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Abstract: Remote sensing analysis is a crucial tool for monitoring the extent of mine waste 

surfaces and their mineralogy in countries with a long mining history, such as South 

Africa, where gold and platinum have been produced for over 90 years. These mine waste 

sites have the potential to contain problematic trace element species (e.g., U, Pb, Cr). In 

our research, we aim to combine the mapping and monitoring capacities of multispectral 

and hyperspectral spaceborne sensors. This is done to assess the potential of existing 

multispectral and hyperspectral spaceborne sensors (OLI and Hyperion) and future 

missions, such as Sentinel-2 and EnMAP (Environmental Mapping and Analysis Program), 

for mapping the spatial extent of these mine waste surfaces. For this task we propose a new 

index, termed the iron feature depth (IFD), derived from Landsat-8 OLI data to map the 

900-nm absorption feature as a potential proxy for monitoring the spatial extent of mine 

waste. OLI was chosen, because it represents the most suitable sensor to map the IFD over 

large areas in a multi-temporal manner due to its spectral band layout; its (183 km × 170 km) 

scene size and its revisiting time of 16 days. The IFD is in good agreement with primary 
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and secondary iron-bearing minerals mapped by the Material Identification and 

Characterization Algorithm (MICA) from EO-1 Hyperion data and illustrates that a 

combination of hyperspectral data (EnMAP) for mineral identification with multispectral 

data (Sentinel-2) for repetitive area-wide mapping and monitoring of the IFD as mine 

waste proxy is a promising application for future spaceborne sensors. A maximum, 

absolute model error is used to assess the ability of existing and future multispectral 

sensors to characterize mine waste via its 900-nm iron absorption feature. The following 

sensor-signal similarity ranking can be established for spectra from gold mining material: 

EnMAP 100% similarity to the reference, ALI 97.5%, Sentinel-2 97%, OLI and ASTER 

95% and ETM+ 91% similarity. 

Keywords: mine waste; spatial extent; gold; platinum; South Africa; EnMAP; OLI; 

Hyperion; Sentinel-2; iron feature depth (IFD) 

 

1. Introduction 

Mapping and monitoring mine waste has been identified as a crucial application in the field of 

imaging spectroscopy and remote sensing. Numerous studies employ airborne imaging spectroscopy 

data [1–3] to map potential areas of acid mine drainage (AMD) generation, taking advantage of the 

abundance of specific secondary iron minerals that are stable in a specific pH range, indicating AMD 

generating conditions [1]. 

The formation of AMD results from the oxidation of sulfides under environmental conditions that 

promote the contact of water and oxygen with the mine waste material. This produces acid and ferrous 

iron [1–3]. Secondary iron minerals that are generated during this process and that can be 

discriminated by spectroscopy are jarosite, ferrihydrite, goethite and copiapite, for example [1,2]. This 

enables qualitative mapping of zones of potential AMD generation and provides a semi-quantitative 

measure for the magnitude of pollution in a specific area [1]. AMD is in this regard a challenging 

problem, because it can mobilize potentially problematic trace elements from tailings disposal sites, 

such as uranium, chromium, arsenic, copper and lead, amongst others. 

Most AMD work to date has focused on well-studied mining sites in highly industrialized countries, 

such as, e.g., the United States of America [1], Spain [4], Germany [5], Czech Republic [6,7],  

Canada [8], Hungary [9] and Australia [10]. All of these aforementioned studies employed airborne 

hyperspectral data as the main source of imaging spectroscopic data in their work, except for [3], 

which also employed spaceborne hyperspectral data in their work of characterizing mine waste. Of 

these studies, the studies in Germany [5] and the Czech Republic [6,7] focused on acid mine drainage 

generation and the pH regime in coal mining; whilst the studies in the USA [1], Spain [4] , Canada [7] 

and Hungary [9] deal with mine waste from precious and base metal mining. Out of these studies, 

especially the studies in Spain [4] and Hungary [5] additionally deal with mapping the distribution of 

problematic trace elements. 

Due to the high costs and difficult logistics involved in monitoring mine waste areas, only limited 

remote sensing and imaging spectroscopy have been carried out in developing countries. In this 
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context, South Africa is a prime example. Here, large regions have been affected by mining operations 

and the related disposal of environmentally problematic tailings material, as well as AMD generation 

from past and present mining activity. This issue has been identified as one of the major challenges for 

sustainable living [11,12]. This topic has been addressed by the Mineo Project [5] and the recent  

EO-Miners initiative, a European Union project that aims to monitor the impact of mining on 

environment and society, at regional spatial scales using imaging spectroscopic methods, as reported, 

e.g., by Kopačková in [6] and [7] in the Czech Republic and in South Africa [13], to provide a first 

order rapid environmental assessment of areas affected by mining. The last named study, however, 

primarily focuses on coal mining activity in the eMalahleni area of Mpumalanga, South Africa, using 

focused airborne hyperspectral data, [13] and excludes comprehensive monitoring of large-scale 

tailings sites from the precious- and base-metal mining activities.  

Therefore, airborne image spectroscopy data is not suitable for cost-effective, repetitive mineral 

mapping and determination of the areal extent of mine waste surfaces. 

Rapid, efficient and spatially extensive mapping and monitoring of mining activities and waste 

accumulation around tailings areas can only be achieved through a combination of multispectral and 

hyperspectral spaceborne sensors. Here, we present analyses based on current hyperspectral sensors 

(EO-1 Hyperion [14]) and multispectral sensors (Landsat 7 ETM+ [15], EO-1 ALI [14] and Landsat 8 

OLI [16]), from the National Aeronautics and Space Administration (NASA), which are available free 

of charge. Although ETM+ is a whisk-broom scanner, we include it in our analysis for the sake of 

completeness. These systems will be supplemented by the next generation instruments, EnMAP [17] 

(Environmental Mapping and Analysis Program) and Sentinel-2 [18], with a similar data-use policy. 

