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Abstract: In recent years, sparse representation-based techniques have shown great 

potential for pattern recognition problems. In this paper, the problem of polarimetric 

synthetic aperture radar (PolSAR) image classification is investigated using sparse 

representation-based classifiers (SRCs). We propose to take advantage of both polarimetric 

information and contextual information by combining sparsity-based classification 

methods with the concept of superpixels. Based on polarimetric feature vectors constructed 

by stacking a variety of polarimetric signatures and a superpixel map, two strategies are 

considered to perform polarimetric-contextual classification of PolSAR images. The first 

strategy starts by classifying the PolSAR image with pixel-wise SRC. Then, spatial 

regularization is imposed on the pixel-wise classification map by using majority voting 

within superpixels. In the second strategy, the PolSAR image is classified by taking 

superpixels as processing elements. The joint sparse representation-based classifier (JSRC) 

is employed to combine the polarimetric information contained in feature vectors and the 

contextual information provided by superpixels. Experimental results on real PolSAR 

datasets demonstrate the feasibility of the proposed approaches. It is proven that the 

classification performance is improved by using contextual information. A comparison 

with several other approaches also verifies the effectiveness of the proposed approach. 

Keywords: polarimetric synthetic aperture radar (PolSAR); image classification; sparse 

representation-based classifier; superpixel; spatial regularization; joint sparse representation 
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1. Introduction 

Polarimetric synthetic aperture radar (PolSAR) is an advanced imaging radar system. By operating 

in the microwave band, PolSAR is able to provide remotely sensed imagery under all-time and  

all-weather conditions. Moreover, by transmitting and receiving electromagnetic waves in different 

polarimetric states, PolSAR can provide richer information than single polarization SAR [1]. 

Therefore, PolSAR has been found to facilitate various remote sensing tasks, such as target detection 

and recognition [2], land cover classification [3], etc. 

One of the most important applications of PolSAR is image classification, where each pixel is 

assigned to one terrain type. The classification map can be either directly used in applications, such as 

land cover mapping [4–6], or utilized as the input for further processing steps. However, PolSAR 

image classification is known to be a difficult task. The speckle noise caused by coherent imaging 

mechanism degrades the quality of PolSAR data. Moreover, in spite of the richer ground information, 

PolSAR images have a complicated data form (commonly in the form of a complex vector or matrix) 

compared to single polarization SAR images, which increases the difficulty of processing PolSAR 

images. Not only does the computational complexity increase, but special data modeling [7,8] and 

feature extraction methods [9] are also required. Although many approaches have been proposed, the 

problem of PolSAR image classification is still an active research topic. 

Among various methods for PolSAR image classification, one major category exploits the statistical 

properties of PolSAR data to perform classification. In those approaches, statistical models are used  

to derive distance measures [10–12], design test statics [13] or build energy models [14–16]. While  

the Wishart distribution based on the Gaussian assumption was prevalent in the early years, several  

non-Gaussian models [8,11,12] have been proposed for high-resolution PolSAR images when the 

Wishart distribution is not applicable. Mixture models are also investigated for the classification of 

PolSAR images [17]. Generally, the classification performance is decided by the model fitting 

accuracy. Nevertheless, for statistical models of PolSAR data (especially for non-Gaussian models), 

parameter estimation and modeling accuracy assessment are complicated problems [18,19]. Different 

from statistical model-based approaches, another major category of approaches classify PolSAR data 

by discriminating scattering mechanisms [4,5,20–22]. Those approaches are based on various 

polarimetric target decomposition methods [9], which extract a set of parameters to characterize the 

scattering mechanism for a polarimetric measurement. Such a process can be considered as a kind of 

feature extraction of PolSAR images. Commonly used methods include the Huynen [23], the  

Cloude–Pottier [4], the Yamaguchi [24], the Cameron [25], the Krogager [26], etc. Usually, the 

extracted features have a small number of components for a specific target decomposition method. 

However, the performance of those methods may be restricted by using a limited number of scattering 

mechanism types. Due to the complexity and variety of scattering mechanisms in real PolSAR data, 

pixels of different land cover classes may have similar scattering mechanisms and pixels of the same 

land cover class may have very different scattering mechanisms. In such cases, a wrong classification 

result may be derived. 

Recently, there have been approaches that learn a suitable feature representation for PolSAR image  

classification [27–30]. In those approaches, high-dimensional feature spaces are firstly constructed by 

stacking various polarimetric parameters. Then, dimensional reduction techniques, such as manifold 
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learning, are employed to learn low-dimensional feature representations [29,30]. The rationale behind 

those approaches is that we can rely on advanced machine learning techniques to exploit the 

discriminative information contained in high-dimensional feature spaces. Therefore, we do not need to 

construct the compact feature space for classification directly. 

