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Abstract: In this study, a new clustering-based feature extraction algorithm is proposed for 

the spectral-spatial classification of hyperspectral imagery. The clustering approach is able 

to group the high-dimensional data into a subspace by mining the salient information and 

suppressing the redundant information. In this way, the relationship between neighboring 

pixels, which was hidden in the original data, can be extracted more effectively. 

Specifically, in the proposed algorithm, a two-step process is adopted to make use of the 

clustering-based information. A clustering approach is first used to produce the initial 

clustering map, and, subsequently, a multiscale cluster histogram (MCH) is proposed to 

represent the spatial information around each pixel. In order to evaluate the robustness of 

the proposed MCH, four clustering techniques are employed to analyze the influence of the 

clustering methods. Meanwhile, the performance of the MCH is compared to three other 

widely used spatial features: the gray-level co-occurrence matrix (GLCM), the 3D wavelet 

texture, and differential morphological profiles (DMPs). The experiments conducted on 

four well-known hyperspectral datasets verify that the proposed MCH can significantly 

improve the classification accuracy, and it outperforms other commonly used spatial features. 
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1. Introduction 

Classification, which assigns labels to pixels in the given images, is one of the most important 

applications of remote sensing and has been widely studied in geoscience research. A large number of 

studies have been conducted for the classification of remote sensing data [1–3]. The traditional  

pixel-based or spectral-based approaches have proved to be appropriate for the classification of low- or 

medium-resolution images, where spectral signals provide the predominant information for the image 

classification. However, with the ongoing development of Earth observation techniques, the spatial 

resolution of remote sensing imagery has improved a lot, and images with a higher spatial resolution 

provide more detail and spatial structure for the ground information [4]. In this context, spectral-based 

per-pixel classification methods cannot model the spatial relationship between pixels satisfactorily, and 

it has been widely agreed that the inherent spatial information should be exploited as a complementary 

feature source for classification [5]. 

To overcome the aforementioned problems of the spectral-only classification and to improve the 

processing accuracy, two main spectral-spatial analysis methods have been proposed. The first method 

is the object-based classification approach. In this method, the image is first segmented into a set of 

objects which consist of adjacent pixels with similar spectral-spatial properties, using a segmentation 

algorithm such as mean-shift [6], the fractal net evolution approach (FNEA) [7], watershed [8], etc. 

The segments/objects are viewed as the minimum image processing units for the subsequent 

classification. This method has been proved to be an effective approach in high-resolution remote 

sensing image processing [9]. On the other hand, the classification with spectral-spatial features, which 

incorporates the spatial features into image analysis, has attracted increasing attention since it is an 

effective way to complement the spectral information for the image classification [10]. The gray-level 

co-occurrence matrix (GLCM) is one of the commonly used features for the spectral-spatial 

classification [11]. With the GLCM, the textural information of each pixel is computed by the spatial 

correlation between the neighboring pixels in a defined window. Differential morphological profiles 

(DMPs) are constructed by mathematical morphological transformation and are another well-known 

feature for high-resolution image classification [12]. DMPs are a multiscale approach that adopts a 

series of morphological filters and generates a series of features with different structural elements. The 

use of morphological reconstruction after opening and closing can preserve the shape of the objects 

and suppress the undesired noisy signals. More recently, a 3D discrete wavelet transformation was 

proposed for urban mapping, which is suitable for describing complex urban scenes and can 

distinguish different information classes [13]. In addition, the shape characteristic [14], pixel shape 

index [15], and height information extracted from LiDAR data [16] have also been considered as 

complementary information for the spectral signals in image classification. 

In addition to the two aforementioned methods, local frequency-based information is also an 

efficient strategy to exploit the spatial information and enhance the spectral classification. Gong and 

Howarth [17] proposed to use the gray-level occurrence frequencies to describe land-use characteristics.  

In [18], a frequency-based feature extraction method has been implemented on the texture spectrum for 

panchromatic high-resolution image classification, and led to a satisfactory accuracy. Summarizing 

these studies, it can be found that: (1) the image gray-level reduction, to a certain extent, can keep the 

salient information, remove the redundant information, and raise the computational efficiency; 
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and (2) a local gray-level histogram is effective for representing contextual information and improving 

the classification. However, studies concerning local frequency feature representation are relatively 

rare. Moreover, it should be pointed out that the frequency-based feature representation method 

described in [18] is based on image gray levels, and the frequency histogram is generated band by 

band. In this way, when processing the hyperspectral imagery, the traditional strategy can lead to a  

high-dimensional histogram, which makes this technique impractical due to the computational burden 

and storage space. 

In this context, we propose a novel multiscale cluster histogram (MCH) approach for the spectral-spatial 

feature representation and classification of hyperspectral data. By interpreting the relationship between 

the labels of the clustering map, the underlying semantic information can be excavated as the spatial 

feature for the spectral-spatial classification. In our work, the clustering-based feature is generated by 

calculating the frequencies of each cluster occurring in a set of multiscale local regions. The proposed 

MCH method is validated by the use of a set of public and well-known hyperspectral datasets. 