The aim of this paper is to explore the potential of spaceborne imaging spectrometers, such as 

Hyperion, to map and monitor the spatial extent of mine waste surface material in areas with mine 

tailings and to find common links between hyperspectral and multispectral systems, such as the 

Landsat program or the next generation Sentinel program of the European Space Agency (ESA), both 

designed as mapping missions. This common link might then be exploited for mapping and monitoring 

the spatial extent of surfaces affected by mine waste. We specifically focus on how sensor-specific 

parameters (e.g., center wavelength and band pass) influence the ability to discriminate mine waste 

surfaces from their surroundings. 

South Africa, with a mining history of more than hundred years, provides an excellent platform for 

the application of spaceborne hyperspectral and multispectral sensors for the monitoring of mine waste 

sites and tailings facilities. 

The main link between multispectral and hyperspectral data can be established by utilizing 

absorption features. Those have to be spectrally broad enough to be present in both multispectral and 

hyperspectral data. Additionally, they must be diagnostic for primary and secondary iron-bearing 

minerals that are characteristic for mine waste sites from platinum and gold mining. These minerals are 

listed in Table 1 of the Supplementary Material. The characteristic absorption features of iron-bearing 

minerals are based on the fact that ferrous iron in minerals shows a distinct characteristic absorption 

feature around 900 nm [19,20], which has been attributed to crystal field transitions in ferrous  

iron [19]. In addition to that, prominent secondary iron minerals, such as goethite, hematite and 

jarosite, are characterized by a reflectance minimum centered around 900 nm [2,20,21]. This 

absorption feature has already been described by Hunt and Ashley [22] to occur between 750 nm and 
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910 nm, with 750 nm being the left shoulder of this feature. These secondary iron-bearing minerals are 

also associated with mine waste areas and acid mine drainage generation [1,2].  

2. Study Area 

We focused our work on mining activities associated with the two most prominent mineral 

commodities in South Africa, namely gold from the Witwatersrand Basin and platinum group elements 

(PGEs) from the layered mafic intrusion (LMI) of the Bushveld Complex, as shown in Figure 1. 

Figure 1. Landsat 8 composite (R: 2200 nm, G: 860 nm, B: 550 nm) showing the tailings 

facilities visited for this study (yellow stars). The yellow province in the inset map is 

Gauteng; the black box shows the boundaries of the study area. Note the extent of the 

Bushveld layered mafic intrusion (LMI), which can be distinguished by its dark soils. 

 

2.1. Geological Background 

Gold was mined for more than one hundred years from the rocks of the West Rand Group  

(2.97–2.91 Ga) and to a greater extent from the rocks of the Central Rand Group (2.89–2.71 Ga) [23], 

which together constitute the Archean Witwatersrand Supergroup dated between 3.07–2.7 Ga [24]. 

The detrital and remobilized gold occur predominantly in pyrite, together with a significant amount of 

uranium ore as uraninite. These minerals are hosted in coarse-grained quartzites and conglomerate 

“reefs” [23].  
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For our gold-related studies, we visited the Brakpan Tailings Facility near Benoni (Johannesburg) 

and the tailings facility near Stilfontein (Klerksdorp) to conduct in situ field-spectrometer 

measurements and sample collection. 

Platinum in South Africa is mined from two important horizons in the ultramafic Bushveld Complex 

with its main magmatic phase dated at 2.054–2.061 Ga [25]. The most important economic horizons of 

the Bushveld Complex are the Merensky Reef (2054.4 ± 1.3 Ma) [25], where sulfides containing PGE 

are hosted in a coarse-grained orthopyroxenite rock [25]. The stratigraphically lower Upper Group 2 

(UG2) pyroxenite (~2042 Ma) hosts sulfides that are PGE bearing in chromitite layers [26]. Our study 

investigated tailings dams from both the Merensky Reef and the UG2 pyroxenite and chromitite strata 

near GaLuka (Rustenburg), for in situ field-spectrometer measurements and sample collection (as shown 

in Figure 1).  

2.2. Platinum Tailings near Rustenburg 

The field sites in Rustenburg are comprised of three test sites in the area of the Impala tailings 

operations sites, shown in Figure 2. The first site is the large active tailings facility that is built of UG2 

waste rock material. The second site is a tailings dam to the southeast of Ga-Luka. In 1974, the then 

active Merensky Tailings Dam experienced a major wall failure [27]. This event caused the outflow of  

13 million m3 of tailings material [27]. Today, this tailings site has been reclamated. Most of the tailings 

dam is covered by grass, shrubs and trees. The spill site represents an area next to an overpressure valve 

along the street. Here, tailings material had recently been deposited. At all three sites, 17 test surfaces 

were measured and sampled according to the sampling scheme described in the Methodology Section. 

Figure 2. Landsat 8 composite (R: 2200 nm, G: 655 nm, B: 482 nm) showing the tailings 

facilities and test sites (colored stars) visited in the field area near Rustenburg. 
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A potential problematic environmental feature is the abundance of chromitite in the tailings material 

and its spatial distribution in the areas adjacent to the tailings dams, as these areas are used for 

informal livestock grazing of the neighboring communities, such as GaLuka. Sulfides are not part of 

the tailings material. AMD is therefore no problem in this area. 

