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Abstract: Forest canopy height is an important biophysical variable for quantifying carbon 

storage in terrestrial ecosystems. Active light detection and ranging (lidar) sensors with 

discrete-return or waveform lidar have produced reliable measures of forest canopy height. 

However, rigorous procedures are required for an accurate estimation, especially when 

using waveform lidar, since backscattered signals are likely distorted by topographic 

conditions within the footprint. Based on extracted waveform parameters, we explore how 

well a physical slope correction approach performs across different footprint sizes and 

study sites. The data are derived from airborne (Laser Vegetation Imaging Sensor; LVIS) 

and spaceborne (Geoscience Laser Altimeter System; GLAS) lidar campaigns. Comparisons 

against field measurements show that LVIS data can satisfactorily provide a proxy for 

maximum forest canopy heights (n = 705, RMSE = 4.99 m, and R2 = 0.78), and the simple 

slope correction grants slight accuracy advancement in the LVIS canopy height retrieval 

(RMSE of 0.39 m improved). In the same vein of the LVIS with relatively smaller 

footprint size (~20 m), substantial progress resulted from the physically-based correction 
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for the GLAS (footprint size = ~50 m). When compared against reference LVIS data, 

RMSE and R2 for the GLAS metrics (n = 527) are improved from 12.74–7.83 m and from 

0.54–0.63, respectively. RMSE of 5.32 m and R2 of 0.80 are finally achieved without 

38 outliers (n = 489). From this study, we found that both LVIS and GLAS lidar 

campaigns could be benefited from the physical correction approach, and the magnitude of 

accuracy improvement was determined by footprint size and terrain slope. 

Keywords: remote sensing; Geoscience Laser Altimeter System (GLAS); Laser Vegetation 

Imaging Sensor (LVIS); Light Detection and Ranging (LiDAR); maximum forest canopy 

height; slope effect correction 

 

1. Introduction 

Forest ecosystems are a substantial carbon sink, biodiversity reservoir, and driver of microclimate 

and ecological processes [1–4]. We are interested in quantifying forest physical characteristics  

(e.g., canopy heights and stand volumes) since such measures provide reasonable proxies of carbon 

storage and ecosystem dynamics (e.g., productivity, diversity, and mortality) [5]. However, continuously 

and accurately monitoring forests over a large spatial domain represents a significant challenge. 

Improvements in remote sensing techniques have addressed this challenge by using active or passive 

sensors that are sensitive to the structural attributes of forests [1,5,6]. The passive system in optical 

remote sensing has produced biophysical estimations for Leaf Area Index (LAI), biomass, gross 

primary productivity, and net primary productivity (e.g., [7–10]). However, these measures are only 

derived from theoretical conjugations between forest structures and indirect observations (i.e., surface 

reflection, absorption, and re-emission of solar radiation). In recent studies, active sensors (light 

detection and ranging (lidar) or radio detection and ranging (radar)) have become more attractive to  

the remote sensing community because they overcome some constraints of the passive system [11,12] 

(e.g., indirect measures, dependence on time of day and season, insufficient energy for certain 

wavelengths, and sensor saturation at highly dense forest [13–15]). 

Lidar sensors are used to calculate surface heights by measuring the time taken between emission 

and return of laser pulses. Lidar sensors can use discrete or full-waveform recording systems [16].  

The discrete lidar detects multiple laser scattering events within a small-footprint: the first return 

represents the top of obstacles and the last return represents the ground surface (if the laser pulse can 

penetrate through all canopy components) [17,18]. One or more returns could be located in between 

the first and last return. Forest canopy heights and vertical/horizontal characteristics can be retrieved 

from the 3-dimensional locations of these scattering events. On the other hand, the full waveform  

lidar system records a continuous vertical profile of a waveform within a given footprint [19,20].  

The vertical profile is related to the level of fluctuation in the magnitude, or brightness, of lidar returns 

as laser pulses pass through the forest canopy. 

The Land, Vegetation, and Ice Sensor (a.k.a., the Laser Vegetation Imaging Sensor; LVIS) and  

the Geoscience Laser Altimeter System (GLAS) are among the leading edge full waveform lidar  

altimeter systems capable of generating vertical information of the regional and global land surface. 
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The LVIS instrument, with a relatively small-footprint, is suitable for precise regional-scale  

mapping of forest canopy height and biomass [21,22]. The GLAS, with a larger-footprint and wide 

spatial coverage, has provided practical means for monitoring various global forest attributes [23–25]. 

The performance of LVIS and GLAS for retrieving canopy vertical structure is generally stable over 

flat terrains where the disturbance by topographic features (e.g., slope and roughness) is minimized. 

However, retrieving forest canopy height from backscattered lidar signals over the steep slopes or 

uneven topography found in mountainous regions is not easy [26–35], because the vertical extent of 

waveforms collected by the sensor increases as a function of terrain slope and footprint size [27,32]. 

Also, the combination of a laser pulse pointing at an off-nadir angle and terrain slope alters waveform 

extent in both directions (widening or narrowing) [32,33]. Thus, quantifying and minimizing slope  

and off-nadir angle effects on lidar waveform are key challenges to overcome in the application of  

lidar remote sensing in accurate forest structure mensuration. 