Moreover, its performance is compared with the commonly used spatial features of the GLCM, 

3D wavelet texture, and DMPs. The rest of paper is organized as follows. Section 2 introduces the new 

clustering-based feature extraction approach. In Section 3, the datasets and the experimental results are 

presented. Finally, conclusions are drawn in Section 4. 

2. Methodology 

In this section, we describe the proposed MCH method (see Figure 1), which consists of three 

blocks: (1) clustering (generation of codes); (2) cluster histogram (spatial arrangement of codes); 

and (3) classification (interpretation of codes). 

Figure 1. Flowchart of the multiscale cluster histogram (MCH) algorithm. 

 

2.1. Clustering 

The definition of clusters can be depicted as “continuous regions containing a relatively high 

density of points in the feature space, separated from other high-density regions”. Accordingly, 

clustering is a method of grouping similar objects into clusters, which makes it possible to discover the 

similarities and differences between the objects and to obtain the information implicated in them [19]. 

Let 𝑿 =  𝒙𝟏,𝒙𝟐,⋯ ,𝒙𝒏  be the 𝑛 pixels in a hyperspectral image, and the pixels are grouped into 𝑘 

clusters 𝑪 =  𝒄𝟏, 𝒄𝟐,⋯ , 𝒄𝒌 . The clusters should satisfy the following conditions: (1)  𝒄𝒊 = 𝑿𝑚
𝑖=1 ; 

(2) 𝒄𝒊 ∩ 𝒄𝒋 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,⋯ ,𝑘 ; and (3) 𝒄𝒊 ≠ ∅, 𝑖 = 1,2,⋯ , 𝑘 . In spite of the fact that the 

clustering task can be fulfilled by various algorithms, their fundamental concepts are similar, 

Clustering Feature extraction Classification
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i.e., points belonging to the same cluster are more similar to each other than points belonging to the 

other clusters. In this paper, the following four clustering methods are employed to generate the codes 

of a hyperspectral image. 

(1) K-Means: This is a centroid-based clustering method that uses the cluster centers to construct 

the model for the data grouping. For the sake of minimizing the sum of the distance between 

points to the centroid vectors, an iterative algorithm is used to modify the model until the desired 

result is achieved [20]. In the reassignment step, the points are assigned to their nearest  

cluster centroid: 

𝒄𝑖
 𝑡 

=  𝒙𝑝 : 𝒙𝑝 − 𝝁𝑖
 𝑡 
 <  𝒙𝑝 − 𝝁𝑗

 𝑡 
   

∀1 ≤ 𝑝 ≤  𝑛, 1 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ≠ 𝑗 
(1) 

where 𝑡 represents the t-th iteration, and 𝝁𝑖  is the mean of the points in cluster 𝒄𝑖 . 

(2) Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA): The basic idea of 

ISODATA is similar to k-means in that it minimizes the intra-cluster variability by a 

reassignment and update process. However, the algorithm improves on k-means by introducing 

a merging and splitting method during the iteration. Clusters are merged if the distance of their 

centers is less than a given threshold, or the number of points in a cluster is less than the 

predefined value. Conversely, a single cluster is divided into two clusters if the standard 

deviation is higher than a user-specified value, or the number of points exceeds a certain 

threshold. In this way, the final clustering result is obtained when all the predefined conditions 

are reached [21]. 

(3) Fuzzy C-Means (FCM): Differing from the deterministic clustering approaches, the FCM 

algorithm uses a membership level to describe the relationship between points and clusters [22]. 

Meanwhile, the centroids of the clusters are related to the coefficients which represent the 

grades of membership of the clusters, and can be expressed by the weighted mean of all the points: 

𝝁𝑖
 𝑡+1 =

 𝒘𝑝𝑖
 𝑡 𝒙𝑝𝒙𝑝∈𝒄𝑖

 𝑡 

 𝒘𝑝𝑖
 𝑡 

𝒙𝑝∈𝒄𝑖
 𝑡 

 (2) 

where 𝒘𝑝𝑖  is the degree of 𝒙𝑝  belonging to cluster 𝒄𝑖 , which is defined as: 

𝒘𝑝𝑖 =    
 𝒙𝑝 − 𝝁𝑖 

 𝒙𝑝 − 𝝁𝑗 
 

2
𝑚−1

𝑘

𝑗=1

 

−1

 (3) 

where 𝑚 donates the level of the cluster fuzziness. 

In order to obtain the cluster label of each point, the final clusters are obtained by assigning 

points to the cluster with the maximum membership degree. 

(4) Exception Maximization (EM) Algorithm: EM is frequently used for data clustering in machine 

learning, and works in two alternating steps: (1) the expectation (E) step, which refers to 

computing the expected value with the previous estimates of the model parameters; and (2) the 

maximization (M) step, which refers to altering the parameters by maximizing the expectation 

function [23]. The fundamental principle of the algorithm is to find a maximum likelihood 
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estimate of the parameters through the iterative model. Each feature vector will then be assigned 

to one cluster on the basis of the maximum posteriori probability. 

