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Abstract: Stand age distribution is an important descriptor of boreal forest structure, which 

is directly linked to many ecosystem processes including the carbon cycle, the  

land–atmosphere interaction and ecosystem services, among others. Almost half of the 

global boreal biome is located in Russia. The vast extent, remote location, and limited 

accessibility of Russian boreal forests make remote sensing the only feasible approach to 

characterize these forests to their full extent. A wide variety of satellite observations are 

currently available to monitor forest change and infer its structure; however, the period of 

observations is mostly limited to the 2000s era. Reconstruction of wall-to-wall maps of 

stand age distribution requires merging longer-term site observations of forest cover change 

available at the Landsat scale at a subset of locations in Russia with the wall-to-wall 

coverage available from coarse resolution satellites since 2000. This paper presents a 

dataset consisting of a suite of multi-year forest disturbance samples and samples of 

undisturbed forests across Russia derived from Landsat Thematic Mapper and Enhanced 

Thematic Mapper Plus images from 1985 to 2000. These samples provide crucial 

information regarding disturbance history in selected regions across the Russian boreal 

forest and are designed to serve as a training and/or validation dataset for coarse resolution 

data products. The overall accuracy and Kappa coefficient for the entire sample collection 

was found to be 83.98% and 0.83%, respectively. It is hoped that the presented dataset will 

benefit subsequent studies on a variety of aspects of the Russian boreal forest, especially in 

relation to the carbon budget and climate. 
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1. Introduction 

Stand age distribution is a highly important property of boreal forest [1]. It has direct implications 

for timber stocks, ecology and biodiversity, carbon cycle, and surface radiation budget at the global 

scale. Russian boreal forests occupy 4–6 million square kilometers (km
2
) and represent 43%–65% of 

the global boreal biome [2]. Although the majority of timber produced in Russia is consumed 

domestically (61% in 2010), the exported timber from Russia was estimated to be worth $9.5 billion in 

2010 [3]. In 2011, Russia produced almost a fifth (17.8%) of the world’s total industrial roundwood 

export [4]. While these forests are a major global economic resource, they simultaneously represent the 

largest contiguous areas of forest cover supporting large populations of brown bears, wolves, moose, 

and a plethora of other boreal species [2,5,6].  

Carbon uptake and storage is dependent on forest successional stage and much of the carbon stocks 

are found in mature forests [7–9]. However, the highest rates of carbon uptake from the atmosphere are 

found in younger forests [9,10]. Moreover, recent studies on impacts of post-disturbance forest 

recovery (and subsequently stand age) on forest albedo in boreal forests of North America have 

quantified the tremendous contribution of stand age to the Earth’s radiation budget. Through a combination 

of canopy removal by the disturbance and subsequent changes in species composition, regrowing forests 

created a large net cooling effect [11–14]. The effect was estimated to be −2.3 ± 2.2 W/m
2
 over an 80-year 

period in forest stands in interior Alaska [14]. 

Broad availability of global satellite observations of the land surface has brought about a number of 

significant improvements in mapping and quantifying Russian boreal forest cover. Bartalev, et al. [15] 

derived a 1999 land cover map of Eurasia with a spatial resolution of 1 km based on  

SPOT-VEGETATION data. This dataset employs a 26-class classification scheme, including forest 

types such as evergreen needleleaf forest, deciduous broadleaf forest and mixed forest. A global land 

cover product incorporating multiple classification schemes including some forest characterization at 

500 m resolution was created based on Moderate Resolution Imaging Spectroradiometer (MODIS) 

data by Friedl, et al. [16,17]. Hansen, et al. [18] developed the MODIS Vegetation Continuous Fields 

(VCF) product, which, different from the land cover product, focuses explicitly on the proportional 

estimates of woody and herbaceous vegetation on land and is currently available at 250 m resolution. 

Recently, the Landsat-based VCF product was produced by Sexton, et al. [19]. Annual forest cover 

change from 2000 to 2012 was successfully mapped by Hansen, et al. [20] at 30 m. As a global forest 

cover product, it provides an unprecedented detailed assessment of forest change.  