Besides feature extraction, a classifier is another essential element for PolSAR image classification. 

Various classifiers have been employed for PolSAR image classification, such as neural networks [31], 

Adaboost [32] and support vector machines (SVMs) [27]. Recently, a new type of classification 

method has emerged based on the theory of sparse representation [33,34]. The sparsity of signals has 

been exploited in many signal processing tasks, such as super-resolution [35], image restoration [36] 

hyperspectral unmixing [37], etc. The key observation is that a natural signal can be represented by 

only a few elements (i.e., atoms) in a given dictionary, which causes the coefficient vector for 

representation to be sparse. In fact, in sparse representation-based classification, the dictionary atoms 

coming from the same class span a class-dependent subspace. A test feature sample is assigned to  

the class with minimum representation (projection) error. Therefore, by using a structured dictionary, 

sparse representation-based classifiers (SRCs) can exploit the data structure automatically. It is shown 

that, in sparse representation-based classification, the precise choice of a low-dimensional feature 

space is no longer critical. Therefore, the difficulties of which dimensional reduction method to use 

and how to decide the reduced dimensionality can be avoided [33]. 

In this paper, we investigate the feasibility of classifying PolSAR images with sparse 

representation-based classification methods. Following the work of [29,30], the features for PolSAR 

image classification are generated with various polarimetric parameter extraction methods. This scheme 

ensures that the constructed feature space contains comprehensive information for being exploited by 

SRC. The classification is implemented in a supervised way. For each class, a set of labeled pixels is 

assumed to be available. The dictionary for the sparse representation of test samples is constructed by 

collecting polarimetric feature samples of labeled pixels. Then, SRC can be applied to classify the 

PolSAR image. 

The drawback of applying SRC for PolSAR image classification directly is that polarimetric feature 

vectors are treated as a disarranged list of signals. Therefore, the contextual information contained in 

the PolSAR image is neglected. It is common sense that in remotely sensed images (as well as in 

natural optical images), neighboring pixels probably belong to the same class. Therefore, the classification 

accuracy is likely to be improved when contextual information is taken into account [38,39]. This is 

verified by many works that either use spatial smooth priors (a typical example is the Markov random 

field (MRF) model [40]) or extract features that contain contextual information [41–43]. In sparse 

representations for remotely sensed image classification, there are several works that study the 

problem of how to exploit contextual information. For instance, in [44], two approaches are presented 

to include contextual information in the framework of sparse representation-based classification. One 

of those two approaches imposes a vector Laplacian-based smooth constraint on the sparse coefficients 

for neighboring pixels. The other approach adopts the joint sparse representation method to sparsely 

represent feature samples of pixels centered at the pixel of interest simultaneously. It is proven that,  

by including contextual information, the classification accuracy can be improved. However, those  

two approaches use rigid square neighborhoods that may cover pixels of different classes at region 

boundaries. In [45], an improved approach is proposed, which assigns a non-local weight for each 
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pixel within the neighborhood selection window. Pixels similar to the center pixel are assigned to large 

weights, and pixels dissimilar to the center pixel are assigned to small weights. Nevertheless, the 

computational complexity is inevitably increased. Moreover, for both approaches in [44,45], the size of 

the neighboring window should also be decided. 

To overcome the problems of the rigid square neighborhood and high computational complexity, 

we propose to take advantage of contextual information in sparse representation-based PolSAR image 

classification by using superpixels. The concept of superpixel comes from the field of computer  

vision [46]. It refers to small homogenous image patches that can be considered as pure elements  

for classification. Using superpixels has been popular for scene classification in computer  

vision [47–49]. For remotely sensed image classification, using superpixels has also drawn much 

attention [50–53]. In this paper, we first propose a modification of the simple linear iterative clustering 

(SLIC) method [54] for superpixel generation in PolSAR images. The SLIC method is chosen, because 

it produces high quality superpixels and is simple to implement. As the original SLIC method is 

developed for grayscale/color images, it is modified to deal with PolSAR images by using a statistical 

model-based distance function. After superpixels have been obtained, they are used to define adaptive 

neighborhoods for incorporating contextual information within the sparse representation-based 

classification framework. The first strategy is to impose a spatial regularization on the pixel-wise 

classification map obtained by SRC. The second strategy is to take advantage of a joint sparsity model 

for pixels within the same superpixel. The advantage of using superpixels is two-fold. On the one hand, 

superpixels provide an adaptive neighborhood for each pixel; thus, the problem of including pixels 

from different classes when using a rigid square local window can be avoided. On the other hand, the 

computational burden can be effectively reduced. Experimental results with real PolSAR datasets 

validate the effectiveness of the proposed approaches. 