In order to reduce the computational cost of the clustering, which is related to the feature 

dimensionality and the cluster number, the spectral dimension should be reduced to speed up the 

operation [10]. Thus, a simple feature extraction method is utilized: 

𝒗𝑝 ,𝑖 =
 𝒙𝑝 , 𝑖−1 𝑁+𝑗
𝑁
𝒋=1

𝑁
 (4) 

where, 𝒗𝑝 ,𝑖 is the new intensity value in band 𝑖, and 𝑁 is the number of neighboring bands considered. 

2.2. Cluster Histogram 

In this study, the feature vectors of the hyperspectral image are partitioned into a set of codes by 

clustering according to their similar properties. The spatial distribution of the codes has the potential to 

represent the contextual information of an image, and can be used to improve the classification 

performance. Specifically, in this paper, a local cluster histogram is proposed to represent the 

clustering-based spatial information. The cluster histogram of each pixel is obtained based on a set of 

moving windows through the image (Figure 2).The cluster histogram can be defined as: 

𝐻 𝒙𝑝 ,𝑊 = {ℎ1 𝒙𝑝 ,𝑊 ,ℎ2 𝒙𝑝 ,𝑊 ,… ,ℎ𝑘 𝒙𝑝 ,𝑊 } ∈ 𝑅𝑘  (5) 

where ℎ𝑖  denotes the frequency of cluster 𝑖 located in the local window 𝑊 for a pixel 𝑝, and k is the 

number of clusters. 

The frequencies of the clusters, which represent the local spatial distribution of the image 

primitives, are viewed as spatial information for complementing the spectral properties for the 

classification. Note that the local histogram is related to the number of clusters and the size of the window. 

Consequently, in order to exploit the multiscale (or multi-window) information around each pixel, 

an MCH strategy is proposed. Firstly, the clustering map is generated as the base image, which 

produces the image codes for the subsequent spatial feature extraction. A series of windows with 

different sizes are then selected, and the local clustering histograms are constructed with the given 

sliding windows, according to Equation (4). Meanwhile, the extracted histograms with different 

windows show the distribution of the codes within different scales. Finally, these histograms are 

further fused by summing up bin by bin to yield the MCH to represent the multiscale characteristics of 

the objects in the remotely sensed imagery. The multiscale feature is actually a linear combination of 

the multi-window histograms, which is calculated as: 

𝑀𝐶𝐻 𝒙𝑝 =  𝐻 𝒙𝑝 ,𝑊 

𝑊

 (6) 

In this method, as shown in Figure 2, when the frequencies of the codes within windows 𝑊1, 𝑊2, 

and 𝑊3 are merged, the codes which are near the center are assigned large weights in the clustering 

histogram. The profiles of the clustering histogram and the original spectral bands are stacked together 

as a new vector for each pixel, and then input into a classifier (e.g., SVM in this study) for the  

spectral-spatial classification. 
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Figure 2. Demonstration of the MCH (W is the local window, and H is the corresponding 

cluster histogram). 

 

2.3. Classification 

In this study, support vector machines (SVM) is used as the base classifier since SVM is an 

adaptive learning technique that facilitates the weighting of different features, and it does not require a 

prior assumption about the distribution of the input data [24]. SVM is a machine learning approach 

based on structural risk minimization, which constructs an optimal hyperplane in the high-dimensional 

space to separate the data [25]. With 𝑀 training samples with   𝒙𝑖,𝑦𝑖  𝑦𝑖 ∈  −1; +1   and a mapping 

function Φ ∙ , the model can be described as 𝑓 𝒙 =  𝒘,Φ 𝒙  + 𝑤0 , where 𝒘 and 𝑤0  denote the 

weight vector and the bias term. In order to find the hyperplane to ensure that the distance from it to 

the nearest point on each side is maximized, and the number of points with slack variables 𝜉 > 0 is 

reduced, the cost function should be minimized as follows: 

min 
1

2
 𝒘 𝟐 + 𝐶 𝜉𝑖

𝑀

𝑖=1

  

s. t.  
𝒚𝑖 𝒘

𝑇𝒙𝑖 + 𝒘0 ≥ 1 − 𝜉𝑖 , 𝑖 = 1,2,⋯ ,𝑀
𝜉𝑖 ≥ 0, 𝑖 = 1,2,⋯ ,𝑀

  

(7) 

where the constant 𝐶 is a regularization parameter that controls the influence of the competing terms. 

It is equivalent to maximizing the margins by: 

max
𝝀
  𝜆𝑖 −

1

2

𝑀

𝑖=1

 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒙𝑖
𝑇𝒙𝑗

𝑖 ,𝑗

  

s. t.  
0 ≤ 𝜆𝑖 ≤ 𝐶, 𝑖 = 1,2,⋯ ,𝑀

 𝜆𝑖
𝑀
𝑖=1 𝑦𝑖 = 0

  

(8) 
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where 𝜆 is the Lagrange multiplier vector consisting of 𝜆𝑖 . 