In addition to quantification and characterization of forest cover extent, a number of datasets aimed 

at developing a record of fire occurrence and extent have been developed. At a global level, a suite of 

burned area products have been derived based on a variety of data sources: MCD45A1 [21–23] and 

MCD64 [24] (based on 500 m MODIS data); Global Burned Area 2000 [25] (GBA-2000) and L3JRC [26] 

(based on 1 km SPOT-VEGETATION data); GLOBSCAR [27] (based on 1 km Along Track Scanning 
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Radiometer (ATSR-2) data); and the GLOBCARBON Burned Area Estimation product [28,29]  

(based on a combination of data from SPOT-VEGETATION, ATSR-2, Advanced Along Track 

Scanning Radiometer (AATSR) and Medium Resolution Imaging Spectrometer (MERIS)). In addition 

to these global burned area products, several regional burned area products have been developed for 

the Russian boreal forest, including Sukhinin, et al. [30] (based on Advanced Very High Resolution 

Radiometer (AVHRR) data), Bartalev, et al. [31] (based on SPOT-VEGETATION data) and  

Loboda, et al. [32] (based on MODIS data). The combination of the disturbance record and forest cover 

provides an insight into the amount and spatial distribution of very young (<15 years) forests. However, 

no reliable wall-to-wall record of past disturbances across the full extent of Russian forests exists.  

New efforts aimed at creating a longer-term assessment of forest cover change and thus the 

potential for reconstructing stand age distribution are currently under development. First, the relatively 

slow succession of boreal forests allows for the development of assessments of stand age distribution 

based on the present-day composition of forest types (e.g., Loboda, et al. [33]). Second, the Land 

Long-term Data Record (LTDR) dataset created by fusing reprocessed AVHRR data with other 

datasets such as MODIS and SPOT-VEGETATION will likely present a new opportunity for direct 

mapping of forest cover change beginning with the early 1980s [34]. An example of this potential has 

been described in Zhang, et al. [1], in which the authors mapped the stand age distribution in the 

boreal forest in Ontario, Canada using AVHRR and SPOT-VEGETATION data. Either approach, 

however, will rely on the availability of a large suite of training data at moderate resolution for either 

training mapping algorithms or delivering the accuracy assessment for the finished product. This paper 

presents the development of a sample multi-year disturbance dataset derived from Landsat data stacks 

across Russian forests to support the future development and validation of coarse resolution forest 

cover, disturbance, and stand age distribution datasets.  

The major objective for the presented dataset is to deliver a suite of multi-year forest disturbance 

samples across Russia with a high degree of confidence. The result is not an attempt to create the most 

spatially comprehensive map of past disturbances, but rather identify areas within which tree cover has 

been undoubtedly converted to non-tree cover at some point in time between two consequent available 

Landsat observations. The resultant product presents a conservative estimate of disturbances but 

ensures that if used in training coarse resolution or potentially moderate resolution algorithms, it will 

provide a high-fidelity change sample and will avoid capturing inter-annual forest variability due to 

phenology or other non-stand replacing events (e.g., partial defoliation due to insect activity not resultant 

in forest mortality). The release of this dataset to the broad scientific and management community 

globally is expected to contribute to international efforts for better characterization of forest cover in 

Russia and alleviate in part the redundancy in training data development for multiple projects.  

2. Study Area, Data and Methods 

2.1. Study Area 

The selected study area for this paper is the boreal forest in Northern Eurasia within the boundary of 

the Russian Federation. Across this vast area about 300 tree species are distributed; the predominate 

species include Larix sibirica (Siberian or Russian Larch), L. gmelinii (Dahurian Larch), Pinus sylvestris 
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(Scots Pine), P. sibirica (Siberian Pine), Picea abies (European or Norway Spruce), P. obovata 

(Siberian Spruce) and Betula spp. (Birch) [35]. The climate in the region is highly or extremely 

continental, characterized by very cold winters and warm summers [36]. The continentality of climate 

reaches an extreme in Eastern and Central Siberia, where the recorded absolute minimum air 

temperature is −67 °C [37]. Precipitation in the region is light or modest, with mean annual 

precipitation being 300–800 mm∙a
−1

 [36]. As with other boreal regions, wildfire is the most important 

disturbance agent in the Northern Eurasian boreal forest and imposes significant influences on forest 

composition and carbon cycles [2,38]. An average area of 20,000–30,000 km
2
 is estimated as burned 

each year across the region [2]. In addition to wildfire, another major disturbance agent in the boreal 

forest of Northern Eurasia is logging. In Siberia alone, it is estimated that 10,000 km
2
 of forest is 

logged each year [39]. Pressure from logging activities is more intense in European Russia, where the 

human population is larger [40].  