The rest of the paper is organized as follows. Section 2 describes the approach  

of using SRC for PolSAR image classification. In Section 3, the contextual information is included for 

performing polarimetric-contextual classification of PolSAR images. Experimental results are 

presented in Section 4, and lastly, conclusions and future works are given in Section 5. 

2. PolSAR Image Classification with SRC 

This section presents the approach for the pixel-wise classification of PolSAR images with SRC, 

which consists of two ingredients: polarimetric feature extraction and sparse classification. 

2.1. Polarimetric Feature Extraction 

For remotely sensed image classification, informative features should be extracted to distinguish 

pixels of different land cover types. As mentioned in the Introduction, in this paper, the feature space 

for PolSAR image classification is constructed by stacking a variety of polarimetric signatures. 

The ground information of PolSAR images is contained in the polarimetric measurements, i.e., 

scattering matrices or covariance/coherency matrices. To extract features from the measured PolSAR 

data, simple mathematical operations, such as absolution, summation, difference and ratio, can be used. 

Examples of this category of polarimetric signatures are single-channel backscattering intensities, 

intensity ratios, correlation coefficients, degree of polarization, etc. [55]. Although being simple  
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to compute, those parameters are often computed with partial polarimetric measurements and, thus,  

can only describe a specific aspect of the ground object scattering property. We can also extract 

polarimetric scattering parameters with various polarimetric target decomposition methods [9]. In past 

decades, many polarimetric target decomposition methods have been proposed, aiming to identify 

ground scattering mechanisms through matrix decomposition techniques. A review of target 

decomposition methods is available in [1]. Generally, different target decomposition methods  

try to interpret PolSAR data from different perspectives. Nevertheless, there is no guidance to decide 

which target decomposition method will lead to the most accurate classification result for a given 

PolSAR image. 

For a specific type of polarimetric feature extraction method, the number of extracted signatures is 

often small. Therefore, only partial polarimetric information is preserved. To construct a feature space 

with comprehensive polarimetric information, various polarimetric signatures can be stacked  

to form a high-dimensional feature vector at each pixel. In this paper, 42 polarimetric features  

are extracted from the original PolSAR data [29]. Features extracted with simple mathematical 

operations include the backscattering coefficients of different polarization channels, three polarized 

ratios, three backscattering coefficient ratios, one phase difference, the depolarization ratio and the 

degree of polarization. Features extracted with target decomposition methods include three parameters 

of the Pauli decomposition, six parameters of the Krogager decomposition, six parameters of the 

Cloude decomposition, six parameters of the Freeman–Durden decomposition and nine parameters of 

the Huynen decomposition. Although the dimensionality of such a feature space is larger than the 

freedom degree of the original data (six for the scattering matrix and nine for the covariance/coherency 

matrix in the mono-static case), it is still reasonable to construct such a redundant high-dimensional 

feature space, since it is difficult to design a compact optimal feature space directly. Then, the effective 

discriminative information contained in the redundant representation is exploited with sparse 

representation-based classifiers. 

2.2. Sparse Representation-Based Classification of PolSAR Images 

Sparse representation has been established as a powerful tool in the pattern recognition field.  

Wright et al. [33] proposed the SRC in the context of face recognition. The underlying assumption of 

SRC is that each test sample can be represented by a linear combination of a few atoms from an 

overcomplete dictionary. Since many atoms are not used for representing the test sample, the 

coefficients corresponding to those un-used atoms are zeros, leading the coefficient vector to be sparse. 

Let F={f1,f2,…,fN}∈N×M be the representation of the PolSAR image in the feature space, where fk, 

1൑k൑N is the feature vector of the k-th pixel, N is the number of all pixels and M is the dimensionality 

of the feature space. Suppose that a training dictionary is available, which is denoted by 

D={d1,d2,…,dNT
} ∈ NT×M, with NT samples and C distinct classes. In this paper, the dictionary is 

constructed by collecting feature samples of labeled pixels in the PolSAR image of interest. The 

dictionary can be arranged in a form as D=[D1,D2,…,DC], in which Dc ∈ NT
c ×M is the sub-dictionary 

of the c-th class with NT
c  samples. Therefore, we have NT ൌ ∑ NT

cC
c=1  . It is assumed that a test 

polarimetric feature sample fk can be represented with the given dictionary as follows [33]: 
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In Equation (1), w=[w1
T,w2

T,…,wC
T ] ∈ NT×1  is the sparse combination weight vector, in which 

wc
T ∈ RNT

c ×1 contains the weights corresponding to atoms of the c-th class. The key observation of SRC 

is that if the test sample fk comes from the c-th class, then it can be well approximated by atoms from 

the same class. Therefore, the principle of SRC is to find the optimal weight vector in Equation (1) and 

assign the test sample to the class with the minimum approximation error. 