3. Experimental Section 

3.1. Datasets 

In our experiments, the proposed MCH feature is evaluated with four hyperspectral datasets.  

The first dataset is the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) image from the 

Indian Pines test site, containing 145 × 145 pixels with 220 bands [26]. The second dataset was 

collected by the HYDICE (Hyperspectral Digital Imagery Collection Experiment) sensor over the 

Mall, Washington DC. This image contains 1280 × 307 pixels with 191 bands [26]. The other two 

datasets were collected by the ROSIS (Reflective Optics System Imaging Spectrometer) sensor over 

the city center and University of Pavia, central Italy. After removal of the noisy bands, the image of 

Pavia University is of a size of 610 × 340 with 103 bands, and the image of Pavia City has 102 bands 

with 1400 × 512 pixels [27]. These data sets are widely used for assessing model validity. Note that the 

images are provided without atmospheric correction, which is similar to the current literature where the 

same data sets are used [5,10,14,28]. The images and the corresponding reference data are presented in 

Figures 3–6 for the Indian Pines, Washington DC, Pavia University, and Pavia City datasets, 

respectively. Meanwhile, the samples for the datasets are reported in Tables 1–4. 

3.2. Parameter Analysis 

In this subsection, the experimental results are analyzed with different numbers of clusters and sizes 

of windows. A set of values for these parameters is selected according to the spatial resolution and the 

characteristics of the classes in the image, in order to investigate their influence on the proposed MCH 

method. The Indian Pines image and the Pavia University image, with k-means clustering, are used for 

the parameter analysis. 

Figure 3. The Indian Pines image and its reference data. 

  

 Image Reference 

  

Corn-notill
Corn-min
Corn
Grass/Pasture
Grass/Trees
Hay-windrowed
Soybeans-notill
Soybeans-min
Soybeans-clean
Wheat
Woods
Bldg-Grass-Tree-Drives
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Figure 4. The Washington DC image and its reference data. 

  

 Image Reference 

Figure 5. The Pavia University image and its reference data. 

  

 Image Reference 

Roads
Grass
Water
Trails
Trees
Shadow
Roofs

Trees
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Metal sheets
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Bare soil
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Figure 6. The Pavia City image and its reference data. 

  

 Image Reference 

In Figure 7, the overall accuracies achieved with different cluster numbers and window sizes are 

presented. For both the Indian Pines image (Figure 7a) and the Pavia University image (Figure 7b),  

the algorithm with 200 clusters achieves the best performance, and the worst results are produced  

with 40 clusters. Meanwhile, the accuracy with 160 clusters is very similar to the optimal result. It can 

be seen that when the number of clusters exceeds a certain threshold, the performance of the proposed 

algorithm becomes more stable and the deviation in the accuracy is less. On the other hand, the overall 

accuracy rises rapidly with the increase in the window size. When the window size reaches a certain 

size, however, the rising trend slows down, especially for a larger cluster number. 

Meanwhile, the multiscale approach is compared to a single-scale (or single-window) method.  

As shown in Figure 8a, the accuracies given by the MCH are similar to the best results achieved by the 

single-scale approach for the Indian Pines image. As for the Pavia University image (see Figure 8b), 

the accuracies given by the multiscale approach are a little lower than the optimal single-scale 

approach corresponding to a window size of 27, but are much better than the other cases. It is revealed 

that the multiscale histogram can provide a result that is close to the best performance of the single-window 

approach. This means that the use of the multiscale method can lead to an improved accuracy and 

avoids the selection of the optimal window size. 

  

Buildings
Roads
Water
Tree/Grass
Shadows
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Table 1. Numbers of samples for the Indian Pines image. 

Class # Training Samples # Test Samples 

Corn-notill 50 1434 

Corn-mintill 50 834 

Corn 50 234 

Grass/pasture 50 497 

Grass/trees 50 747 

Hay-windrowed 50 489 

Soybeans-notill 50 968 

Soybeans-mintill 50 2468 

Soybeans-cleantill 50 614 

Wheat 50 212 

Woods 50 1294 

Bldg-Grass-Tree-Drives 50 380 

Total 600 10,171 

Table 2. Numbers of samples for the Washington DC image. 

Class # Training Samples # Test Samples 

Roads 50 3299 

Grass 50 3075 

Water 50 2882 

Trails 50 1017 

Trees 50 2027 

Shadows 50 1093 

Roofs 50 5811 

Total 350 19,024 

Table 3. Numbers of samples for the Pavia University image. 

Class # Training Samples # Test Samples 

Trees 50 3064 

Asphalt 50 6631 

Bitumen 50 1330 

Gravel 50 2099 

Metal sheets 50 1345 

Shadows 50 947 

Bricks 50 3682 

Meadows 50 18,649 

Bare soil 50 5029 

Total 450 42,776 

Table 4. Numbers of samples for the Pavia City image. 