2.3. Gold Tailings near Stilfontein 

The gold tailings to the north and south of Stilfontein are comprised of active, reclamated tailings 

and tailings sites, which are currently being reprocessed to recover additional gold. The Chem Wes site 

represents the footprint of an already reprocessed tailings dam. Here, a blanket of up to five 

centimeters of tailings material covers the original surface. “Tailings North” represents the youngest 

tailings site of the visited field sites in Stilfontein. “Tailings Middle” was being prepared for 

reprocessing during the time of our fieldwork. “Tailings South” is under active remining and 

represents the oldest tailings site of all of the visited tailings sites. Figure 3 shows the dynamic tailings 

landscape around Stilfontein, where the reprocessed material of the old dams acts as feeder material 

for the new tailings site in the east. At all five field sites, 17 test surfaces were measured and sampled 

according to the scheme described in the Methodology Section. The potential of generating AMD here 

is largely controlled by the sulfide content in the tailings, which depends on the mineral processing 

techniques used (changes in milling technology) [28]. In addition to that, the price of the secondary 

commodity sulfuric acid determines if sulfides were extracted or not [28]. 

Figure 3. Landsat 8 composite (R: 2200 nm, G: 655 nm, B: 482 nm) showing the tailings 

facilities and test sites (colored stars) visited in the field area around Stilfontein. 
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3. Fieldwork 

A matrix grid representing 3 × 3 Hyperion pixels was laid out at each of the test sites described 

above, which represents an area of 90 × 90 m. This spatial scale also coincides with the spatial 

resolution of EnMAP, ALI and OLI. Only test sites that were homogeneous enough on this spatial 

scale were considered as test sites; sites with notable vegetation cover were thus avoided as far as 

possible. Seventeen test surfaces of one square meter each [29] were measured per test site using an 

ASD Fieldspec Pro with a large contact probe with a field of view of 2 cm, due to unfavorable weather 

conditions. Five spectra were acquired per test surface, resulting in 85 spectra per test site. The five 

spectra of each site are averaged in order to produce a representative average test spectrum for each of 

the 17 test surfaces. A sketch of the sample layout is shown in the Supplementary Materials. Surface 

samples of the test surfaces were collected for XRD, XRF and laboratory spectroscopy by scraping off 

the surface with a small stainless steel shovel after the spectral measurements. The outermost test 

surfaces represent the centers of the eight neighbor pixels, whilst the nine innermost test surfaces 

include the center of the central pixel and its immediate surroundings of test surfaces, halfway towards 

central pixel edges, as shown in Supplementary Figure S1. This specific sampling strategy was chosen, 

because it simulates the point spread function of the spaceborne sensor, in our case, Hyperion and 

EnMAP. A synthetic EnMAP or Hyperion pixel spectrum was generated by Gaussian weighting of the 

17 test surface spectra. The field samples were analyzed by X-ray diffraction (XRD) (Empyrean from 

PANalytical) and X-ray fluorescence analysis (XRF) (Axios WD from PANalytical) at the University 

of the Free State (UFS) in South Africa. 

4. Methodology 

The large iron absorption feature around 900 nm (±40 nm potential bias) [20–22] can serve as a 

common link between hyperspectral and multispectral data, because it is wide enough and can be 

detected by both multispectral and hyperspectral instruments, as shown in Figure 4. The shoulders of 

this absorption band to the shorter wavelength side are located at 750 nm, as stated in [22]. The right 

shoulder of this absorption feature is best placed outside of the atmospheric water absorption bands at 

940 nm, 1130 nm and 1380 nm. We therefore propose to place the right shoulder of the iron feature at 

1250 nm to avoid these absorption bands. This absorption feature is utilized in the following to map 

the spatial extent of this iron feature using multispectral data, from NASAs OLI, and through this, 

delineate areas affected by mine waste cover. The resulting spatial extent is compared with mineral 

mapping results from the spaceborne hyperspectral sensor, Hyperion, for iron mineral characterization 

and validation. 

4.1. Preprocessing of Multispectral Spaceborne Data 

Multispectral data has long been used to delineate and map different surface cover types in earth 

science through band ratios [30,31]. Therefore, they represent the first starting point in the search for 

methods to delineate and map mine waste surfaces from multispectral spaceborne data. Band ratios also 

have the advantage that a top of the atmosphere reflectance (TOAREF) may be sufficient to yield indices 

that are atmospherically stable enough for delineating the spatial extent of mine waste sites. 
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Figure 4. Band positions of selected multispectral sensor systems overlain on field spectra 

from the mine waste sites in South Africa. Continuous data coverage of EnMAP are shown 

for reference. Note the position of the near-infrared channels of the multispectral sensor 

systems within the broad iron absorption feature at 900 nm. 

 

Therefore, band ratios were calculated as the first step in the analysis of the multispectral data from 

ALI, ETM+ and OLI, according to Table 1, which were compiled from [32]. This was performed for 

the TOAREF and at-ground-reflectance (shortly reflectance) data for each of the three sensors over the 

Stilfontein tailings site. Reflectance data was calculated from sensor radiance using the ATCOR 2/3 

software package [33]. After that, the mean structural similarity index measure (MSSIM) from  

Wang et al. [34], implemented in scikit-image [35], was calculated for each corresponding 

TOAREF/reflectance pair, as shown in Table 1, according to the processing scheme and equations in 

in the Supplementary Materials. Table 1 clearly shows that, despite ALI, due to the small scene size, 

the deviations (1-MSSI) are mainly >60%. This implies that a conversion to TOAREF is not reliable 

for the calculation of atmospherically-insensitive indices. For this reason, and to enable comparability 

between different sensors, only reflectance data was further considered. 