2.2. Data 

The presented dataset is derived from Landsat Thematic Mapper (TM) and Enhanced Thematic 

Mapper Plus (ETM+) imagery spanning the period between 1984 and 2000. MODIS Vegetation 

Continuous Fields (MOD44B) [41] data for the year 2000 was used to delineate the forest areas to 

which subsequent processes were applied. This is a global dataset and thus spans the full extent of the 

Russian forests. The dataset was used to focus the distribution of the Landsat sample stacks within 

forested areas (defined in this study as all pixels with percent tree cover greater than 10%) and thus 

excluded large zones of croplands and grasslands in southern Russia and tundra in the north.  

The original sampling scheme included a random distribution of 50 points to locate dense  

near-cloud-free (<10% of cloud cover visually verified by the analyst) Landsat TM and ETM+ stacks 

across the full expanse of Russian forests. The specific parameters for the distribution included  

non-adjacency (points were dispersed more than 185 km to avoid overlap in Landsat stacks).  

All WRS-2 path rows of Landsat images containing the random points were examined to identify the 

stack with the largest number of cloud-free images during the growing season (between 1 June and  

31 August) of subsequent years. Preference was given to stacks with near-annual observations rather 

than to those with the greatest number of images available since many images came from the growing 

season of the same year. The resultant distribution of training data contained only 12 dense Landsat 

stacks and was heavily skewed towards sampling forests in European Russia leaving most of Siberian 

forests under-sampled (Figure 1). Subsequently more Landsat stacks were added across Western and 

Eastern Siberia where general Landsat data coverage pre-2000 is very sparse. All Landsat stacks with 

images from more than two years of growing season observations in a stack were added across Siberia. 

The final dataset included 55 Landsat stacks distributed across the full extent of Russian forests with a 

total of 241 terrain-corrected (L1T product delivered by the US Geological Survey) images acquired 

between 1 June and 31 August of 1984–2000 (Figure 1). The number of stacks in European Russia, 

Western Siberia and Eastern Siberia was 16, 7, and 32, respectively.  
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Figure 1. Distribution of the disturbance maps of the individual stacks. Red, blue and 

green represent stacks in European Russia, Western Siberia and Eastern Siberia, 

respectively. Letters in the polygons indicate the density status of each stack, with ―D‖ and 

―S‖ representing dense and sparse stacks, respectively.  

 

2.3. Methods 

2.3.1. Image Pre-Processing and Masking 

All L1T Landsat images were converted to surface reflectance using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS, V1.1.1) [42,43]. The image stacks were clipped 

to their common extent to eliminate the variation in exact scene coverage between different images.  

Although preference was given to near-cloud-free imagery, considerable amounts of cloud and 

cloud shadow remained. For each Landsat image, three associated masks were extracted from the 

Quality Assessment (QA) packed bits [44]: the surface reflectance-based cloud mask (Bit 8),  

the adjacent cloud mask (Bit 12) and the cloud shadow mask (Bit 9). These masks were not used 

directly because visual analysis suggested that some edges of the clouds and cloud shadows were not 

captured by them. Instead, driven by the main objective of developing very high confidence rather than 

the most comprehensive disturbances mapping, liberal masks was designed to overestimate cloud and 

cloud shadow presence, particularly at the edges of clouds and cloud shadows, by incorporating the QA 

masks in the following manner. Firstly, the Bit 8 mask for each image was buffered outwards for 20 

pixels (established visually by the analyst) to account for the cloud pixels at the edge of the clouds.  
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The buffered cloud mask was then merged with the Bit 12 mask (which did not require buffering 

because it generally performed well in including all the adjacent cloud pixels) to create a final cloud 

mask. The locations of cloud shadows were projected using the buffered cloud mask (described above) 

and the solar geometry at the time of image acquisition (delivered in the image metadata file).  