To understand complex waveform characterization and to obtain more accurate vegetation canopy 

height estimation, several radiative transfer models have been developed for demonstrating lidar 

waveform formulation over various sensing environments [31–33]. Amongst models, the extended 

Geometric Optical and Radiative Transfer (GORT) model of Yang et al. [32] provides a useful mean 

to quantify the influence of topographic features, footprint size, and off-nadir angle on lidar waveform 

characterization (i.e., height level and magnitude of backscattered waveform). Their physically-based 

approach is able to correct the impact of surface topography and footprint size on vegetation height 

estimates with an assumption that vegetation canopy is uniformly distributed within each footprint.  

A subsequent study by Lee et al. [29] implements this correction approach to circumvent slope-related 

errors in the forest canopy height estimation using LVIS and GLAS data over a small homogeneous 

forested area. The simple physically-based correction has resulted in a significant accuracy improvement 

and quantified slope effects on height estimation, but their approach still needs to be tested over  

a larger area with diverse forest types and topographic conditions. 

The objective of this study is therefore to practice the simple physically-based slope correction 

approach of Lee et al. [29] for the estimation of maximum forest canopy heights over additional study 

sites based on the two different footprints of LVIS and GLAS data. We examine the LVIS height 

metrics (with/without the slope correction) based on comparisons against field measurements. Then, 

we investigate the accuracy improvement in GLAS height retrievals using the proposed slope 

correction approach. Proving the efficacy of the slope correction method for maximum canopy height 

retrieval, we attempt to quantify terrain slope and footprint size effects on canopy height estimation by 

relating a gradient of slope to observed errors in both lidar sensors. Off-nadir pointing effect on height 

retrieval is not considered in this study, because the mean off-nadir angles of LVIS and GLAS data 

used are negligible (2.3° ± 1.4° for LVIS and 0.35° ± 0.05° for GLAS) and there is a lack of accurate 

information of sensor zenith and azimuth angles and slope orientation. Instead, we briefly discuss 

possible off-nadir angle effects as well as additional error sources in a separate section. 

This paper is organized as follows: Section 2 lists data used in this study and Section 3 presents  

a thorough description of methods for retrieving maximum forest canopy heights from LVIS and 

GLAS altimetry. Section 4 compares results of maximum forest canopy height estimates from field, 

LVIS, and GLAS datasets and discusses a practical aspect of slope correction method, additional error 
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sources (e.g., geolocation and off-nadir pointing), and limitations of our study. In Section 6, 

we summarize and conclude our study. 

2. Materials Section 

2.1. Field Measurements 

We used field-measured maximum canopy heights from the North American Carbon Program, which 

is a multi-disciplinary research program designed to understand North America’s carbon sources and 

sinks [36]. These data were obtained from the Oak Ridge National laboratory Distributed Active 

Archive Center [37]. Field measurements in the datasets are from five experimental forest stations of 

New England for the year 2009: Bartlett Experimental Forest (BF), Harvard Forest (HF), Howland 

Research Forest (HO), Hubbard Brook Experimental Forest (HB), and the Penobscot Experimental 

Forest (PE). Sierra National Forest (SN) for the year 2008 is an additional site of field measurements 

(Figure 1). Main plots (50 × 200 m) of the five New England sites consist of 16 subplots (25 × 25 m). 

The maximum forest canopy heights were derived from extracting the tallest individual tree in each 

subplot. For the SN study site, the main plot is 100 × 100 m, with nine subplots (33.3 × 33.3 m).  

In this study, 1010 field-measured subplots were used. In both New England and SN sites, Global 

Positioning System (GPS) locations are provided for four corners of each subplot, which were used  

to find co-located lidar footprints. Table 1 lists plot information and corresponding LVIS data 

acquisition years for each field site. 

Figure 1. Geographical locations of field measurements and LVIS dataset. 
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Table 1. Datasets for inter-comparisons between field measured and LVIS waveform 

derived heights. 

a Name of Sites Subplot Size (m × m) Field Data Acquisition Year LVIS Data Acquisition Year

BF 25 × 25 2009 2009 
HB 25 × 25 2009 2009 
HF 25 × 25 2009 2009 
PE 25 × 25 2009 2009 
HO 25 × 25 2009 2009 
SN 33.3 × 33.3 2008 2008 

a BF: Bartlett Experimental Forest; HF: Harvard Forest; HO: Howland Research Forest; HB: Hubbard Brook 

Experimental Forest; PE: the Penobscot Experimental Forest; SN: Sierra National Forest. 

2.2. LVIS 

The LVIS instrument is an airborne and full-waveform lidar sensor with a 1064 nm wavelength 

laser (footprint size = ~20 m), developed by the National Aeronautics and Space Administration 

(NASA) [38]. This sensor has been used to monitor canopy vertical structure and surface topography 

over several forested sites since 2003. We used 13 LVIS datasets whose geographical locations are 

overlapped with field measurements and GLAS data (Figure 1). The LVIS datasets were separated  

into two groups for this study. The first was used to examine whether the physically-based correction 

method improves the accuracy of LVIS maximum forest canopy heights across different study sites, 

and to showcase whether LVIS derivations can be used as an appropriate proxy of field measurements 

(Table 1). The second was then used to evaluate the GLAS data with larger-footprints by following  

the approach of Lee et al. [29] (Table 2). All acquisition years of field and LVIS data are identical 

(Table 1), but those of LVIS and GLAS data are variant (up to 3 years of differences) (Table 2). Note 

that two LVIS groups are independent of each other and data acquisition dates could be different even 

though their sites are identical. Details of LVIS uses are provided in Section 3. 