The further use of spectral indices for a spatial delineation of mine waste surfaces is, however, 

problematic, because these indices may not necessarily characterize physical absorption features well 

enough [36]. Here, it was shown that a simple three-point band depth may aid the discrimination of 

mineral cover types better than simple band ratios [36]. 
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Table 1. Selected ratios that indicate ferric/ferrous iron, gossan and ferric silicates and the 

mean structural similarity index measure (MSSIM) between each ratio calculated from top 

at the atmosphere reflectance (TOAREF) data and reflectance data. The naming convention 

of the spectral bands in the formulas: near-infrared (NIR) in this case is the sensor band 

closest to 900 nm, whilst short wave infrared 1 (SWIR1) is the band closest to 1600 nm 

and short wave infrared 2 (SWIR2) is the last band of ALI, ETM+ and OLI. (-) shows that 

the calculation of 1-MSSIM was not possible in two cases, due to absence of data values in 

the ratio data. The smaller the 1-MSSIM values, the better the result. 

Index Name Formula (1-MSSIM ETM+) (1-MSSIM) ALI (1-MSSIM OLI) Ref. 

Ferric Iron 
2
	 	  0.702 0.009 0.695 [37] 

Ferric Iron_n 
2	–
2

	 	  0.645 0.201 (-) [37] 

Ferric Oxides 
1
	 0.692 0.003 0.686 [38] 

Ferric Oxides_n 
1
1

	 0.64 0.251 0.767 [38] 

Ferric Silicates 
2

 0.145 0.003 0.67 [38] 

Ferric Silicates_n 
2
2

	 0.668 0.091 (-) [38] 

Gossan 
1
	 0.603 0.47 0.539 [39] 

Gossan_n 
1
1

	 0.682 0.096 0.785 [39] 

NDVI 	 0.013 0.026 0.871 [40] 

Red_Blue_n 	 0.736 0.148 0.633 [31] 

4.2. Preprocessing of Hyperspectral Spaceborne Data 

Data from NASA’s spaceborne EO-1 Hyperion imaging spectrometer are the only freely available 

source of hyperspectral data for all the studied tailings dam facilities. After correcting the vertical pixel 

shift in the SWIR detector, the spatial shift between the visible/near-infrared (VNIR) detector and the 

short wave infrared (SWIR) detector was corrected [41]. After that, the destriping method of  

Datt et al. [41] was applied in combination with the destriping routine of Staenz et al. [42]. This is 

necessary to reduce cross track striping in the image data, which impacts on succeeding analyses, like 

Material Identification and Characterization Algorithm (MICA) [43]. Atmospheric correction was 

carried out using the physics-based EnMAP atmospheric correction routine of Guanter and Rogass, 

which is part of the free and open source EnMAP Box software [44]. After that, the data are analyzed 

with the USGS MICA [43], which is able to map primary and secondary iron minerals on the surfaces 

of mine dumps and tailings, highlighting potentially polluted sites. MICA is based on the USGS 

material detection and mapping algorithm TETRACORDER that uses characteristic physical 

absorption features to identify surface materials, such as minerals, based on the position, shape and 

absorption depth of these absorption features [36]. 



Remote Sens. 2014, 6 6799 

 

4.3. Linking Multispectral and Hyperspectral Data through Laboratory Work 

The surface samples were scanned with the HySpex [45] imaging spectrometer system in the 

spectral laboratory using the nadir view, with a distance of 1 m from the detector to the sample. The 

HySpex setup consists of a HySpex 1600 VNIR and a HySpex 320 m-e SWIR spectrometer with a 

2000 W Hedler studio light as the light source. The samples are moved on a translation stage, enabling 

the fixed mounted line scan cameras of the HySpex system to acquire a full hyperspectral scene of the 

samples. Co-registration and reflectance retrieval from the HySpex data is done with an in-house 

Interactive Data Language routine that basically combines affine fast Fourier transform techniques [46] 

for image registration and manual delineation of the reflectance panel for irradiance normalization and 

reflectance retrieval. With this technique, we were able to collect a scene with 50 × 50 pixel spectra, 

resulting in 2500 spectra per surface sample at 1-m distance. The individual HySpex sample images 

were spectrally resampled to the resolution of the following multispectral sensors: (Advanced Land 

Imager, Operational Land Imager, ETM+, Sentinel-2 and the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) [47]) using a customized code adopted from Spectral 

Python (SPY) [48] that generates the according channel filter files from the center wavelengths and 

the full width at half maximum values to resample a given high resolution spectrum to a sensor with 

lower spectral resolution (e.g., resampling HySpex to OLI) using Gaussian filter functions that 

approximate unavailable spectral response functions (SRF). Although, this is a broadly used technique, 

full end to end sensor simulations (EeteS simulations [49]) were not possible, due to unavailable 

airborne hyperspectral data over the study areas. 

The images were again resampled to a generic 1-nm sensor together with the original HySpex data, 

using cubic splines [50], to ensure the comparability for the following tests incorporating the same band 

positions. The mean structural similarity index measure (MSSIM) from Wang et al. [34], implemented in 

scikit-image [35], was calculated between each generically resampled multispectral sensor image and 

the generically resampled HySpex reference. The MSSIM was selected as a quality indicator, because 

it represents a sensitive image-based measure to detect subtle changes between similar images, such as 

image noise, contrast and brightness changes, which can be induced by spectral resampling and 

interpolation. The method and the processing workflow are illustrated in the Supplementary Materials. 