The spatial direction of displacement was determined as the opposite of the solar azimuth angle  

(solar azimuth + 180°). However, since cloud altitude at the time of image acquisition is not known,  

it is impossible to calculate the exact offset distance. Therefore an empirically determined offset distance of 

50 pixels was established. Finally, the Bit 9 cloud mask for each image was buffered outward by five 

pixels, and was then merged into the projected cloud shadow mask to generate a final cloud shadow mask. 

The resultant cloud masks and cloud shadow masks were merged to mask out the corresponding pixels in 

the Landsat images for the subsequent processes. The workflow of deriving these cloud/cloud shadow 

masks is summarized in Figure 2. Figure 3 shows two examples of the performance of these masks. 

Figure 2. Workflow of deriving the cloud/cloud shadow mask. 

 

Figure 3. Performance of the cloud/cloud shadow masks in two Landsat scenes. The images 

on the left show the existence of clouds and cloud shadows in the original Landsat images, 

and the images on the right show the cloud/cloud masks at the corresponding locations, 

indicated in black. 

 
  



Remote Sens. 2014, 6 6026 

 

 

Figure 3. Cont. 

 

2.3.2. Disturbance Mapping 

The method described in Healey, et al. [45], which is based on the disturbance index (DI), was 

adopted as the core algorithm to map disturbances in this paper. There have been quite a few other 

Landsat-based disturbance mapping algorithms that have been developed recently, including  

Kennedy, et al. [46], Huang, et al. [47], Kennedy, et al. [48] and Zhu, et al. [49]. However, most of 

them require dense stacks of Landsat images, which are difficult to obtain over Russia due to a lack of 

data over the country. On the other hand, the DI-based method has been proven to be effective in 

mapping forest disturbances in the Russian boreal forest by Loboda et al. [33], therefore it was used in 

favor of other methods. The DI for each image was calculated as a z score of Tasseled Cap [50,51] 

Brightness, Greenness and Wetness components weighted by the relevance index within mature forest. 

Landsat data was converted into Brightness, Greenness and Wetness indices using surface reflectance 

coefficients [52]. A mature forest mask was identified and mapped for each Landsat scene using 

Maximum Likelihood Classification (0.7 minimum probability) based on mature forest samples 

selected by the analyst in each scene. The large spatial extent and consequent diversity of forest types 

and conditions in combination with the goal of very high confidence mapping necessitated visual 

confirmation of mature forest samples by the analyst. Multiple DI images from the growing season of 

the same year were composited to create a single annual DI image. Image compositing increased the 

availability of clear-surface observations as many cloud and shadow-related gaps in observations 

within individual scenes were filled with data from other available images. In compositing, preference 

was given to pixels at the end of the growing season in an attempt to capture disturbances more fully 

and provide a more precise time-stamp for the disturbance. Cloud and shadow-affected pixels in the 

final composite were assigned a fill value. 

DI image stacks were subsequently used to map and time-stamp forest disturbances. Difference DI 

(ΔDI) was calculated for each two adjacent years. At locations where one or both of the corresponding 
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pixels were assigned the fill value, the values of ΔDI of those pixels were also set to the fill value.  

The pixels with non-fill ΔDI values of greater than 3 were considered as potential disturbances. 

Additional post-processing of candidate pixels was needed to account for strong inter-annual 

variability in surface reflectance of objects which are not associated with disturbances. Specifically, 

spectral signatures of wetlands in the northern section of European Russia and across Western Siberia 

change dramatically between years as the water table shifts in response to climatic and management 

events. Similarly, managed croplands and pastures exhibit large inter-annual variability in surface 

conditions based on crop rotation stages and other management practices. To eliminate commission 

error associated with spectral change of non-forested pixels, a suite of spectral thresholds was added, 

including the Tasseled Cap (TC) Brightness index, the Normalized Difference Vegetation Index 

(NDVI), and the surface reflectance in the red (0.65 µm) range of the electro-magnetic spectrum (Band 3 

of the Landsat image). These thresholds were selected to identify whether there was forest at the 

location of a disturbance candidate pixel in the base year (i.e., the earlier year in each image pair based 

on which ΔDI was calculated), and were derived using the mean + or – 3 standard deviations of all 

pixels in the layers of the TC Brightness Index, NDVI and red band within the ―mature forest‖ masks 

developed for each scene to compute DI (Figure 4). The 3 standard deviation threshold was selected to 

maximize the reparability of forest versus non-forest signatures since the distribution of the values 

within the mature forest masks was near-normal. Additionally, a series of tests were performed on a 

subset of images in areas with major forest/non-forest confusion using 1, 2 and 3 standard deviations. 