Table 2. Datasets for inter-comparisons between LVIS derived heights and GLAS  

height metrics. 

LVIS Data Locations by States LVIS Acquisition Year GLAS Acquisition Year

Bartlett Experimental Forest, NH 2003 2005–2006 
Howland and Penobscot Experimental Forest, ME 2003 2005–2006 

Harvard Forest, MA 2003 2005–2006 
Patapsco Forest, MD 2003 2005–2006 

Virginia, VA 2003 2005–2006 
Sierra Nevada, CA 2008 2005–2006 

White River Wildlife Refuge, AR 2006 2005–2006 

2.3. GLAS 

The GLAS instrument on board the Ice, Cloud, and land Elevation Satellite (ICESat) was launched 

by NASA in January 2003. ICESat/GLAS is the first spaceborne lidar system designed to observe 

three-dimensional global surface structures by sampling waveform data at ~170 m intervals along 
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track, with a maximum cross track separation of 15 km at the equator [39]. A 1064-nm laser pulse is 

implemented in the GLAS instrument, but the returned laser energy of GLAS forms an ellipsoidal 

footprint. The National Snow and Ice Data Center provides GLAS data that are acquired from  

2003–2009. In this study, the latest release of GLAS laser altimetry data (Release 33) was used. 

Among six altimetry products (GLA 05, 06, 12, 13, 14 and 15) of release 33 GLAS data, the level-2 

altimetry product (GLA14) was employed for the maximum forest canopy height estimation. GLA14 

is useful for obtaining land surface elevation, laser footprint geo-location, and waveform parameters 

such as signal beginning and echo energy peaks. This study selected GLAS data taken from May to 

October for the years 2005 and 2006, as this period best approximates the growing season in the 

Northern hemisphere [40]. This selection scheme may avoid underestimations of forest canopy height 

due to the backscattered signal from leafless deciduous species. Moreover, the GLAS laser campaign  

(i.e., Laser-3) in 2005 and 2006 has the smallest ellipticity of its footprints (nearly circular shape [39]) 

and this stability in shape and size of GLAS footprints can reduce uncertainties in the surface height 

estimation [39]. Based on the length of major axis and ellipticity of the GLAS dataset, this study 

assumed all the GLAS footprints were circular with a 50 m diameter [41]. 

2.4. Ancillary Datasets 

Three ancillary datasets used in this study were elevation, slope, and land cover classes over  

the continental USA (CONUS). National Elevation Dataset (NED) of the United States Geological 

Survey provides seamless and nationally consistent Digital Elevation Model (DEM) data with various 

spatial resolutions. This study used a standard NED product at the one arc-second resolution (~30 m), 

which covers the CONUS and island territories except for Alaska. Overall absolute vertical accuracy 

of the NED DEM is 2.44 m root-mean-square-error (RMSE) [42]. Spatially continuous slope data  

were generated using the ArcGIS 10.0 software. Holmes et al. [43] reported that the accuracy of  

NED-derived slope data is less than 3° at the one arc-second scale. DEM and slope of ground surface 

associated with LVIS and GLAS were calculated based on the average of all the grid cells intersecting 

with a LVIS or GLAS footprint. The National Land Cover Database (NLCD) 2006 land cover data 

over the CONUS at the 30 m spatial resolution is derived from the Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+) and Landsat 5 Thematic Mapper (TM) archive [44]. Among 16 available land 

cover classes in the NLCD, three dominant forest classes (deciduous, evergreen, and mixed forests) 

were the interests of our study. 

3. Methods 

We tested the slope correction method across different study sites and for two different lidar 

footprint sizes (i.e., LVIS and GLAS). Additionally, we quantified terrain slope and footprint size 

effects on canopy height retrieval. Our study was performed in two sequential steps (Figure 2). 

The first step made comparisons of LVIS estimates (with/without slope corrections) against  

field-measured maximum forest canopy heights. Building upon the previous study of Lee et al. [29], 

we added more sample sites to explore the feasibility of the physically-based approach over different 

forest types and terrain conditions. In the second step of our research, the slope correction method  

was applied to the estimation of GLAS maximum forest canopy heights. It is important to note that  
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the LVIS forest canopy heights were the only appropriate estimates for the evaluation of GLAS 

metrics. The reasons are three-fold; (1) a subplot of field measurement was too small (25 × 25 m or 

33.3 × 33.3 m) to reflect all of the trees within a GLAS footprint (~50 m diameter). Even if several 

subplots were merged, its spatial extent did not matched a GLAS footprint); (2) statistically meaningful 

evaluation using field measurements was impossible since so few subplots in our field data were 

spatially intersected with GLAS footprints; and (3) a relatively large number of LVIS footprints 

overlapped each GLAS footprint and LVIS has been shown to match well with field-measured 

maximum forest canopy heights. Lee et al. [29] and Choi et al. [40] have also validated the GLAS 

metrics using LVIS estimates. From the above steps, we quantified slope related errors and analyzed 

how terrain slope and footprint size influence lidar canopy height retrieval. 