This was done in the spectral regions, bounded by the left and right shoulders of the maximum 

absorption of the iron absorption features near 900 nm, as listed in Supplementary Table 1. Here, the 

feature definitions are after the USGS TETRACORDER Database [36] and the USGS digital spectral 

library [51], whilst the formulas follow after [52]. These spectra were chosen, because they represent 

the three main groups that are of interest in this study: iron oxides (from the oxidation of iron-bearing 

minerals), mine waste (reference spectra related to the generation of acid mine drainage) and 

pyroxenes (important rock-forming minerals in the mafic intrusives of the Bushveld LMI that can be 

detected in the VNIR by imaging spectroscopy). The characteristic absorption features of primary and 

secondary iron minerals around 900 nm (±40 nm potential bias) listed in Table 1 of the Supplement 

Materials were chosen as the basis for the sensor comparison. 

The spectral range and the spectral contrast of this iron absorption feature enables the detection of 

iron-rich minerals on mineral waste surfaces that could indicate acid rock drainage generation [2]. 
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To be able to assess the theoretical potential to resolve this iron absorption feature, the MSSIM [34] 

and (em), mean model error (Equation (1)), were computed as: 

∑
 (1)

where  denotes the mean model error (MME), n the number of samples,  the reflectance 
spectra simulated for a specific sensor and  the reflectance spectra acquired by HySpex. 

Figure 5a shows an example for data from the Merensky Reef tailings site in Rustenburg, where 

the deviation in the MSSIM is low (<10%) for OLI, ALI and Sentinel-2. The deviations for ASTER 

and ETM+ are, however, >10%, especially for the pyroxenes from feature Number 14 onward, 

which represent a major component of the Merensky tailings material. The MME shows deviations 

of ca. 18% for ASTER and deviations above 20% for ETM+. Figure 5b shows a similar image, 

where data from the Chem Wes tailings site is plotted. Note that the feature numbers up to 14 

represent secondary iron minerals. ETM+ again shows the largest deviation, with an average error of 

8%, followed by ASTER and OLI. This shows that OLI with its continuous multi-temporal coverage 

is a multispectral sensor that can significantly contribute to mapping and monitoring of the spatial 

extent of mine waste surfaces, which contain primary and secondary iron-bearing minerals. OLI data 

shows, in this respect, better performance than the multispectral sensors, ASTER or ETM+. 

To exploit this ability for mapping the areal extent of mine waste via the 900-nm iron absorption 

feature, we propose the iron feature depth (IFD) as the difference between the reflectance (r) in the 

near-infrared channel closest to 900 nm ( ) and the linearly interpolated reflectance value 

( 	 ); see Equation (2). ) is calculated according to Equation (3), where 	  

denotes the reflectance of the sensor channel closest to 750 nm and 1  denotes the short 

wave infrared 1 channel, SWIR1, closest to 1250 nm. Channels that are specifically placed in, or 

near to, water vapor absorption bands, such as channels for cirrus cloud detection, e.g., OLI band 

No. 9 or Sentinel-2 band No. 10, are not taken into account for the calculation of , due to 

their low reflectance values. The difference between the interpolated value, ( 	 ) and 

( ) gives the IFD. 

In the case of the OLI sensor,  is the reflectance of the near-infrared band at 865 nm 

(Number 5), 1  is the reflectance of the SWIR1 band (Number 6) at 1600 nm and  is 

the reflectance of the red channel (Number 4) at 650 nm, as shown in Equation (4). The band numbers 

for OLI follow the definition given by [16]. 

 (2)

1 ∗
	

1 	 	
 

900	
750	 1250	 750	

∗
900 750
1250 750

 

(3)

865	 650	 1600 650 ∗
865 	 	 650	
1600 	 	 650	

 (4)
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Only positive values of the IFD are considered as a relevant indicator for iron absorption and, thus, 

the presence of iron-bearing minerals on the surface cover, as shown in Figure 6. 

Figure 5. Band comparison of multispectral and hyperspectral sensors for sample spectra 

from the Merensky Reef mine waste site (a), shown directly below, and from spectra from 

the Chem Wes footprint mine waste site (b), shown below (a). Errors displayed were 

computed between the HySpex reference and the resampled multispectral sensors for the 

iron absorption features listed in Table S1. EnMAP with an offset of 0.01 is shown for 

reference purposes only. Note the large deviation of ETM+ (above 15%) and ASTER in 

the pyroxene region from mineral feature-number 14 (see Table S1) onwards as pyroxenes 

are a major component of the platinum group element (PGE)-bearing rocks (a). Large 

deviations are also found in ETM + and ASTER in the region of secondary iron minerals 

up until 14 at the Chem Wes Site (b), as these minerals are indicative of acid rock drainage 

generation on tailings dam sites. 

 
  

(a) 
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Figure 5. Cont. 

 

Figure 6. Spectra of multiple sensors generated from spectral resampling of the point 

spread function weighed field spectra from platinum mine tailings (left) and from mine 

waste associated with gold mining (right). Note that only EnMAP, Sentinel-2, ALI and 

OLI are able to spectrally resolve the iron absorption feature at 900 nm in the case of the 

material associated with platinum mining (left). The EnMAP reference spectrum is in grey 

at the original reflectance level; all other spectra are successively offset by 0.05 for clarity. 

 

(b) 
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5. Results and Discussion 

The analyses of the multispectral indices [32] from TOAREF data and reflectance data (Table 1) 
indicate that the process of ratio calculation benefits from atmospherically corrected data. This 
assumption can be confirmed by considering the large deviations of MSSIM values that have been 
calculated between the ratio images based on TOAREF and on atmospherically corrected data 
(reflectance). Values >0.65 here represent an error greater than 65%. However, ratios and indices are 
sufficient if a visual identification and enhancement of spectral gradients [32] in a multispectral dataset 
is the main goal [30]; however, this approach is therefore not sufficient for a robust and reproducible 
mapping result for the monitoring of the spatial extent of mine waste surfaces. 

