.172 0.176 0.116 0.086 0.148 0.130 0.188 

Figure 6. Satellite-observed monthly sea ice concentration in the Barents and Kara Seas in 2012. 
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Figure 7. Monthly sea ice concentration predicted by the OLS regression models for the 

Barents and Kara Seas in 2012. 
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Figure 8. Prediction errors of the OLS regression models for the Barents and Kara Seas 

in 2012. 

 

3.2. Time-Series Model Results 

Unlike the OLS regression, the ARIMA model can apply for each pixel containing a multivariate 

time series of the sea ice concentration and its six explanatory variables (Figure 9). We employed the 

R “forecast” library for optimizing the model parameters of ARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄) with the six 
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regressors. The calibration period was set as between January 1979 and the month right before the 

predicted month: for example, a time series from January 1979 to April 2012 was used in predicting 

May 2012. Figure 10 shows the spatial distribution of estimated values of sea ice concentration by the 

ARIMA models, and Figure 11 is the map of validation accuracies. The RMSE of the ARIMA models 

was summarized in Table 7, and the improvements against the OLS models were illustrated in Figure 12. 

Particularly for May and June when the RMSE of the OLS model were worst (0.344 in May and 0.514 

in June), the ARIMA model shows considerable improvements, by 0.2 and 0.332, respectively. The 

average improvement of RMSE was 0.076, which reveals the effect of time-series modeling given that 

the range of sea ice concentration is between 0 and 1. In addition, the validation accuracies of the 

ARIMA were relatively stable throughout the months: the standard deviation of monthly RMSE was 

0.036 for the ARIMA, but 0.119 for the OLS model. However, the RMSE slightly worsened for two 

months (by 0.049 in July and by 0.098 in October), which might be recovered by using another time-series 

approach like vector autoregression. 

Figure 9. Conceptual framework of the ARIMA models to incorporate temporally varying 

relationships between sea ice concentration and climate variables. 

 

Table 7. RMSE improvements of monthly sea ice concentration in 2012 using the ARIMA 

models calibrated by the time series for each pixel. The improvements were calculated by 

subtracting the RMSE of ARIMA model from that of OLS model in Table 4. The values 

for the entire pixels were aggregated. 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Average 

RMSE 0.100  0.159  0.082  0.093  0.144  0.182  0.166  0.094  0.100  0.170  0.090  0.098  0.123  

Improvement 0.105  0.092  0.094  0.121  0.200  0.332  −0.049  0.013  0.054  −0.098  0.025  0.023  0.076  
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Figure 10. Monthly sea ice concentration predicted by the ARIMA models for the Barents 

and Kara Seas in 2012. 
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Figure 11. Prediction errors of the ARIMA regression models for the Barents and Kara 

Seas in 2012. 
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Figure 12. Prediction accuracy improvements by the ARIMA models for Barents and Kara 

Seas in 2012. 

 

4. Conclusions 

In this paper, we described the statistical modeling of sea ice concentration in relation to climatic 

factors, using satellite imagery and climate reanalysis data for the Barents and Kara Seas during  

1979–2012. The OLS regression model summarized the whole years and provided information about 
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overall climatological characteristics in the relationships between sea ice concentration and climate 

variables. In particular, the ARIMA method was first introduced to statistical model for sea ice 

concentration and it helped improve prediction accuracies because the time series of the sea ice 

concentration is such a long-range dataset that the relationships may not be explained by a single 

equation of the OLS regression. We found that temporally varying relationships between sea ice 

concentration and the climate factors such as skin temperature, sea surface temperature, total column 

liquid water, total column water vapor, instantaneous moisture flux, and low cloud cover were 

modeled by the ARIMA method, which resulted in better prediction accuracies. The RMSE 

improvement was 0.076 on average (0.199 by OLS and 0.123 by ARIMA), and the prediction 

accuracies of the ARIMA were relatively stable throughout the months. Our improved statistical 

approach with the ARIMA method may be worth consideration when forecasting future sea ice 

concentration using the climate data provided by general circulation models (GCM). 

In addition, some unique characteristics of the climate factors in relation to sea ice concentration 

were found during the analyses. In July and August when the ice melts, β𝑆𝐾𝑇  showed abrupt positive 

values presumably because rapid increases of skin temperature might act as a noise in the regression 

coefficients. During winter, β𝑆𝐾𝑇  and β𝑆𝑆𝑇  showed relatively similar values close to zero partly 

because of the weaker thermodynamic effects of skin temperature and sea surface temperature below 

the freezing point. Unlike the total column water vapor, the total column liquid water (in clouds) 

brought about a peculiar seasonal pattern of 𝛽𝑇𝐶𝐿𝑊  because the warming or cooling effects of clouds 

were applied differently according to season, which will require further investigations to understand 

the details. Those results may be useful in better understanding the physical mechanism and in 

improving the statistical model. 

Our result derived from limited number of explanatory variables may not be applied universally 

when considering the complex climate change system. Therefore, additional explanatory variables 

related to solar radiation [47], atmospheric refractivity [13], and surface roughness [48] should be 

incorporated in the statistical models for further improvements in prediction accuracies.  

In addition, we did not identify the time-lag between explanatory variables and sea ice concentration, 

but given that previous studies have reported the time-lag in melt onset or freeze-up [46], a closer 

examination of this will be necessary for improving the time-series modeling. 
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