Figure 2. Overall scheme of physically-based slope corrections for LVIS and GLAS 

maximum forest canopy height retrievals. 

 

3.1. GLAS Preprocessing 

GLAS data quality is influenced by cloud contamination and atmospheric saturation. Cloud- and 

saturation-free GLAS waveform data were selected in this study based on three filters; (1) a minimum 

signal to noise ratio of 15; (2) an elevation difference between the GLAS and NED data less than  

50 m; and (3) a signal saturation level of 0. The second filter is useful to remove GLAS data distorted 

by low-cloud contamination. An additional filter was derived from the NLCD data to identify GLAS 

footprints over deciduous, evergreen, and mixed forests. 

3.2. Maximum Forest Canopy Height Retrieval from LVIS and GLAS 

To retrieve maximum forest canopy height from LVIS and GLAS, this study implemented a direct 

height calculation method based on decomposed waveform metrics. This direct method relies on  

the accurate identification of elevations for both canopy top and canopy bottom of the tallest plant 
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within a LVIS or GLAS footprint. Usually, signal start and ground peak elevations of a waveform  

are used to approximate canopy top and canopy bottom, respectively [34,35]. Signal start elevation is 

defined as the first elevation at which the waveform energy exceeds a threshold. The threshold was  

set as 4.5 times the background noise level in GLAS [45] and three times the background noise  

in LVIS [38]. Ground peak elevation is determined by identifying the last Gaussian peak from 

decomposed multiple Gaussian distribution curves. With direct methods, maximum canopy height 

over flat terrain can be expressed by relative height from ground surface to signal start elevation where 

100% of cumulative lidar backscattered energy is recorded (a.k.a., RH100 waveform metric). 

RH100 of waveform can be distorted by terrain slope and off-nadir pointing angle [32,33]. 

However, we implemented the simpler slope correction approach of Lee et al. [29] with a nadir 

viewing assumption due to negligible off-nadir pointing angle of both LVIS and GLAS data used in 

this study. We expected that the higher slopes with larger footprint sizes would lead more interference 

on the maximum forest canopy height estimation when compared to the lower slopes with smaller 

footprint sizes. The terrain slope effects on RH100 with nadir-viewing lidar can be expressed by the 

following equation (see Figure 3): 

Figure 3. Schematic definitions of actual maximum forest canopy height and lidar-derived 

maximum canopy height for a waveform over the flat (solid blue line) and slopped  

(dash red line) terrains. Lower left and right panels demonstrate impact of terrain slope on 

lidar height retrieval. Hmax is actual maximum canopy height and Hlidar (=RH100) is  

lidar-derived maximum canopy height. d is lidar footprint diameter, and θ is the terrain slope. 

 Hmax = Hlidar 

Hlidar Hmax 

Hmax = Hlidar-0.5×d×tan(θ) 

Hlidar 

Hmax 

θ 

(a) Signal Start (Canopy Top) 
(b) Ground Peak (Ground) 
(c) Signal End 
 
RH100 = Signal Start (zs) – Ground Peak (zg)  
             = Hlidar 

d×tan(θ) 

d 
d 

0.5×d×tan(θ) 
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 (1)

where, zs and zg are the elevation of signal start and ground peaks, respectively. Hmax is the actual 

maximum forest canopy height, θ represents the slope, and d refers to the diameter of the waveform 

footprint. From the above equation, Hmax can be retrieved from RH100, with given footprint size,  

d, and slope (θ), such that: 

 (2)

We applied this equation to LVIS and GLAS waveform data in order to correct Hmax estimates. This 

study also provided uncorrected Hmax values for LVIS and GLAS data to show the level of slope 

effects and accuracy improvements using the slope correction approach. 

3.3. Comparison of LVIS Metrics to Field Measurements 

We explored the physically-based slope correction approach for LVIS forest canopy height 

estimation across different sites. LVIS height metrics (with/without slope corrections) were compared 

against the field-measured heights from six study sites. For the plot-level comparisons, valid LVIS 

footprints (i.e., co-located with field plots) should overlap with a subplot. This analysis selected LVIS 

data whose center points fell inside each subplot. On average, seven LVIS footprints were registered 

over each subplot. The maximum RH100 of valid LVIS footprints was calculated and defined as  

the uncorrected LVIS forest canopy heights (LVISRH_UC) of each subplot, whereas the corrected LVIS 

estimate (LVISRH_C) was derived from Equation (2). Note that d in Equation (2) refers to the diameter 

of a LVIS footprint (~20 m). We evaluated the agreement between LVIS and field estimates using four 

statistical metrics: bias, mean-absolute-errors (MAE), RMSE and coefficient of determination (R2). 

Based on these comparisons, we attempted to quantify the slope effect on LVIS height retrieval by 

relating a gradient of slope to the difference between LVISRH_UC and field measured maximum height. 