For a comparison with the results from hyperspectral data, a link between the main physical 
absorption feature of interest has been established, which is the iron absorption at 900 nm [19,21,22] in 
this case. Using this approach, physics-based absorption features [36,43] can be specifically adapted to 
be applicable to multispectral sensors. This link can be provided by the IFD, as illustrated in  
Figure 5a,b. Here, the sensor-dependent ability to map the iron feature is shown. Here, multispectral 
sensors, which have a favorable band characteristic to resolve the iron absorption feature (see  
Figures 4 and 6), show smaller errors in determining the shape of the iron absorption feature and, 
hence, the IFD. These sensors are, for example, Sentinel-2, ALI and OLI.  

5.1. Results from Multispectral and Hyperspectral Spaceborne Data 

Data from OLI was used for the calculation of the IFD over the Rustenburg, Figure 7a, and Stilfontein 
areas, Figure 8a. Additionally, data taken from the Hyperion instrument were analyzed with the USGS 
MICA algorithm [43] to map the spatial distribution of primary and secondary iron minerals in the mine 
waste areas of Rustenburg (Figure 7b) and Stilfontein (Figure 8b). Figure 7a,b shows a high coincidence 
between the abundance of iron-bearing minerals and their spatial extent and areas mapped with positive 
IFD. This shows that the IFD may be used as an indicator to map and monitor the spatial extent of mine 
waste from platinum mining. This is an important fact, because here, the pyroxenes may be used as a 
proxy for the presence of mine waste associated with platinum mining, as the XRD analysis in Table 2 
by Reid [53] and the MICA analysis of field spectra show. In the case of the platinum tailings material, a 
high concentration of potentially problematic trace elements, such as chromium and nickel, as shown in 
Table 2, further motivates the monitoring of the spatial extent of platinum tailings material through 
spaceborne sensors. Here, the IFD could be used as a proxy for the presence of tailings material and, 
therefore, a potential proxy for problematic trace elements, such as chromium and nickel. 

Table 2. Mineralogy derived from X-ray diffraction analysis (XRD) from the PGE tailings 
material in Rustenburg. Minerals detected by MICA analysis of ASD Fieldspec data are  
highlighted in green. X-ray fluorescence analysis (XRF) data of selected trace elements 
from the PGE tailings material in Rustenburg. 

Rustenburg  

Tailings Location 
Minerals V/ppm Cr/% Co/ppm Ni/ppm  

Spill Site chromite, plagioclase, enstatite, montmorillonite, bronzite, chrysotile 1178 12.75 141 733  

UG2 Tailings chromite, plagioclase, enstatite, montmorillonite, bronzite 726 7.83 125 639  

Merensky Tailings chromite, plagioclase, enstatite, montmorillonite, bronzite 465 4.35 92 688  
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Figure 7. Iron feature depth (IFD) over the Rustenburg tailings complex calculated from 

OLI data overlain on the grayscale near-infrared (NIR) channel of OLI (a), directly below. 

USGS MICA Analysis from Hyperion data overlain on the gray-scaled NIR channel of 

OLI (b). Note the close match between the IFD in (a) and the iron-bearing minerals and 

cover types shown in (b) (bronzite, diopside and desert varnish). 

 
(a) 

 
(b) 
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Figure 8a shows an example of IFD from OLI together with hyperspectral mineral analysis through 

USGS MICA from Hyperion data over Stilfontein in Figure 8b. Here, the link between the spatial 

extent of the IFD (Figure 8a) and the spatial distribution pattern of iron-bearing minerals (Figure 8b) is 

not as significant as in case of the PGE tailings near Rustenburg. This can be attributed to the smaller 

spectral contrast, due to the lower spatial abundance of iron-bearing minerals in the quartz-rich 

substrate of the milled conglomerate reefs. For example, the XRD analysis of Makhado [54], Table 3, 

from surface samples of the tailings dam in the north shows no prominent secondary iron-bearing 

mineral, whilst the analysis of the southern tailings and the Chem Wes area only shows the presence of 

jarosite, which is a possible indicator of AMD generation, according to Swayze et al. [1]. This may 

result in the liberation of potentially problematic trace elements, which are present in the tailings 

material, as shown in Table 3. Here, we find high concentrations of uranium (>400 ppm) and arsenic 

(200 ppm), as in case of the middle tailings. 

Figure 8. Iron feature depth for the tailings areas near Klerksdorp (Stilfontein) calculated 

from OLI data and overlain on the grayscale NIR channel of OLI (a), directly below. Note 

the lesser spatial resemblance between the mica analysis in Figure (b) and the IFD image 

(a). USGS MICA analysis from Hyperion data for the tailings areas near Klerksdorp 

(Stilfontein) overlain on the gray-scaled NIR channel of OLI (b). The yellow box outlines 

an area that is affected by the presence of secondary iron minerals. 

 
(a) 
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Figure 8. Cont. 

 
(b) 

Table 3. Mineralogical data from X-ray diffraction analysis (XRD) of gold mine tailings 

samples, directly below. Minerals that have been found through MICA analysis of ASD 

Fieldspec data are highlighted in green. Selected trace elements (in ppm) from gold mine 

tailings, by X-ray florescence data (XRF) from tailings samples. 