Class #Training Samples # Test Samples 

Buildings 50 84,421 

Roads 50 18,149 
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Table 4. Cont. 

Class #Training Samples # Test Samples 

Water 50 38,875 

Trees/grass 50 40,630 

Shadows 50 12,532 

Total 250 194,607 

Figure 7. Classification accuracies of the proposed algorithm with different cluster 

numbers (40, 80, 120, 160, 200) for: (a) the Indian Pines image; and (b) the Pavia 

University image. 

 

Figure 8. Classification accuracies of the proposed algorithm with different window sizes  

(3, 11, 19, 27, and multiscale) for: (a) the Indian Pines image; and (b) the Pavia University image. 

 

3.3. Results and Comparisons 

To test the effectiveness of the proposed method, raw classification (i.e., classification using only 

the spectral bands) and several other spectral-spatial classification methods are carried out for 

comparison. The conventional spatial features considered for the comparison include the 3D wavelet 

texture, the GLCM, and DMPs. 
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3.3.1. 3D Wavelet Texture 

The 3D wavelet transformation views the hyperspectral imagery as a cube and decomposes it into 

eight sub-bands {L
x
L

y
L

z
, L

x
H

y
L

z
, L

x
L

y
H

z
, L

x
H

y
H

z
, H

x
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y
L

z
, H

x
H

y
L

z
, H

x
L

y
H

z
, H

x
H

y
H

z
}, where L and H 

represent the low-pass and high-pass sub-bands, respectively. x and y are the spatial coordinates of the 

image, and z is the spectral band [28]. These sub-bands are stacked with the original spectral bands as 

the input feature for the spectral-spatial classification. In this study, the parameters of the 3D wavelet 

texture are set as: window size = {4, 8, 16, 32}. 

3.3.2. GLCM 

The GLCM describes the distribution of co-occurring values at a given offset over a window of a 

specific size. In this study, contrast is used as the textural measure to complement the spectral signals 

for classification, as suggested in [29]. Meanwhile, to reduce the computational complexity, principal 

component analysis (PCA) is used to reduce the dimensionality of the spectral information, and the 

PCA transformations are used as the base images for the subsequent GLCM texture extraction. The 

parameters are set as: basis image = {PC1, PC2, PC3, PC4}, window size = {3, 7, 11, …, 27}, and 

direction = {0°, 45°, 90°, 135°}. 

3.3.3. DMPs 

Based on the mathematical morphology, DMPs are an effective structural feature extraction method 

when describing the shape profiles of objects at different scales [30]. DMPs are generated by using a 

composition of geodesic morphological operations with a set of structural elements. The DMPs and the 

spectral feature are then combined and input into the classifier for the spectral-spatial classification. 

Similarly, the PCA transformations are used as the base images for calculating the DMPs. The 

parameters of the DMPs are set as: basis image = {PC1, PC2, PC3, PC4}, radius of the disk structural 

element = {3, 6, 9, 12, 15}, morphological operation = {opening/closing by reconstruction}. 

In order to evaluate the classification performance, the accuracy assessment is obtained by 

measuring the difference between the classification map and the reference data that represents the 

ground truth. The overall accuracy (OA) and kappa coefficient (kappa) are widely used accuracy 

assessment measures. The OA is generated by dividing the total number of correct predictions by the 

total number of samples in the reference data. The kappa coefficient is a more robust measure than 

OA, since kappa takes both the omission and commission errors into consideration. As for the 

accuracies of the specific classes, the producer’s and the user’s accuracy are used. The producer’s 

accuracy is a reference-based accuracy which represents the probability of reference samples being 

correctly classified, and the user’s accuracy is a map-based accuracy which indicates the probability 

that a pixel classified in the map actually represents the class on the ground [31]. In this paper, the  

F-score [32] is employed to integrate the producer’s accuracy and user’s accuracy: 

𝐹 =
2 ∙ 𝑃𝐴 ∙ 𝑈𝐴

𝑃𝐴 + 𝑈𝐴
 (9) 

where 𝑃𝐴 is the producer’s accuracy, and 𝑈𝐴 is the user’s accuracy. 

In this paper, the parameters of the SVM are set as: penalty coefficient C = 100; kernel = RBF 



Remote Sens. 2014, 6 5744 

 

 

(radial basis function); and bandwidth of RBF= 1 𝑑  , where d is the dimension of the input features. 

Meanwhile, the OA, kappa coefficient, and F-score are used to assess the classification performance. 

In addition, all of the experimental results are reported with the optimal parameter values. The 

dimensions of the spatial feature are 8, 16, and 40 for the 3D wavelet texture, GLCM and DMP, 

respectively. Furthermore, the classification results of the whole image are presented for an overall 

visual inspection of the methods. 