3.4. GLAS Maximum Height Estimation and Evaluation 

We calculated RH100 for GLAS data using Equation (1). In the GLA14 product, two standard 

altimetry variables represent signal begin and ground peak elevations: (a) signal begin range increment, 

SigBegOff and (b) centroid range increment for the last Gaussian Peak, gpCntRngOff 1. Theoretically, 

gpCntRngOff 1 are assumed to represent the ground level elevation within a GLAS field-of-view, while 

SigBegOff refers to the highest point of a surface. In practice, (SigBegOff − gpCntRngOff 1) can be 

converted into RH100. From RH100, we obtained both uncorrected (GLASRH_UC) and corrected GLAS 

(GLASRH_C) maximum canopy height estimates from Equation (2). Note that here d in Equation (2) 

refers to the diameter of a GLAS footprint (~50 m). We then performed footprint-level comparisons 

over seven study sites based on corrected LVIS maximum canopy heights spatially corresponding to 

each GLAS footprint. The three tallest LVIS estimates (slope corrected) for each GLAS footprint  

were then averaged and compared to the GLAS metrics. We also calculated bias, MAE, RMSE, 

and R2 to evaluate this analysis. 
  

RH100  zs  zg  Hmax  d  tan
2

Hmax  RH100 d  tan
2
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4. Results and Discussion 

4.1. Comparison between LVIS and Field Measurements 

Among 1010 available subplots, 705 valid subplots (i.e., co-located with LVIS shots) were used  

for the comparison between field measurements and LVIS metrics (LVISRH_UC and LVISRH_C). Table 3 

lists statistics for valid subplots and field-measured maximum forest canopy heights. The maximum 

height of most field measurements (664 subplots) ranged from 5–45 m, but there were extremes in the 

height distribution (45–80 m) for 41 subplots, which were mostly from mature stands at SN. 

Table 3. Statistics of valid subplots and field-measured heights corresponding to  

LVIS footprints. 

a Site No. of Valid Subplots b Min. (m) c Max. (m) d Ave. (m) e Std. (m) 

BF 128 13.27 40.97 26.75 5.96 
HB 161 11.29 39.50 25.07 5.16 
HF 4 18.50 28.04 24.59 4.52 
PE 183 6.40 36.70 20.51 6.57 
HO 169 3.65 39.20 14.94 5.59 
SN 60 12.73 83.04 46.37 14.46 

Total 705 * 3.65 83.04 26.37 7.04 
a BF: Bartlett Experimental Forest; HF: Harvard Forest; HO: Howland Research Forest; HB: Hubbard Brook 

Experimental Forest; PE: the Penobscot Experimental Forest; SN: Sierra National Forest; b Min.: Minimum 

of maximum forest canopy heights for each field measurement sites; c Max.: Maximum of maximum forest 

canopy heights; d Ave.: Averages; e Std.: Standard deviations; * Total number of valid subplots (co-located 

with LVIS footprint) for six field measurement sites. 

The quality of LVIS height estimates and the impact of slope on LVIS heights were evaluated by 

comparing corrected and uncorrected LVIS heights with field measured maximum heights. Both 

LVISRH_UC and LVISRH_C showed moderate linear relationships with the field-measured heights as 

depicted in Figure 4a–b. Overall, both LVISRH_UC (bias = 2.42 m) and LVISRH_C (bias = 1.53 m) were 

slightly overestimating maximum heights when compared to the field measurements. However, we 

found that the simple slope correction could slightly improve the accuracy of LVIS maximum forest 

canopy height estimation (MAE = 4.08, RMSE = 5.39, and R2 = 0.778 for LVISRH_UC; MAE = 3.72, 

RMSE = 4.99, and R2 = 0.782 for LVISRH_C). According to Table 4, the application of this physical 

correction across different field locations improves estimates of maximum canopy height, which was 

previously shown for a single study site [29]. PE was the only site that did not show improvement. 

Among these sites, HB and SN show a larger improvement (RMSE of 1.11 m and 0.71 m improved for 

HB and SN, respectively) than other sites because both contain large regions of high-sloped terrain 

(average slope = 9.77° ± 5.42° for HB and 7.77° ± 4.59° for SN). In the case of PE, the slope correction 

degraded the height retrieval accuracy (RMSE of 0.23 m increased). A plausible reason for this 

degradation is that 183 subplots at PE are located in relatively flat terrain (overall, 2.44° ± 1.46°) 

compared to the other sites, which leads us to believe that non-slope related errors were more 

dominant in this study site. We also observed relatively larger RMSEs in BF, HB, and HO sites than in 
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HF, PE, and SN sites. This might be explained by larger geolocation uncertainties of field campaigns 

(discussed in Section 4.4). 

Figure 4. Comparisons of (a) uncorrected (LVISRH_UC) and (b) corrected (LVISRH_C) LVIS 

metrics against field-measured maximum forest canopy heights. Colors correspond to each 

field site; (c) Distribution of LVIS height errors by slope gradients. Filled markers with red 

fitted line represent errors for LVISRH_UC, while unfilled markers with blue fitted line 

correspond to errors for LVISRH_C. 

 

Figure 4c represents the error distribution as a function of slope gradients for the LVIS height 

retrieval. Filled and unfilled markers refer to LVISRH_UC and LVISRH_C, respectively. Although LVIS 

footprint size (~20 m) is much smaller than GLAS’ (~50m), LVIS height could also be affected by 

terrain slope. In this figure, height difference between uncorrected LVIS estimates and field 

measurements increases with slope indicating a clear influence of slope on LVIS RH100. Disparities 

between field-measured and LVISRH_UC heights were significantly dependent on terrain slope  

(R2 = 0.06 (p < 0.001); slope of fitted line = 0.25). On the other hand, we obtained less slope-dependent 

errors (R2 = 0.01 (p = 0.064); slope of fitted line = 0.069) after the physical slope correction process.  