Three standard deviations was visually determined to be necessary to avoid commission error.  

Relative to forest pixels, non-forest pixels typically have high values in TC Brightness and the red 

spectrum, and low values in NDVI. If a disturbance candidate met all three criteria simultaneously,  

it was identified as a disturbed pixel and marked by the year in which it was discovered to be disturbed 

(i.e., the latter year in each image pair). If a pixel was disturbed multiple times as recorded by the 

temporal stack, the latest disturbance event in each stack was given precedence.  

Figure 4. The decision tree that was used to determine whether a disturbance candidate 

was truly disturbed. All mean and standard deviation values were calculated based on the 

mature forest mask of each scene obtained during previous stage. 
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A time-stamped single-layer disturbance map was produced for each of the 55 Landsat stacks. 

Across the full extent of Russian forests, 15 classes were mapped: 14 disturbed classes represented by 

the individual years during which the disturbances were observed, and one undisturbed class. 

However, it is important to note that not all 14 classes were mapped in each stack and the number of 

classes was determined by stack density. 

2.3.3. Accuracy Assessment 

The results of the aforementioned semi-automated disturbance classification algorithm were 

evaluated through an analyst-driven double-blind validation. In preparation, a total of 1542 random 

sample points stratified disproportionally across all classes, with a goal of a minimum of 100 points 

per class distributed across all available maps, were obtained. These points were equally distributed 

among all the maps where a particular class was observed. For instance, the disturbed-in-2000 class 

appeared in 36 maps; hence each map was assigned three sample points within this class, bringing the 

total sample to 108 validation points for this class.  

The double-blind method separates the process of mapping and random point generation from 

analyst-driven assessment by involving a separate set of analysts who have no a-priori knowledge of 

disturbances in the area and no prior involvement in the processing stream. These analysts are 

requested to examine the stack of imagery and assign the year of disturbance or ―undisturbed‖ 

category to a set of points with no attributive information. No prior information is given to the analyst 

regarding the number of pixels expected to belong to a particular disturbed or undisturbed category 

with the varying number of points among image stacks.  

Finally, the time-stamped sample points were compared with the classification results through the 

construction of the confusion matrices and corresponding statistics including the omission and 

commission errors, overall accuracy and Kappa coefficient. In addition to the global accuracy 

assessment (i.e., across the entire Russian boreal forest), the 55 maps were divided into several groups 

based on either geographical location (i.e., European Russia, Western Siberia and Eastern Siberia)  

or stack density (i.e., sparse or dense). For each of these groups, the evaluation statistics were also 

calculated and compared.  

3. Results 

Figure 5 shows the final disturbance map for one stack (Path 135, Row 21) as an example.  

The overall accuracy, calculated based on the 55 maps across the entire Russian boreal forest, was 

83.98%, along with a Kappa coefficient of 0.83 (Table 1). Overall commission and omission errors of 

the classification are low. The average omission error for all classes is 11.24%, with the lowest 

omission error for 1998 disturbances (0.00%). The omission error for the undisturbed class is relatively 

high at 55.04%. In terms of commission error, the average value is 16.28%, and the range across all 

classes is relatively narrower than that of the omission error, with the largest and smallest being 

30.48% (for 1990 disturbances) and 1.00% (for 1995 disturbances), respectively. 
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Figure 5. Final disturbance map for Path 135, Row 21 with disturbances being color encoded according to the year in which they occurred. 

(a) Overall map; (b) A zoomed in region; (c–g) The region corresponding to (b) on the original Landsat images (color composite: 7-4-3) in 

1989, 1990, 1992, 1994 and 2000, respectively.  
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Table 1. Confusion matrix and corresponding statistics obtained through the accuracy assessment based on all validation points. ―UD‖ stands 

for the ―undisturbed‖ class. 