To obtain the sparse representation of the test sample fk, the sparse weight vector w that satisfies (1) 

should be solved. This leads to the following optimization problem: 

0arg min || || . . ks t  
w

w w Dw f  (2)

where the l0-norm || ⋅ ||0 counts the non-zero elements in w. By solving the above optimization problem, 

we will find a weight vector with a minimum number of non-zero elements, while ensuring that the 

test sample is approximately represented by atoms from the dictionary. In Equation (2), the rough 

constraint Dw ൎ fk is used instead of an exact constraint, so that the influence of noise and model 

errors can be accounted for. The problem of Equation (2) can be made more precise by using a clear 

requirement on the approximation accuracy, i.e., to set a bound on the approximation error. As a result, 

the optimization problem in Equation (2) becomes: 

0 2arg min || || . . || ||ks t    
w

w w Dw f  (3)

where ε is the bound of the approximation error. Although the l0 optimization problem is NP-hard, it 

can be approximately solved with greedy algorithms, such as orthogonal matching pursuit (OMP) [56]. 

To facilitate numerical computation, it is proposed to replace the l0-norm with the l1-norm. It is shown 

that if the solution of Equation (3) is sparse enough and the dictionary D is incoherent with the basis 

under which the solution is sparse, it can be recovered by solving the following l1-minimization 

problem, as well [57,58]: 

1 2arg min || || . . || ||ks t    
w

w w Dw f  (4)

The sparsity encouraging property of the l1-norm has been studied in the field of compressive 

sensing. The problem in Equation (4) is known as the basis pursuit denoising (BPDN) [59]. Another 

equitant formulation of Equation (4) is given by the following unconstraint problem with scalar 

parameter ξ: 

2 1

1
arg min || || || ||

2 k
   

w
w Dw f w  (5)

The problem in Equations (4) and (5) are convex and, thus, can be solved efficiently with  

l1-minimization techniques, such as interior point methods, proximal point methods and augmented 

Lagrangian methods [60]. After the sparse weight vector w is obtained, the class label for the test 

sample fk is selected by: 

{1,2,..., }
( ) arg min ( )k c k

c C
l r


f f  (6)

where rcሺfkሻ ൌ ฮfk-Dcwcฮ2
 is the approximation error of the c-th class, l(fk) is the label of the pixel k. 
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3. Polarimetric-Contextual Classification of PolSAR Images 

Previous works have shown that including contextual information in the classification process helps 

to improve the classification performance [38–43]. For sparse representation with contextual 

information for remotely sensed image classification, the reader is referred to [44,45]. Although the 

methods in [44] can take advantage of contextual information, the considered neighborhood of a pixel 

is a rigid square, which may contain pixels from different classes. The method in [45] tackles this 

problem by assigning non-local weights to neighboring pixels. Nevertheless, this method is 

computational expensive, as additional non-local weights need to be computed. In this paper, we 

investigate alternative ways to exploit contextual information with the framework of SRC for PolSAR 

image classification. We combine SRC with the concept of superpixels. Based on superpixels, two 

strategies are considered to perform polarimetric-contextual classification of PolSAR images. Next, the 

method to generate superpixels in PolSAR images is first presented. Then, the methods for 

classification are described. 

3.1. Superpixel Generation in PolSAR Images 

The concept of superpixels is introduced in [46] and refers to small homogenous regions in images. 

Superpixels are often obtained by some over-segmentation methods. When used for classification, 

pixels within one superpixel are assumed to belong to the same class. In the remote sensing community,  

a similar concept is the so-called object-oriented analysis [50], in which over-segmented small regions 

(objects) are taken as analysis elements for classification. Due to the possibility of using superpixels to 

suppress the influence of speckle noise and clutters, a number of works have investigated  

superpixel-based classification of SAR/PolSAR images [51–53]. 

To use superpixels for PolSAR image classification, they should be generated first. Several 

superpixel algorithms can be found in the literature, but none is proposed for PolSAR images. The 

watershed algorithm [61] and normalized cut algorithm [62] have been used for superpixel generation 

for PolSAR images. However, the watershed algorithm produces highly irregular superpixels, and a 

normalized cut algorithm is computational extensive [54]. In this paper, we introduced a modified 

version of the SLIC algorithm [54]. Although being simple, SLIC is proven to be very effective and 

efficient for superpixel generation. 

The basic idea of SLIC is iteratively assigning pixels to the nearest superpixels. At the beginning of 

the algorithm, superpixels are initialized by placing a set of seeds on the image domain. Then, the 

algorithm is implemented with two alternating steps: (1) fix superpixel centers and assign each pixel to 

the nearest superpixel according to a distance measure; (2) update superpixel centers. It should be 

noted that for each superpixel, only pixels in the neighborhood of the center are allowed to be assign to 

it. The size of the neighborhood is predefined and decides the maximum size of one superpixel. 