A F-test confirmed that the coefficient of the fitted line was significantly changed by the slope 

correction scheme (F = 11.88 (p < 0.001)). 
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Table 4. Site-specific comparisons between uncorrected (LVISRH_UC) and slope-corrected 

(LVISRH_UC) LVIS metrics. 

a Site 
LVISRH_UC LVISRH_C 

Bias b MAE c RMSE d R2 Bias MAE RMSE R2 

BF 2.397 4.884 6.743 0.203 1.200 4.458 6.350 0.230 
HB 3.986 4.849 6.299 0.370 2.247 3.781 5.187 0.400 
HF 2.906 3.026 4.032 0.616 2.623 2.885 3.832 0.595 
PE −1.233 2.219 2.961 0.833 −1.659 2.456 3.191 0.829 
HO 3.655 5.425 6.824 0.276 3.363 5.250 6.642 0.277 
SN 2.805 4.070 5.451 0.900 1.432 3.494 4.745 0.903 

Total 2.419 4.079 5.385 0.778 1.534 3.721 4.991 0.782 
a BF: Bartlett Experimental Forest; HF: Harvard Forest; HO: Howland Research Forest; HB: Hubbard Brook 

Experimental Forest; PE: the Penobscot Experimental Forest; SN: Sierra National Forest; b MAE: Mean 

Absolute Errors; c RMSE: Root Mean Squared Errors; d R2: Coefficient of Determination. 

4.2. Comparison between GLAS and LVIS 

In the case of GLAS height retrieval, we identified 527 valid GLAS footprints that are spatially  

co-located with at least three LVIS estimates. Selected GLAS metric (GLASRH_C) ranged from  

2.98–65.04 m (mean = 32.96 m; std. dev. =12.12 m). Both GLAS metrics (GLASRH_UC and GLASRH_C) 

showed a tendency to overestimate when compared to the reference LVIS maximum canopy heights 

(Figure 5a,b). Biases for GLASRH_UC and GLASRH_C were 7.22 m and 1.98 m, respectively (Table 5). 

These overestimations of GLAS forest canopy heights also occurred in the previous studies [28–30,35,40]. 

Similarly to the smaller lidar footprint (i.e., LVIS), the physical slope correction approach produced 

significantly better RMSE and R2 for the GLAS height estimate: RMSE = 12.74 m and R2 = 0.54 for 

GLASRH_UC; RMSE = 7.83 and R2 = 0.63 for GLASRH_C. The use of slope correction could explain an 

additional 9.1% of the variability in the reference LVIS height and with a better RMSE. This 

improvement of RMSE (4.91 m) and R2 (0.091) for GLASRH_C was much greater than of LVISRH_C 

(RMSE = 0.39 m and R2 = 0.004 improved). If outliers are removed based on Cook’s distance 

threshold (>3 times of mean Cook’s distance) [46], we obtain a RMSE = 5.32 m and R2 = 0.80 for 

GLASRH_C (n = 489) without 38 outliers. 

The distribution of errors by terrain slope gradients generated similar results when compared to  

the analysis for field-measured and LVIS heights. As shown in Figure 5c, errors in the uncorrected 

GLAS metric (i.e., GLASRH_UC) were largely dependent on the topographic condition (R2 = 0.50  

(p < 0.001) and slope of fitted line = 0.71 for GLASRH_UC). Not surprisingly, the simple physical 

correction satisfactorily improved the bias and global mean of errors in the GLAS metric: changes in 

(a) bias of −5.24 m; (b) MAE of −3.27 m; and (c) RMSE of −4.91 m. The fitted line of errors  

also showed that GLASRH_C is more independent from terrain slope conditions over the footprints  

(R2 = 0.06 (p < 0.001) and slope of fitted line = 0.17). A F-test confirmed that the slope correction 

process significantly changed the coefficient of the fitted line (F = 153.47 (p < 0.001)). 
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Figure 5. Comparisons of (a) uncorrected (GLASRH_UC); and (b) corrected (GLASRH_C) 

GLAS metrics against LVIS derived maximum forest canopy heights. Outliers are 

determined by Cook’s distance threshold (within three times the mean Cook’s distance);  

(c) Distribution of GLAS height errors by slope gradients. Filled markers with red fitted 

line represent errors for GLASRH_UC, while unfilled markers with blue fitted line 

correspond to errors for GLASRH_C. 

 

 

Table 5. Comparisons between uncorrected (GLASRH_UC) and slope-corrected (GLASRH_C) 

GLAS metrics. 