Classification 

Reference 

UD 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1998 1999 2000 Sum 
Error of 

Comm. 

UD 107 0 0 1 4 3 0 0 0 0 0 0 0 4 0 119 10.08% 

1985 4 81 15 0 0 0 0 0 0 0 0 0 0 0 0 100 19.00% 

1986 8 2 89 0 1 0 0 0 1 0 0 0 0 0 0 101 11.88% 

1987 5 0 0 96 1 1 0 0 0 3 0 0 0 0 1 107 10.28% 

1988 11 0 3 0 90 0 0 0 0 0 2 0 0 0 1 107 15.89% 

1989 7 0 3 0 0 89 0 0 0 0 0 0 0 0 1 100 11.00% 

1990 12 0 0 0 2 13 73 0 0 0 1 0 0 3 1 105 30.48% 

1991 4 0 0 0 0 1 0 93 0 0 0 1 0 1 0 100 7.00% 

1992 16 0 0 0 2 0 0 0 80 0 0 0 0 0 2 100 20.00% 

1993 5 0 0 5 4 6 0 0 5 75 0 0 0 0 0 100 25.00% 

1994 6 0 0 0 0 0 0 0 2 0 94 0 0 1 1 104 9.62% 

1995 1 0 0 0 0 0 0 0 0 0 0 99 0 0 0 100 1.00% 

1998 16 2 0 0 1 1 0 0 2 0 0 0 54 2 2 80 32.50% 

1999 9 0 0 0 1 0 0 0 1 0 0 1 0 99 0 111 10.81% 

2000 27 0 1 0 0 0 2 1 0 0 0 0 0 1 76 108 29.63% 

Sum 238 85 111 102 106 114 75 94 91 78 97 101 54 111 85 1542  

Error of Omis. 55.04% 4.71% 19.82% 5.88% 15.09% 21.93% 2.67% 1.06% 12.09% 3.85% 3.09% 1.98% 0.00% 10.81% 10.59%   

Overall Accuracy: 83.98%, Kappa: 0.83 

Omis.: Error of Omission; Comm.: Error of Commission. 
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The values of overall accuracy and Kappa coefficient are very close for all the maps across the 

entire Russian forests as well as across three major geographic regions and between dense and sparse 

stacks of imagery (Table 2). The lowest Kappa (0.76) and overall accuracy (79.01%) is found in 

Western Siberia—a region dominated by wetlands. The highest Kappa (0.85) and overall accuracy 

(86.69%) is found in Eastern Siberia. A small difference in Kappa and overall accuracy is also 

registered between sparse and dense stacks of imagery. It appears that the confusion between specific 

time-stamps of disturbances is slightly higher in dense stacks, whereas a smaller number of selections 

in sparse stacks results in a clearer identification of the time of disturbance.  

Figure 6 shows the distribution of the proportion of disturbed pixel counts according to the year of 

the disturbances as well as the comparison of overall area (km
2
) between undisturbed and disturbed 

classes. The total area classified as disturbed is 31,087 km
2
, whereas the total area classified as 

undisturbed is nearly ten times larger (302,565 km
2
). As shown in Figure 6b, the number of disturbed 

pixels among different years is not equally distributed, with about 40% of disturbances occurring in 

2000. There are very few pixels that were identified as disturbed in 1985, 1986 and 1998, and no pixels 

were identified as disturbed in 1996 and 1997 (hence these two years are not shown in the figure).  

Table 2. Summary of the overall accuracy and Kappa coefficient for all the stacks as well 

as stacks that were grouped based on the geographical locations and stack density. 