For the Indian Pines image, the spectral-spatial approaches significantly improve the classification 

accuracy (see Figure 9). From Table 5, it is revealed that, compared to the spectral-only classification, 

the increases in the OAs given by the 3D wavelet texture, GLCM, and DMPs are 8.9%, 11.57%, and 

26.25%, respectively. Even though these spatial features produce satisfactory results, the proposed 

MCH achieves much improved accuracies. The MCH with EM clustering shows the highest accuracy,  

OA = 95.6%, with an improvement on the primary result of 33.77%. Note that the accuracies obtained 

by the other clustering methods are all around 95%. On the other hand, all of the optimal class-specific 

accuracies are given by the MCH. In particular, for the corn-notill and soybeans-notill classes, the  

F-scores obtained by the other spatial features are less than 80%, but improved to 90.39%  

and 90.14% by the MCH method. Moreover, the F-scores of the classes given by the MCH are more 

than 90%, except for a couple of classes (corn-notill and soybeans-notill), and some class-specific 

accuracies are close to 100%. 

Table 5. Classification accuracies of the different features for the Indian Pines image. 

 
Spectral-Spatial Classification MCH 

Raw 3D Wavelet GLCM DMPs k-Means ISO FCM EM 

Corn-notill 49.51 56.33 61.33 76.93 90.15 88.12 89.09 90.39 

Corn-mintill 44.51 63.36 66.17 88.83 93.87 93.59 93.33 95.06 

Corn 40.98 49.31 67.90 87.09 97.03 97.75 95.85 97.31 

Grass/pasture 70.99 86.31 76.45 90.01 96.75 97.06 97.15 96.79 

Grass/trees 82.27 90.90 91.08 94.71 99.44 99.68 99.67 99.57 

Hay-windrowed 97.86 98.76 98.28 98.86 99.74 99.80 99.70 99.62 

Soybeans-notill 55.51 60.28 62.15 76.17 89.89 87.98 88.86 90.14 

Soybeans-mintill 57.17 65.02 67.28 88.32 95.08 95.05 94.98 95.15 

Soybeans-cleantill 42.90 50.10 63.11 81.19 95.28 95.23 95.03 96.41 

Wheat 87.82 96.75 98.52 99.35 99.72 99.81 99.72 99.67 

Woods 86.47 93.60 91.63 98.73 99.91 99.92 99.92 99.90 

Bldg-Grass-Tree-Drives 50.34 77.26 79.91 97.56 99.37 99.66 99.03 99.63 

OA 61.83 70.73 73.40 88.08 95.34 94.90 95.00 95.60 

kappa 0.57 0.67 0.70 0.86 0.95 0.94 0.94 0.95 

For the Washington DC image, the OA of the initial spectral-only classification is 86.61%, and the 

incorporation of the spatial information increases the accuracy by 5.67%, 8.19%, and 10.14%, 

corresponding to the 3D wavelet texture, GLCM, and DMPs, respectively (see Table 6). Meanwhile, 

the accuracies acquired by the MCH with the different clustering methods are all over 99%. With the 

MCH derived from the ISODATA clustering, the F-score of the shadows class increases from 39.93% 

to 99.60%, and the accuracies of water, trails, and roofs are also significantly enhanced. Furthermore, six 
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specific classes obtain accuracies of over 99%. From a visual inspection (see Figure 10), the classification 

map given by the MCH shows a promising performance for the roofs, roads, and shadow classes. 

Table 6. Classification accuracies of the different features for the Washington DC image. 

 
Spectral-Spatial Classification MCH 

Raw 3D Wavelet GLCM DMPs k-Means ISO FCM EM 

Roads 91.70 91.79 92.04 95.37 98.98 98.87 98.81 98.84 

Grass 98.85 99.32 99.22 99.72 99.86 99.84 99.86 99.76 

Water 86.28 88.33 96.86 96.05 98.71 100.00 99.30 99.94 

Trails 66.10 90.94 90.42 97.02 99.64 99.63 99.61 99.44 

Trees 98.17 98.69 98.33 99.02 99.92 99.92 99.90 99.70 

Shadows 39.93 67.70 90.53 90.17 96.86 99.63 97.77 99.50 

Roofs 84.28 93.45 93.44 96.90 99.51 99.42 99.46 99.38 

OA 86.61 92.28 94.80 96.75 99.24 99.55 99.34 99.48 

kappa 0.84 0.91 0.94 0.96 0.99 0.99 0.99 0.99 

Figure 9. An overview of the classification maps for the Indian Pines image. 
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For the Pavia University image, as presented in Table 7 and Figure 11, the classification with DMPs  

(OA = 96.18%) gives much better results than the other spatial features. Meanwhile, the OAs of the 

MCH with k-means, ISODATA, and FCM are 97.73%, 98.23%, and 97.00%, respectively, which is an 

obvious improvement over the DMPs. Furthermore, in this experiment, it is found that the MCH with 

EM clustering provides much better results (OA = 99.51%) than the other clustering methods. 
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Additionally, the MCH with EM clustering improves the spectral classification from 63.63% to 

99.51%. As for the class-specific accuracies, the F-scores are 66.4%, 53.25%, 46.37%, and 35.42% for 

gravel, bare soil, bitumen, and meadows, respectively. 