 Statistics GLASRH_UC GLASRH_C 

With outliers 

Bias (m) 7.221 1.980 
b MAE (m) 8.398 5.133 

c RMSE (m) 12.741 7.829 
d R2 0.538 0.629 

a Without outliers 

Bias (m) 5.699 1.668 
MAE (m) 6.501 3.966 

RMSE (m) 8.737 5.323 
R2 0.769 0.798 

a Without outliers: statistics without outliers based on Cook’s distance. Number of outliers: GLASRH_UC 

and GLASRH_C = 39 and 38, respectively; b MAE: Mean Absolute Errors; c RMSE: Root Mean Squared 

Errors; d R2: Coefficient of Determination. 
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4.3. Physical Slope Correction and Lidar Footprint Size 

The sloped terrain generally lengthens the full extent of lidar waveform and decreases the level  

of laser energy at the forest canopy and ground peaks [32]. Figure 6a simulates the relationship between 

waveform lidar altimetry and theoretical effects of slope (0°–70°) and footprint size (10–100 m) using 

the equation (=0.5 × footprint size × tan(slope)) of Lee et al. [29]. This figure clearly represents the 

increased slope effect on lidar waveform as a function of terrain slope and footprint size. As expected, 

the larger footprint size and greater slope tend to generate more errors in the retrieved lidar forest 

canopy heights [29,30,32,33,40]. In actual slope effects observed from our study, systematic errors in 

the uncorrected LVIS (LVISRH_UC) and GLAS (GLASRH_UC) metrics agreed well with the simulated 

slope effects (Figure 6b,c), although some variations occur within bins (range = 5°). Figures 4c and 6b 

supported the use of this simple slope correction for the smaller lidar footprint (LVIS) and Figures 5c 

and 6c displayed the effectiveness of slope correction for the larger lidar footprint (GLAS). From the 

physically-based slope correction approach, we achieved RMSE improvements of 0.34 m and 4.91 m 

from LVIS and GLAS height retrieval, respectively. In the case of GLAS, the use of slope correction 

explained an additional 9.1% of the variability in the reference LVIS height, while explanatory power 

of LVIS based height estimation showed minimal improvement (0.4%). This discrepancy in the 

magnitude of accuracy improvement of both lidar datasets can be explained by the magnitude of the 

slope effect, which is a function of lidar footprint size and terrain slope. Furthermore, this explanation 

supports stronger slope-dependency (R2 = 0.50 (p < 0.001); slope of fitted line = 0.71) of GLAS than 

that of LVIS (R2 = 0.06 (p < 0.001); slope of fitted line = 0.25). Despite the efficacy of the physical 

slope correction approach, errors remain in LVIS and GLAS height estimation. Possible additional 

error sources and limitations are discussed in the following section. 

4.4. Limitations and Further Plans 

With available in-situ, airborne and spaceborne lidar datasets, this study attempted to test the 

proposed physical slope correction scheme across different footprint sizes and study sites. We found 

that both smaller- and larger-footprint campaigns could benefit from the physical correction approach. 

However, other error sources beyond the scope of our study might influence the results. First, 

geolocation errors may induce larger uncertainties in both LVIS and GLAS practices. The horizontal 

geolocation error for GLAS L3a was 2.4 ± 7.3 m (mean ± 1 standard deviation) [26] and that of LVIS 

was less than 2.0 m [47]. Additionally, average geolocation errors of in-situ datasets were 1.7 m,  

5.0 m, 6.0 m and 6.4 m for PE, HO, BF, and HB sites, respectively (available only at these sites) [37]. 

From a simple comparison shown in Figure 7, geolocation errors are closely related to the overall 

accuracy of LVIS height retrieval. Although we could not account for the uncertainty contribution of 

this error source, it is important to evaluate the geolocational accuracy for remotely estimated forest 

canopy height from LVIS and GLAS altimetry datasets. 

Second, forest condition, which is closely related to the shape of lidar waveform [33], was not 

explicitly considered in this study. Our study was performed with the assumption that similar 

vegetation structure is evenly distributed within each LVIS (~20 m) and GLAS (~50 m) footprint. 

However, Hyde et al. [48] reported that unevenly distributed canopy structure might induce larger 
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uncertainty when calculating canopy height using waveform lidar. For instance, if the taller trees are at 

the edge of a lidar footprint, they may not be detected because of the low laser intensity at the edge. 

This effect will cause errors in the height estimation, precluding comparisons between remotely sensed 

and field measurements (in addition to the geo-location problems mentioned above). 

Figure 6. (a) Simulated theoretical terrain slope effects across different footprint sizes  

(10–100 m) and slope gradients (0°–70°). Errors in slope-uncorrected (b) LVIS and  

(c) GLAS metrics used in this study along with the simulated slope effects. Bar histograms 

represent the frequency (%) of LVIS and GLAS data given each slope range (numbers in 

plot represent number of lidar shots in each bin (not %)). Circles are the simulated slope 

effects of given footprint size and terrain slope (refer to Figure 6a) and box-whiskers plots 

correspond to errors in the LVIS and GLAS estimates. 

 

 

�
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Figure 7. Impact of geolocation errors on overall accuracy of LVIS height retrieval. This 

comparison includes Bartlett Experimental Forest (BF), Howland Research Forest (HO), 

Hubbard Brook Experimental Forest (HB), and Penobscot Experimental Forest (PE) sites 

only (where geolocation accuracy assessments were performed). 

 

This study only used the simple slope correction scheme due to the negligible off-nadir angles and 

the lack of accurate information for the sensor zenith/azimuth angle and slope orientation [29]. 

However, to fully quantify lidar height distortion on slope, topography information (slope and aspect) 

and sensor zenith and azimuth angle are important [32,33]. For instance, we assumed that LVIS and 

GLAS data are acquired under the nadir-viewing condition, but in practice, both instruments might 

have a slight off-nadir angle. According to Yang’s model [32] and ranges of the off-nadir angle for 

LVIS (3°–5°) and GLAS (0°–2°) from previous studies [29,34], estimated height errors may range 

from 0.1–1.0 m for a 2-degree off-nadir angle in GLAS and from 0.2–1.5 m for a 5-degree off-nadir 

pointing angle in LVIS. For our case, the off-nadir angle effect was less than previously reported,  

but this error does magnify the uncertainties to some degree. 