The key issue of SLIC is the definition of the distance measure between pixels and superpixel 

centers. In [54], for a pixel i and a superpixel center j, the distance measure is defined as: 

2 2( , )
( , ) ( , ) s

SLIC c

d i j
D i j d i j

S
    
 

 (7)
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In Equation (7), the distance between a pixel and a superpixel center is computed by combining two 

distances. The term dc(i, j)=|| ci − cj ||2 is the Euclidean distance between i and j in the color space, 

where ci, cj are color vectors of i and j respectively. The term ds(i, j)=|| xi – xj ||2 is the spatial distance 

between i and j in the image domain, where xi, xj are spatial location vectors. S is the maximal size of a 

superpixel and η is the weight to tune the contributions of color similarity and spatial proximity. 

To extend the SLIC algorithm to deal with PolSAR data, the distance measure should be modified 

according to the property of PolSAR data. We keep the definition of spatial distance unchanged and 

replace the feature-based distance with a statistical model-based measure. Statistical model-based 

distance measures have been proven to be more suitable than Euclidean distance for SAR/PolSAR data. 

In this paper, a Wishart distribution-based distance ds(i, j) is used [10]: 

   1( , ) ln | | Trp j j id i j  Σ Σ T  (8)

where Ti is the coherency matrix of pixel i and Σj is the mean coherency matrix of the superpixel 

centered at j. Substituting dp(i, j) into Equation (7) to replace the color-based distance dc(i , j) gives the 

distance measure for superpixel generation for PolSAR images. 

After superpixels have been generated, we have a collection of superpixels {spj , j=1,…,Nsp}, where 

Nsp is the number of all superpixels. For each superpixel, pixels within it are assumed to belong to the 

same class. The next step is to incorporate contextual information derived from the superpixel map 

into sparse representation-based classification. In this paper, two approaches have been considered to 

combine polarimetric and contextual information together. 

3.2. Combining SRC with Superpixels by Majority Voting 

The first approach that has been considered is to regularize the pixel-wise classification map 

obtained with SRC by superpixel-based majority voting. Majority voting is a long-standing and 

popular method for combing the results of a set of classifiers. It has been considered to improve the 

classification result obtained by SVM for hyperspectral images [63]. Note that the majority voting with 

rigid neighborhoods can also impose spatial regularization on pixel-wise classification maps. However, 

using an adaptive neighborhood, such as superpixel (or segments in [63]), helps to preserve class 

boundaries and suppress over-smoothness. In our case, each superpixel in the PolSAR image is taken 

as a unit, and pixels in it are all supposed to have the same class label. However, the pixel-wise SRC 

classifies each pixel independently. This can be considered as classifying a superpixel with different 

descriptors (i.e., feature vectors associated with pixels in the superpixel). Therefore, the majority 

voting is actually a decision fusion process, in which the classification results with different descriptors 

are combined together. 

The principle of superpixel-based majority voting is shown in Figure 1. For a given superpixel, we 

count the times that each class label presents in that superpixel. The class label that presents most often 

is selected and assigned to all pixels within that superpixel. The decision rule of majority voting is 

formally defined as: 

 
{1,2,..., }

( ) arg max ( )
j

j
c C

i sp

l sp l i c




 
   

  
  (9)
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where δ(z) is the Dirac function, spj denotes the superpixel index by j and l(spj), l(i) denote the label of 

superpixel spj and pixel i, respectively. 

Figure 1. The principle of combing sparse representation-based classifiers (SRCs) with 

superpixels with majority voting: pixels in a given superpixels are forced to have the same 

class label. For the classification map, different grayscales represent different classes. 

 

3.3. Polarimetric-Contextual Classification with Superpixel-Based JSRC 

Another strategy to combine polarimetric and contextual information is to classify each superpixel 

directly according to the features within it. One way is to compute a single descriptor for each superpixel, 

e.g., the mean feature vector, and then classify it with the produced single descriptor. However, this 

may cause information loss. Nevertheless, in the framework of sparse representation-based classification, 

this problem can be addressed with a joint sparsity model [64,65]. The underlying assumption of the 

joint sparsity model is that if a set of test samples are from the same class, they can be represented by 

similar dictionary atoms (i.e., the associated sparse representation weight vectors share the similar 

sparsity pattern). It is shown that by making use of the correlation between weight vectors, a more 

accurate sparse model can be derived. In our case, since pixels within one superpixel are considered to 

belong to the same class, the corresponding feature vectors would share a similar sparsity pattern. 

Therefore, we can solve the sparse representation weight vectors for all pixels in a superpixel 

simultaneously with a constraint that forces those weight vectors to have similar non-zero elements. 