Figure 10. An overview of the classification maps for the Washington DC image. 

     

 Raw Wavelet GLCM DMPs MCH 

Table 7. Classification accuracies of the different features for the Pavia University image. 

 
Spectral-Spatial Classification MCH 

Raw 3D Wavelet GLCM DMPs k-Means ISO FCM EM 

Trees 62.85 63.22 70.95 87.03 97.70 97.77 97.29 97.50 

Asphalt 77.94 80.60 78.81 96.16 97.99 97.90 96.86 99.59 

Bitumen 49.65 56.06 59.14 99.86 99.29 99.81 96.69 100.00 

Gravel 34.48 46.42 40.04 96.00 95.94 95.51 94.67 99.73 

Metal sheets 91.00 93.99 92.72 99.71 99.93 99.88 99.83 99.93 

Shadows 99.36 99.41 99.42 99.89 99.92 99.93 99.93 99.95 

Bricks 59.90 66.66 69.53 92.80 97.56 98.56 96.68 99.37 

Meadows 61.98 63.90 68.12 97.07 98.25 98.75 97.78 99.60 

Bare soil 31.97 33.89 39.04 99.35 95.17 96.85 94.34 99.99 

OA 59.42 62.67 64.84 96.18 97.73 98.23 97.00 99.51 

kappa 0.50 0.54 0.57 0.95 0.97 0.98 0.96 0.99 
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From Table 8, it can be seen that the increases in the accuracies achieved by the conventional spatial 

features are not significant for the Pavia City image. The result achieved with the GLCM, which is the best 

among the classical features, improves the spectral classification by only 0.86%. In addition, the accuracy 

obtained by the 3D wavelet texture is the same as the original classification. Whereas, when using the 

MCH, the improvements are 4.05%, 4.24%, 4.22%, and 3.54% with k-means, ISODATA, FCM, and EM 

clustering, compared to the spectral classification, respectively. As for the class-specific accuracies, almost 

all of the best results are given by the MCH with k-means and ISODATA. Overall, the MCH shows a 

remarkable improvement with spectrally similar classes, such as buildings and roads (see Figure 12). 

Figure 11. An overview of the classification maps for the Pavia University image. 
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3.4. Discussion 

The MCH utilizes the distribution of the clusters in a local area as the spatial information for the 

spectral-spatial classification of hyperspectral imagery. Three further issues are now analyzed 

and discussed. 

Figure 12. An overview of the classification maps for the Pavia City image. 
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(1) Dimensionality of the hyperspectral bands. The Indian Pines image is taken as an example for 

investigating the effect of the spectral dimensionality for the MCH method. The dimensions of 

the spectral features used for the clustering are reduced to 10, 30, and 50, according to Equation (4). 

From Table 9, it can be seen that the spectral dimension of the clustering has little effect on the 

final classification accuracy. It is therefore sensible to appropriately reduce the spectral 

dimensionality in order to increase the efficiency of the MCH method, since the computational 

complexity of clustering is affected by the feature dimensionality. 

(2) Initialization of the clustering. To analyze the influence of initialization of the clustering on the 

classification, the accuracies with different initial clustering centers that are randomly generated 

are reported in Table 10 for the Indian Pines image. It can be seen that, although the clustering 

approach gives slightly different clustering results for the different runs, the classification 

accuracies are stable and the proposed MCH is robust to the clustering initialization. 

(3) Comparison with a state-of-the-art spectral-spatial classification technique. In order to further 

validate the effectiveness of the proposed MCH method, the state-of-the-art spectral-spatial 

classification approach of Tarabalka et al. [10] is carried out for comparison. In this approach, 

the pixelwise SVM classification result is refined by majority voting based on a clustering-based 

segmentation. A post-processing is then performed in order to reduce the classification noise. 

The comparison results are shown in Table 11, where it can be clearly seen that the MCH 

method significantly outperforms the state-of-the-art spectral-spatial classification approach of 

Tarabalka et al. [10]. 

Table 8. Classification accuracies of the different features for the Pavia City image. 

 
Spectral-Spatial Classification MCH 

Raw 3D Wavelet GLCM DMPs k-Means ISO FCM EM 

Buildings 88.47 88.79 90.82 90.07 93.27 93.58 93.54 92.75 

Roads 67.41 67.92 70.92 71.95 77.69 78.63 78.38 76.42 

Water 99.61 98.92 98.79 99.34 99.99 99.94 99.98 99.86 

Trees/grass 97.16 97.29 98.35 96.30 99.32 99.26 99.12 99.21 

Shadows 95.43 93.82 93.12 91.34 95.95 95.30 96.03 94.71 

OA 90.21 90.21 91.68 91.07 94.26 94.45 94.43 93.75 

kappa 0.87 0.87 0.89 0.88 0.92 0.92 0.92 0.91 

Table 9. Classification accuracies for the Indian Pines image with different spectral 

dimensions for clustering. 