Additionally, the asymmetric shape and size of individual footprints may introduce uncertainty in 

lidar height retrieval, especially in GLAS. In our study, we assumed that every GLAS shot has a 50-m 

circular footprint. However, the eccentricity (= 1 − b2/a2, a = major axis and b = minor axis) and the 

major axis of the GLAS footprint vary from 0.48–0.63 and 51.20–55.41 m respectively, according to 

the summary of Laser Profile Array (LPA) [41]. These disparities may induce slight  

geo-locational disagreement between the laser footprint and actual forest structure and it might 

propagate into overall uncertainty. Actual footprint sizes of LVIS and GLAS also vary by flight 

altitude and sensing elevation, which may contribute to uncertainty. 

With respect to the use of this physically-based slope correction method in a global scale study, 

accurate DEM information plays a critical role in correcting slope effect on GLAS waveform data.  

In this study, we used the NED dataset over CONUS that is derived from a photogrammetry-based 

approach. NED data are probably more accurate than other possible global DEM data, especially  

the Shuttle Radar Topography Mission (SRTM) dataset. In fact, several previous studies exploited  

the difference between NED and SRTM to retrieve forest canopy height since SRTM gives the height 

of the scattering center of the forest [49,50]. It is unclear whether the physically-based slope correction 
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method using SRTM would get results as good as using NED. This will need to be determined before 

using our method in global scale studies due to the limited spatial coverage of photogrammetric DEMs. 

Important future studies will require: understanding of forest conditions, considering sensor and 

topography conditions, and asymmetric footprint shape and size. With an accurate construction of the 

physically-based slope correction scheme, we can test the effectiveness of using SRTM as a precursor 

for a global scale study. Also, this study focused only on site-specific and plot-footprint level tests of 

waveform lidar, and did not attempt to investigate large-scale tests and mapping forest canopy  

heights. Spatially and temporally continuous mapping is critically important in forest monitoring, 

ecological modeling, and long-term forest management. Therefore, our subsequent study will pursue 

the generation of forest canopy height maps using appropriate relationships between geo-predictors 

(e.g., temperature and precipitation) and forest vertical structures [23–25,51] since both airborne and 

spaceborne lidar data are still not perfectly continuous in space and time. 

5. Conclusions 

We tested a physical slope correction approach for waveform lidar data to generate accurate 

maximum forest canopy heights. Building on the previous research [29] constrained on a single 

homogeneous forest stand, this study was performed over six additional study sites with various terrain 

conditions and forest types. Two types of lidar altimetry were derived from airborne (Land, Vegetation, 

and Ice Sensor; LVIS) and spaceborne (Geoscience Laser Altimeter System; GLAS) sensors. The LVIS 

height metrics (with/without slope corrections) showed a moderate linear relationship with  

field-measured maximum forest canopy heights (n = 705; R2 = 0.778 and RMSE = 5.39 m for the 

uncorrected; R2 = 0.782 and RMSE = 4.99 m for the slope-corrected LVIS). Like the results of  

Lee et al. [29], the simple physical approach provided slight benefits on the accuracy of LVIS  

heights whose footprints are relatively small (size = ~20 m). Apart from random data errors due to the 

spatial mismatches between LVIS footprints and field subplots, we obtained improved RMSE (changed by 

–0.34 m) using the physical slope corrections. Distribution of errors as a function of slope gradients 

showed that disparities between field-measured and uncorrected LVIS heights were likely dependent on 

terrain slope effects (R2 = 0.06; slope of fitted line = 0.25), but this dependency was successfully removed 

by the slope correction approach (R2 = 0.01 (p = 0.064); slope of fitted line = 0.069). Similarly to LVIS, 

the physical slope correction performed well with the larger-footprint lidar (i.e., GLAS with ~50 m 

diameter). The use of the slope correction method on GLAS altimetry produced better measures of 

maximum forest canopy heights (n = 527; R2 = 0.54 and RMSE = 12.74 m for the uncorrected;  

R2 = 0.63 and RMSE = 7.83 m for the slope-corrected GLAS). After excluding 38 outliers (n = 489), 

we could explain 80% of variability in the reference LVIS heights with RMSE = 5.32 m. Errors in the 

uncorrected GLAS metrics were largely dependent on the terrain slope (R2 = 0.50 (p < 0.001) and 

slope of fitted line = 0.71). Despite the correction, GLAS metrics produced slight overestimates  

(R2 = 0.06 (p < 0.001 and slope of fitted line = 0.17) as in previous studies [22,25,33]. Systematic errors 

in the uncorrected LVIS and GLAS metrics agreed well with the simulated theoretical slope effects as 

a function of slope and footprint size. Our results showed that both smaller and larger footprint lidar 

estimates of maximum canopy height significantly improved the simple physical slope correction. 
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However, caution should be taken with smaller-footprint lidar because non-slope related errors 

(e.g., geolocation error, off-nadir angle, forest condition, and sampling scheme) could dominate. 
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