Statistics Russia European Russia Western Siberia Eastern Siberia Sparse Stacks Dense Stacks 

Number of Stacks 55 16 7 32 43 12 

Number of Validation 

Points 
1542 745 181 616 758 784 

Overall Accuracy 83.98% 82.95% 79.01% 86.69% 85.36% 82.65% 

Kappa 0.83 0.81 0.76 0.85 0.84 0.81 

Figure 6. (a) Distribution of proportion of disturbed pixel counts according to the year of 

the disturbances; (b) ratio between pixels that were identified as disturbed and those that 

were identified as undisturbed. 
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The number of disturbed and undisturbed pixels is not equally distributed as well among three 

geographical regions. As shown in Figure 7, most undisturbed (71%) and disturbed (64%) pixels were 

identified in Eastern Siberia, which is not surprising since Eastern Siberia contributed the greatest 

number of Landsat stacks to the analyses. Similarly, European Russia is the second largest contributor 

for both undisturbed and disturbed categories, with Western Siberia being the smallest contributor.  

In addition to the context of geographical division, Table 3 also takes into account the temporal 

distribution of the disturbance samples, suggesting different temporal distribution patterns for three 

regions. Both Western Siberia and Eastern Siberia contributed disturbance samples in fewer years than 

European Russia.  

Figure 7. Distribution of (a) undisturbed and (b) disturbed class among Eastern Siberia, 

European Russia and Western Siberia in area (km
2
) and percentage. The difference in size 

of the two pie charts is indicative of the fact that the total area of undisturbed class is larger 

than that of the disturbed class. 

 

Table 3. Distribution of disturbed pixels in area (km
2
) according to the year of the 

disturbances for European Russia, Western Siberia and Eastern Siberia. 

Year of Disturbance European Russia Western Siberia Eastern Siberia Total 

1985 27 N/A N/A 27 

1986 146 N/A N/A 146 

1987 803 116 N/A 919 

1988 2328 26 N/A 2354 

1989 490 692 N/A 1181 

1990 168 72 699 939 

1991 4 10 1410 1424 

1992 440 22 899 1361 

1993 768 532 N/A 1300 

1994 315 N/A 1102 1417 

1995 9 N/A 1633 1642 

1998 2 N/A 236 238 

1999 1037 1160 3311 5508 

2000 1385 676 10,568 12,629 

Total 7923 3305 19,859  
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4. Discussion 

The disturbance maps of the 55 Landsat stacks spread across the entire Russian boreal forest was 

found to possess satisfactory accuracy (overall accuracy: 83.98%, Kappa: 0.83) through accuracy 

assessment conducted by independent analysts. The confusion matrix suggested relatively less desirable 

performance of the classifier in identifying the undisturbed class (Error of Omission: 55.04%).  

This may have multiple causes. Firstly, because the number of validation points selected for each class 

was similar (approximately 100), and because the undisturbed class appeared in almost all classified 

images, the number of validation points selected from the undisturbed class in each image was small 

(two points). Such a small number of validation points for this particular class resulted in the high 

sensitivity of the undisturbed class to errors. It implies that misassignment of individual pixels by the 

analysts led to substantial errors when validation results for each stack were aggregated in the end. 

Another potential reason involves the capability of the analysts to correctly identify disturbances. 

Although only Landsat images captured during the growing seasons were selected to explicitly reduce 

the influence of phenology, the Russian boreal forest encompasses a wide range of latitudes and 

altitudes. There is consequently large inter-annual variation in the beginning and end dates for the 

growing season. It is possible that the presence of phenological variations confused the analysts and 

caused them to identify forests as disturbed when this was not the case. It is also likely that the analysts 

were less likely to be able to differentiate between inter-annual and seasonal variability in forest 

conditions and natural or anthropogenic disturbances. In some cases, large gaps between image 

acquisitions limited the analysts’ ability to differentiate between regrowing disturbances and natural 

response to environmental change. As a result, the analysts might have mistakenly identified the 

undisturbed pixels to the disturbed classes, which inflated the Error of Omission for the undisturbed 

class. This scenario was especially likely since the undisturbed class was sensitive to human errors due 

to the small number of sample points. Finally, forests affected by insect infestation may also show 

signs of depressed growth over a period of time but never result in stand mortality, thus contributing to 

the misclassification by the analysts.  