Stilfontein  

Tailings Location 
Minerals U/ppm As/ppm Pb/ppm Th/ppm 

Chem Wes Footprint quartz, pyrophyllite, goethite, gypsum, jarosite, smectite, illite 90 91 79 35 

Middle Tailings quartz, pyrophyllite, goethite, gypsum, jarosite, smectite, illite 421 200 112 32 

Northern Tailings quartz, pyrophyllite, gypsum, smectite, uranopilite 154 106 131 21 

Factors that may mask the iron absorption feature of gold tailings are crusts of gypsum that may 

form in environments with high evaporation rates, as shown in the XRD data and data from the MICA 

analysis of the ASD field spectra (Table 3). Additionally, clay minerals, as shown in the XRD analysis 

and in the MICA analysis of the field spectra, also tend to form covering blankets on tailings dams, as 

they are sedimented as the last mineral fraction after slurry deposition. Another important fact that 

determines the shape and depth of the absorption band and, hence, impacts on the IFD are grain size 

and the presence of other iron-bearing minerals [21]. The presence of organic matter is also able to 

mask the iron absorption band at 900 nm [55]. 
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5.2. Iron Feature Depth in the Tailings Environment  

The IFD calculation was done for validation purpose for the above discussed sensors from ASD  

field-spectroscopy data that was resampled to the spectral resolution of EnMAP, Sentinel-2, ALI, 

ASTER, OLI and ETM+. This was done for the platinum tailings, as shown in Figure 9, and for the  

gold mine tailings shown in Figure 10. In these figures, only the ability to map the magnitude of  

the IFD is compared in contrast to mapping the overall shape of the iron absorption feature, as shown in 

Figure 5a,b. Table 4 lists the root-mean-square error for the IFD values shown in Figures 9 and 10. Here, 

it becomes clear that the multispectral sensor ranking for the mapping of the IFD is as follows: Sentinel-2 

shows the least deviation from the IFD calculated from EnMAP data, followed by ALI and OLI, whilst 

ETM+ and ASTER show the least performance for mapping the magnitude of the IFD. This is consistent 

with the results that have been discussed above and that are shown in Figure 5a,b. 

Another interesting aspect is that IFD values from the PGE tailings material in Figure 9 are 

generally larger, due to the higher contrast of the 900 nm absorption feature when compared to gold 

tailings material. This fact is also shown in the spectra of Figure 4 and 6. An explanation for this could 

be found if the IFD values of the potential mineral components of these tailings facilities are 

calculated, shown in the Supplementary Materials. Here, Figures S3 and S4 were calculated from 

USGS library spectra [51]. Only jarosite shows comparable IFD values (<24%) to bronzite, a major 

mineral component of the PGE tailings material, whilst other, more common secondary iron minerals 

have IFDs of 18% and below. This also impacts the spatial distribution and magnitude of the IFD 

shown in Figure 7a and Figure 8a with the result that the potential spatial extent of PGE tailings 

material is more robustly mapped than the extent of gold tailings material, due to the high contrast of 

the iron absorption feature in the bronzite-bearing material. 

Mixtures of different surface cover types, e.g., of vegetation and tailings material, show a 

significant impact on the IFD, as shown in Figure 11, where we see a decrease in IFD if vegetation 

cover increases. The Supplementary Materials show mixtures of PGE tailings material with vegetation. 

A growing proportion of vegetation on the test surface shallows the iron absorption feature and, 

therefore, decreases the IFD, until it is not detectable anymore. 

Table 4. Root-mean-square error of iron feature depth calculated from resampled ASD 

field-spectroscopy data.  

Sensor RMSE of IFD, PGE Tailings RMSE of IFD, Gold Tailings 

Sentinel-2 0.015 0.017 

ALI 0.020 0.026 

ASTER 0.055 0.050 

OLI 0.036 0.042 

ETM+ 0.046 0.046 
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Figure 9. Iron feature depth analysis of in situ ASD field-spectroscopy data from the PGE 

tailings material spectrally resampled to different multispectral sensors. The performance 

of the multispectral sensors is directly visible, with Sentinel-2 and ALI performing well 

compared to the weaker signal in the OLI data, whilst ASTER and ETM+ show the least 

resemblance to the EnMAP IFD. 

 

Figure 10. Iron feature depth analysis of in situ ASD field-spectroscopy data from gold mine 

tailings material spectrally resampled to different multispectral sensors. The performance of 

the multispectral sensors is directly visible, with Sentinel-2 and ALI performing well 

compared to the weaker signal in the OLI data, whilst ASTER and ETM+ show the least 

resemblance to the EnMAP IFD. The overall IFD values are generally lower, as in the case 

of the PGE tailings, due to the presence of secondary iron minerals only. 
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Figure 11. Iron feature depth analysis from in situ ASD field-spectroscopy data from PGE 

tailings material and mixtures of tailings material with vegetation. 

 

5.3. Multi-Temporal Analysis 

For an additional analysis step, spatial information can be extracted from a multi-temporal analysis 

of the IFD and its distribution across the tailings areas of interest. This represents an important step 

towards the monitoring of tailings and mine waste areas and their spatial extent. Figure 12 shows 

multi-temporal IFD data for Rustenburg and for the tailings near Stilfontein calculated from Landsat-8 

OLI data. It is clear that a large number of pixels with significant IFD are mapped during the dry 

season in the South African winter, when the dry vegetation is not masking the iron absorption feature, 

as discussed above. The highest IFD values in Figure 12 have been detected during autumn and spring, 

the months with the greatest precipitation, when moisture is available, and can facilitate the generation 

of secondary iron minerals and crusts, due to the enhanced weathering of primary iron-bearing 

minerals, such as pyrite. The opposite trend of maximum IFD and dry season in the case of the 

platinum tailings could have been caused by a larger spatial abundance of evaporation crusts on the 

tailings dams, which might mute the strong IFD signal of the pyroxenes. It is important to continue 

with the analysis presented in Figure 12 in the next two years to achieve a more robust result and to 

validate the variability found in the IFD data, as standard Level 1 OLI data is only available from the 

start of the mission in March 2013. This will show if the trends and variability observed in Figure 12 

can be linked to annual changes in the weather pattern or other external factors. 
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Figure 12. Multi-temporal iron feature depth (IFD) data from the tailings facilities near  

GaLuka, Rustenburg (left) and from the tailings in Stilfontein (right), calculated from the 

multispectral OLI data scenes listed in Table A1. The high number of IFD pixels in the dry 

season, July–September, could be attributed to sparser vegetation cover during that time. 