Dim. 
k-Means ISO FCM EM 

Mean Std. Mean Std. Mean Std. Mean Std. 

10 95.34 0.98 94.90 0.89 95.00 0.98 95.60 0.94 

30 95.28 1.09 95.23 0.73 95.06 1.00 95.65 1.17 

50 95.28 1.08 95.10 0.87 95.15 1.09 95.56 0.90 

All 95.46 0.89 95.14 0.87 94.74 0.93 95.40 0.84 
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A possible uncertainty is related to the atmospheric correction, which is not performed on the 

datasets since these images are widely used to investigate the effectiveness of algorithms in the remote 

sensing community. Nevertheless, the atmospheric correction is a standard practice which may have 

important impacts on the classification results. Consequently, different atmospheric correction 

methods can be applied to analyze their effect on the classification performance in the future research. 

Another limitation of the proposed method is that the MCH space is sparse when the number of the 

pixels within the local window is far less than the number of clusters. Therefore, the sparse 

representation methods can be considered for the image classification in the future. 

Table 10. Classification accuracies for the Indian Pines image with different 

clustering initializations. 

Run 1 2 3 4 5 6 7 8 9 10 

k-means 
Mean 95.65 95.53 94.94 95.22 95.62 95.26 95.28 95.26 94.96 95.29 

Std. 0.67 0.93 1.10 0.88 0.77 1.02 0.98 0.82 0.95 0.80 

FCM 
Mean 95.44 95.17 95.31 95.29 95.09 95.27 95.07 95.29 95.18 95.55 

Std. 1.03 1.01 0.98 0.90 0.94 1.00 0.97 1.12 1.00 0.97 

EM 
Mean 95.62 95.65 95.18 95.77 95.98 95.43 95.62 95.87 95.51 95.81 

Std. 0.80 0.60 1.04 0.95 0.65 1.00 0.73 0.39 0.70 0.89 

Table 11. Comparison between MCH and the state-of-the art spectral-spatial classification 

technique of Tarabalka et al. [10] (PP = post-processing for reducing the classification noise). 

Datasets 
MCH Tarabalka et al. [10] 

k-Means ISO FCM EM Without PP With PP 

University 97.73 98.23 97.00 99.51 90.57 91.20 

AVIRIS 95.34 94.90 95.00 95.60 88.53 90.64 

4. Conclusions 

In this paper, a novel multiscale cluster histogram (MCH) is proposed for the feature extraction and 

classification of hyperspectral images. On the one hand, the clustering algorithm partitions the pixels 

into a set of groups according to their feature similarity, which can be viewed as processing that makes 

use of the global characteristics. On the other hand, the spatial feature is then extracted based on a set 

of windows, which represents the local structures. Consequently, the proposed MCH is actually a joint 

global-local spatial feature extraction method. The proposed method has the following characteristics: 

(1) The clustering strategy is able to generate a series of primitive codes which effectively represent 

the spectral signals in an image. 

(2) The cluster histogram in a series of multiscale neighborhoods centered by each pixel is effective 

in exploiting both the spectral and spatial features. Furthermore, the multi-window strategy 

assigns large weights to the pixels near the center, which is reasonable due to the complex and 

multiscale characteristics of the remote sensing data. 

(3) The MCH feature extraction and classification method can achieve satisfactory results rapidly 

and conveniently without defining complicated textural or structural features. It can also be 

easily carried out in real applications. 
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The experiments verify that the proposed algorithm significantly improves the spectral 

classification result, and, in particular, it is proved to be highly suitable for hyperspectral image 

classification. With the four widely used hyperspectral datasets, the MCH presents an outstanding 

performance. For instance, the EM-based MCH achieves 95.6%, 99.5%, 99.5%, and 93.8% for OA in 

the Indian Pines, Washington DC, Pavia University, and Pavia city data sets, respectively. Furthermore, 

MCH significantly outperforms other commonly used spatial features (e.g., GLCM (gray-level  

co-occurrence matrix), DMPs (Differential Morphological Profiles), and 3D wavelet). Based on the 

analysis and comparison, it can be seen that the MCH-based hyperspectral image classification is 

robust to the feature dimension and clustering initialization. Possible directions of future research are 

the similarity measures for hyperspectral data [33], and the use of clustering algorithms such as 

CLARA [34] for the rapid implementation of the clustering. 

Generally speaking, the proposed MCH method is effective for representing hyperspectral imagery 

and provides excellent classification accuracies. The computation time for the proposed MCH is 

actually related to the clustering, which is fast and easy to implement. The property shows that the 

MCH has the potential to be a practical algorithm for processing images with large areas. We believe 

that it could be conveniently applied in real applications as one of the standard classification tools. 
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