It should to be noted that while the omission error for the undisturbed class is seemingly high, it is a 

minor concern within the confines of this project for two reasons. Firstly, the algorithm used in this 

paper was designed to extract only disturbed forests and is not optimal for undisturbed forest 

extraction. Therefore the undisturbed class in this product was expected to be less accurate than the 

yearly disturbed classes. In addition, as suggested above, the Error of Omission for the undisturbed 

class was strongly influenced by the particular disturbed/undisturbed sample point partition that was 

employed, which was quite subjective. Arbitrarily increasing the number of the sample points for the 

undisturbed class might significantly lower the omission error, which would also further increase the 

numerical values of the overall accuracy and the Kappa coefficient of the overall classification; 

however, this would weaken the goal of this paper to identify forest disturbances with a high level of 

accuracy, and hence was not practiced.  

In addition to the confusion matrix, the accuracy of these disturbance maps was also examined 

according to stratification by geographic region and stack density. The results (Table 2) suggested that 

regardless of the grouping criteria (i.e., geographical location or stack density), the accuracy of the 

classification algorithm was generally consistent. The slightly lower accuracy of classification in 
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Western Siberia may be attributed to the fact that the number of stacks in that group (i.e., Figure 7) is 

smaller than the others.  

It should be noted that the comparisons of the proportion of different classes, which are conducted 

in the analysis of this paper, should be interpreted with caution. Due to the fact that the Landsat images 

were not available every year for each stack, a certain amount of disturbance events in the study area 

were not marked by the exact years during which they occurred. Instead, they were classified into the 

next year when Landsat data were available. As a result, the proportion of different classes in Figures 6 

and 7 merely reflects a general trend, rather than the actual temporal distribution of disturbances across 

the Russian boreal forest, and the presented dataset should be used as a decadal-scale reconstruction of 

the disturbance history of the Russian boreal forest instead of the exact annual disturbance history 

based on the available data. To illustrate such a caveat, note the fact that there were no pixels that were 

identified as disturbed in 1996 and 1997. Since it is highly unlikely that there were no disturbance 

events in the study area during those two years, the fact that they were missing from the results 

exemplify the lack of data for 1996 and 1997. Similar reasoning may explain the disproportionately 

high number of pixels disturbed in 2000, which is likely to be attributed to the fact that image 

availability for 2000 was relatively high for most of the stacks.  

5. Conclusions 

The Landsat-based dataset, representing a sample of disturbances in Russian forests between 1985 

and 2000 described in this paper, is designed to support training and validation of continental and 

global-scale coarse- to moderate-resolution datasets characterizing forest cover in Russia. The mapped 

disturbances represent a ―high confidence‖ rather than ―most comprehensive‖ sample (overall 0.83 

Kappa coefficient, 16.28% and 11.24% commission and omission errors, respectively), where disturbance 

is defined as forest-to-non-forest conversion between the subsequent dates of acquisition within the 

Landsat data stacks. The significance of the dataset presented in this paper is multifold. First, it can 

provide insights regarding the timing and locations of fire and logging events that occurred from 1985 

to 2000 within the 55 selected Landsat stacks in the Russian boreal forest. Although not a wall-to-wall 

assessment, this effort represents the first known product with this spatial resolution and geographical 

span before the year 2000. The dataset could be expanded further using additional stacks (especially in 

European Russia where we used a random sampling scheme instead of exhaustive selection). However, 

the current selection of stacks is considered in this study as a good representation of the heterogeneity 

of the Russian boreal forest in terms of both forest composition and disturbance regime. Although the 

timing of disturbances provided in this dataset are approximated and linked to the dates of available 

imagery rather than to the actual timing of disturbance, the dataset provides an opportunity to assess 

variation in temporal changes in disturbance rates at decadal scales across Russia as a whole, and at 

finer temporal scales in European Russia, where dense stacks of Landsat data are available. Secondly, 

this dataset can be used to quantify long-term forest disturbance history within individual Landsat 

scenes. While we did not provide a differentiation between fire- and logging-driven disturbances, this 

dataset represents the basis for attribution based on extent, shape and possibly additional spectral 

information in the data. Third, this dataset possesses the potential to serve as a data input to studies that 

require information regarding the disturbance history of the Russian boreal forest. For instance,  
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this study will be followed by a ―wall-to-wall‖ stand age distribution map of the entire Russian boreal 

forest. Finally, these disturbance maps will be released to the broader scientific community in order to 

reduce duplication of effort. 
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