Consider a specific superpixel spj in the PolSAR image, which contains Nj pixels associated with 

the same number of polarimetric feature vectors. Those feature vectors are arranged in a matrix as: 

1 2, , ,
j

j j j
j N

   F f f f  (10)

Each feature vector of spj can be represented by the dictionary D as fk
j≈Dwk

j , ∀1≤k≤Nj. Collecting all 

weight vectors in a matrix, we have Wj ൌ ሾw1
j ,w2

j , … ,wNj
j ሿ . As a result, Fj can be represented by: 

1 2 1 2

1 2

, , , , ,

[ , , , ]

j j

j

j j j j j j
j N N

j j j
N j

       
 

F f f f Dw Dw Dw

D w w w DW

 


 (11)
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In the joint sparsity model, the weight matrix Wj should satisfy two requirements: (1) each column 

is sparse; (2) the non-zero elements in all columns should be located at similar positions. It turns out 

that such constraints can be forced by minimizing the row-l0 norm ,0|| ||j rowW , which counts the  

non-zero rows of Wj [66]. Therefore, the optimization problem associated with the joint sparse model is: 

,0arg min || || . .
j

j j row j js t  
W

W W F DW  (12)

Similar to the derivation of Equation (3), the model in Equation (12) can also be made more precise 

by introducing an error bound: 

,0arg min || || . . || ||
j

j j row j j Fs t    
W

W W F DW  (13)

Where || ⋅ ||F denotes the Frobenius norm and ε is the bound of the approximation error. 

Minimizing Problem (13) is difficult, just like the situation for the sparse representation of a single 

signal. This problem is often addressed by relaxing the problem by replacing the row-l0 norm with a 

more tractable norm [66]. In this paper, we use the l1 − l2 norm, which is defined as: 

2
1,2 ,

1 1

|| || ( )
jT

NN
j

j n k
n k

w
 

 W  (14)

where ,
j

n kw  denotes the elements of Wj at row n and column k. 

Replacing the row-l0 norm in Equation (14) with the l1 − l2 norm yields the following  

optimization problem: 

1,2arg min || || . . || ||
j

j j j j Fs t    
W

W W F DW  (15)

or equivalently: 

1,2arg min || || || ||
j

j j j F j
   

W
W F DW W  (16)

Solving Equation (15) or Equation (16) gives the weight matrix * * * *
,1 ,2 ,[( ) ,( ) ,...,( ) ]T T T T

j j j j CW W W W , 

in which the matrix *
,k cW  represents the weights to represent Fj with training samples in the c-th class. 

Now, the reconstruction error of the c-th class for the superpixel spj can be computed by: 

  *
, ,|| ||j c j c j c j Fr  F D W F  (17)

The class label for pixels in the superpixel spj is given by: 

 ,
{1,2,..., }

( ) arg minj j c j
c C

l sp r


 F  (18)

It should be noted that although the proposed approach and the approaches in [44,45] are all  

based on the JSRC, they are quite different. In the methods of [44,45], the classification is performed 

pixel-wise. At each pixel, the associated feature vector and feature vectors of neighboring pixels  

are sparsely represented simultaneously to classify that pixel. Therefore, the number of processing 

elements is the same as the number of pixels. On the contrary, in the proposed approach, we have 

obtained the superpixel map, and the classification is performed at the superpixel level. As a result, the 

number of processing elements is the same as the number of superpixels, which is much less than the 

number of pixels. This will help to reduce the computational burden. Moreover, the neighborhoods of 
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the method in [44] are rigid squares; thus, they may include pixels of different classes. Although the 

method in [45] addresses this problem by using non-local weights, the computational complexity is 

further increased. In contrast, the neighborhoods are adaptively selected by superpixels in the proposed 

approach, thus avoiding the problem caused by rigid neighborhoods. 

4. Results and Discussion 

In this section, we evaluate the effectiveness of the proposed sparse representation- and  

superpixel-based PolSAR image classification approaches. The main objective of the experimental 

validation is two-fold. Firstly, the ability of sparse representation-based classifiers to produce 

favorable PolSAR image classification is verified. To achieve this, the proposed approach is compared 

with the widely-used Wishart model-based classifiers. Since the proposed two approaches exploit 

contextual information, two Wishart model-based competitors, which also make use of contextual 

information, are considered. One is a region-based Wishart maximum-likelihood (Wishart-ML)  

classifier [10], which takes superpixels as processing elements [53]. The other one is the Wishart-MRF 

classifier [14,15], which exploits contextual information by using the MRF model. We adopt the  

well-known graph cut algorithm [67] for energy optimization for the sake of efficiency. In addition, the 