Please note that the trend in the number of IFD pixels in Rustenburg (left) is similar to the 

trend in the number of IFD pixels in Klerksdorp (right). A similar observation can be made 

for the median of the IFD depth between the two sites. 

 

6. Conclusion and Outlook 

It was shown that Multispectral data is suitable for mapping the spatial extent of iron minerals 

that are part of mine waste material via a new absorption feature-based index, which we call the iron 

feature depth. 

Through laboratory work with mine waste samples and PSF adapted field sampling, the following 

quantitative multispectral sensor rankings were established that illustrate the sensors capabilities to 

describe mine waste through the 900-nm iron absorption feature. For spectra from gold mining 

material, the ranking is in descending order as follows: EnMAP 100% similarity to the reference 

feature, ALI 97.5%, Sentinel-2 97%, OLI and ASTER 95% and ETM+ 91% similarity. If pyroxenes as 

proxies for platinum tailings material need to be mapped, the following similarity ranking applies: 

EnMAP 100% similarity to the reference, Sentinel-2 92%, OLI and ALI 89%, ASTER 82% and ETM+ 

75% similarity. Thus, the mean accuracy for mapping the 900-nm iron absorption feature of minerals 

related to mine waste is: EnMAP 100%, Sentinel-2 94.5%, ALI 93.25%, OLI 92%, ASTER 88.5% and 

ETM+ 83%. This sensor ranking is consistent with the RMSE of the IFD in Table 4. 

However, only hyperspectral data is able to discriminate surface mineralogy correctly, as shown 

in Figures 7a,b and 8a,b, and provides an independent verification of the spatial distribution of mine 

waste material and, henceforth, shows the geoscientific relevance of multispectral data and the IFD 

for mapping the spatial extent of mine waste. In addition to this, we have seen that hyperspectral 
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data is necessary if the IFD is to be calculated for mixed surface cover types, such as vegetation and 

tailings material. Current multispectral sensors are not able to address this problem, as shown in the 

Supplementary Materials. Only next generation multispectral sensors, such as Sentinel-2, are better 

equipped for this task. 

Hyperspectral data shows its superiority over any of the considered multispectral instruments if the 

IFD is to be calculated for mixed pixels with a notable percentage of vegetation cover in the pixel. 

Here, only EnMAP is able to determine the IFD of mixed tailings and vegetation spectra. 

Sentinel-2 and EnMAP might, therefore, in the future, be used as two primary building blocks of  

a multi-sensor process chain that helps to save costs in the remediation of mining sites. Such an 

application could become crucial for developing countries, such as Brazil or South Africa. Future 

studies should therefore focus on exploring those synergies between Sentinel-2 and EnMAP better. 

This could either be done using simulated data or the already available sensor systems of NASA, such 

as OLI/ALI and Hyperion. 

Research questions that may be important for future studies are as follows: 

(1) What is the ideal band layout of a multispectral sensor that enables highly precise mine  

waste mapping? 

(2) What is the impact of spatial resolution on IFD mapping if, e.g., high spectrally and  

spatially-resolved airborne sensors are used in such a study to complement spaceborne data? 

(3) How are IFD and the spectral contrast of the surface types/minerals present related to  

each other? 

(4) Could the IFD serve as an exploration tool in addition to monitoring the extent of primary and 

secondary iron minerals on tailings surfaces?  
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Appendix 

Data References 

Due to the larger number of used Landsat 8 scenes and sensor data from ALI, Hyperion and ETM+, 

the data is referenced in this specific chapter. Table A1 shows the Landsat 8 data used in this study. 

Scene IDs of the ALI and Hyperion data used for the Rustenburg area are 

EO1A1710772013195110KF for ALI and EO1H1710772013195110KF for Hyperion. Scene IDs of 

the ALI and Hyperion data used for the Stilfontein area near Klerksdorp are 

EO1A1710782013271110KF for ALI and EO1H1710782013271110KF for Hyperion. Landsat 7 data 

used for the Klerksdorp area is L71171079_07920000516. Landsat 7 data used for the Rustenburg area 

is L71171078_07820010111. 

Table A1. Landsat-8 Data used in this study. 

Landsat 8 Scene IDs for Klerksdorp/Stilfontein Landsat 8 Scene IDs for Rustenburg 

LC81710792013116LGN01_QB LC81710782013228LGN00_QB 
LC81710792013132LGN01_QB LC81710782013116LGN01_QB 
LC81710792013148LGN00_QB LC81710782013148LGN00_QB 
LC81710792013164LGN00_QB LC81710782013164LGN00_QB 
LC81710792013196LGN00_QB LC81710782013196LGN00_QB 
LC81710792013212LGN00_QB LC81710782013212LGN00_QB 
LC81710792013228LGN00_QB LC81710782013244LGN00_QB 
LC81710792013244LGN00_QB LC81710782013260LGN00_QB 
LC81710792013260LGN00_QB LC81710782013308LGN00_QB 
LC81710792013308LGN00_QB LC81710782013356LGN00_QB 
LC81710792013356LGN00_QB  
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