SVM-based on composite kernel (SVMCK) classifier [68] is also tested. The SVM-based classifiers 

are shown to be powerful tools in the remote sensing field and have been successfully applied on 

PolSAR images [27,29]. Using composite kernels enables us to incorporate contextual information into 

the SVM classifier. The second objective of the experimental validation is to demonstrate the 

advantage of combining sparse representation-based classifiers with superpixels. This is achieved by 

comparing the proposed two approaches with other sparse representation-based classifiers. The results 

obtained by the pixel-wise SRC approach are presented to show the gain on classification accuracy by 

making use of contextual information. Moreover, two joint sparse representation-based classifiers are 

also evaluated, which are the joint sparse representation-based approach that considered square 

neighborhoods (JSRC-SQ) [44] and the improved approach with non-local weights (JSRC-NLW) [45]. 

The approaches proposed in this paper are denoted as SRC-MV and JSRC-SP, respectively. It should 

be noted that all approaches make use of the same polarimetric features, except the two Wishart 

model-based classifiers. 

In practice, we can solve Equation (3) or Equation (5) to implement SRC, as well as Equation (13) 

or Equation (16) to implement JSRC. Nevertheless, in this paper, we do not intend to evaluate and 

compare the advantages and disadvantages of using different sparsity-promoting norms. Therefore, in 

all experiments, Problem (3) is adopted for SRC and is solved with the OMP algorithm. For JSRC,  

Problem (16) is adopted and is solved by the simultaneous OMP (SOMP) algorithm. The 

approximation error bound is set as 0.001 for SRC and 0.01 for JSRC. As can be observed in the 

following experiments, although being suboptimal, this setting provides very good classification 

results. Following the work of [68], the spatial kernel in the SVMCK approach is constructed by using 

the mean feature vector of a 5 × 5 local window centered at each pixel. Besides, the SVM parameters 

are decided by five-fold cross-validation. The weight for kernel summation is varied in the range [0, 1] 
with steps of 0.1. The penalizing factor in the SVM is tuned in the range of 2 1 5{10 ,  10 ,  ....,  10 }  .  

The radial basis function kernel is used with the width parameter ranges in 2 1 3{10 ,  10 ,  ...,  10 }  . The 
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neighborhood size of JSRC-SQ and JSRC-NLW is chosen between 3 × 3 and 13 × 13 according  

to [44,45]. For the proposed two approaches and the Wishart-ML approach, the sizes of superpixels are 

varied. Nevertheless, we initialize the superpixel seeds as regular patches with a fixed size, so that the 

mean superpixel size can be roughly controlled (as the number of superpixels is decided by the initial 

patch size). The weight parameter η in Equation (7) is set as two, which empirically keeps a reasonable 

balance between the compactness and feature coherence of superpixels. All of the experiments were 

conducted using MATLAB R2010b on a 3.40-GHz machine with 4.0 GB RAM. 

We evaluate different algorithms on two different real PolSAR datasets. In our experiments, the 

training samples are randomly selected from the available reference data and the remaining samples 

are used for validation purposes. This strategy is widely admitted in the remote sensing  

community [39,40]. In the case that a superpixel contains training samples, the selected pixels are 

excluded from the superpixel in the classification process. The same disposition is used when the 

neighborhood of a pixel contains training samples for JSRC-SQ and JSRC-NLW. The overall accuracy 

(OA) and kappa coefficient are used to evaluate the accuracy performance of the classification. The 

efficiency of different algorithms is assessed by the CPU time cost. The performance indexes are 

obtained by averaging the values obtained after ten Monte Carlo runs. Following, we report the 

experimental results on two real PolSAR images. 

4.1. RadarSat-2 Flevoland Dataset 

The first dataset is a C-band fully-polarimetric SAR image collected by the RadarSat-2 system  

at the fine quad mode over the area of Flevoland, Netherland. The used subset consists of  

700 × 780 pixels. Figure 2a is a false color image obtained by Pauli decomposition, and Figure 2b is  

the manually-labeled reference map. A total of four classes are identified, which are the building area, 

woodland, farmland and water area. Pixels with no reference label are shown in gray. 

Figure 2. Flevoland dataset collected by RadarSat-2. (a) The RGB image obtained by 

Pauli decomposition. (b) The reference map. Four terrain classes are identified, which are 

coded as: red-building area, green-woodland, orange-farmland and blue-water. 

 

 
(a) (b) 
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The first experiment with the RadarSat-2 dataset is to illustrate the feasibility and advantage  

of using superpixels to incorporate contextual information into the sparse representation-based 

classification framework for PolSAR images. We constructed the training dictionary by randomly 

selecting 1% of the available labeled pixels as atoms. In our experiment, we noticed that the size of the 

initial patches for superpixel generation could affect the classification accuracy. Therefore, we 

conducted an additional experiment to analyze the effect of initial patch size on the classification 

accuracy. Figure 3 shows the change of the OA when the initial patch size increases from 3 × 3 to  

13 × 13. It can be noticed that the best OA occurs when the initial patch size is 9 × 9 for both 

approaches. For the proposed two approaches, the highest OAs reach 95.72% (SRC-MV) and 92.89% 

(JSRC-SP), respectively, which are both much higher that the OA of 86.02% achieved by SRC. This 

demonstrates the effectiveness of using superpixels for incorporating contextual information for sparse 

representation-based PolSAR image classification. Besides, we can also conclude that the size of 

superpixels could have an impact on the classification accuracy. 

Figure 3. The classification results vs. different initial patch sizes for the two proposed 

approaches. JSRC, joint sparse representation-based classifier. 

 

To further validate the performance of the proposed two approaches, we report results obtained by 

other competitors. Figure 4 shows the classification obtained by different approaches by using 1% of 

labeled pixels as training samples. In Figure 4a, the superpixels generated with 9 × 9 initial patches  

are illustrated. This superpixel map is then used in the proposed SRC-MV approach and JSRC-SP 

approach, as well as the Wishart-ML approach. The optimal neighborhood size for the JSRC-SQ 

approach and JSRC-NLW approach are 7 × 7 and 11 × 11, respectively. Several observations can  

be made from Figure 4. Firstly, compared with other approaches, SRC produces the most noisy 

classification result, notably in the woodland and building areas, which have strong textures. This 

proves the importance of taking advantage of contextual information for the classification of PolSAR 

images. Secondly, the two Wishart model-based approaches have relatively poor performance. When  

the resolution of the PolSAR image increases and the texture is present in the image, the scene 

becomes heterogeneous and the applicability of the Wishart model reduces. As a result, classification 

with the Wishart model may have limited accuracy. Finally, it should be noticed that for  

superpixel-based approaches, a superpixel is considered as a whole for classification. Therefore, if a 
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wrong classification decision is made, then all pixels in a superpixel may be forced to have the wrong 

class label. This phenomenon can be observed from Figure 4c,d,h. 

Figure 4. Classification results obtained with different approaches. (a) The generated 

superpixels. The rest are the results obtained by: (b) SRC; (c) SRC-MV; (d) JSRC-SP;  

(e) JSRC-SQ (square neighborhoods); (f) JSRC-NLW (non-local weights); (g) SVK-CK; 

(h) Wishart-ML; (i) Wishart-MRF (Markov random field). 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 
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In Table 1, we report the quantitative accuracy indexes for different approaches on the RadarSat-2 

dataset. From Table 1, we can notice the poor performance of Wishart model-based approaches. Even 

though the contextual information has been exploited, the classification accuracy is still less than  

the pixel-wise SRC approach. This clearly demonstrates the advantage of collecting varies polarimetric 

signatures to unfold the discriminative information contained in PolSAR data. However, the pixel-wise 

SRC approach still has relatively low classification accuracy compared with other polarimetric-contextual 

approaches. Among those approaches, sparse representation-based approaches provide favorable 

performance. The proposed JSRC-SP approach produces accuracy indexes that are very close to those 

obtained by JSRC-SQ and that are a bit lower than those obtained by JSRC-NLW. The advantage of 

the proposed JSRC-SP approach is that it can choose adaptive neighborhoods for classification and 

avoids the neighborhoods containing pixels from different classes. However, as the reference map is 

non-exhaustive, few labeled pixels are located at terrain class boundaries. Therefore, we would expect 

that the JSRC-SQ approach will achieve similar accuracy performance as the JSRC-SP approach. 

Nevertheless, the SRC-MV approach reaches the highest OA and kappa coefficient among all of  

the approaches. 

Table 1. Classification accuracy measures on the Flevoland dataset. The best performance 

in each column is shown in bold. SVMCK, SVM-based on composite kernel. 

Method Building Woodland Farmland Water OA Kappa 

SRC 75.47 78.22 89.79 95.77 85.66 0.792 

SRC-MV 88.96 94.83 97.81 98.59 95.72 0.938 

JSRC-SP 83.10 89.86 96.40 98.06 92.89 0.896 

JSRC-SQ 78.91 94.11 96.56 96.40 92.88 0.896 

JSRC-NLW 84.05 90.63 95.85 98.37 93.01 0.898 

SVMCK 71.65 97.91 86.62 99.11 88.22 0.832 

Wishart-ML 64.65 96.87 79.37 96.04 82.94 0.759 

Wishart-MRF 63.63 96.46 80.16 98.49 83.41 0.767 

Another important aspect to assess the performance of algorithms is the efficiency. In Table 2, we 

report the running times for different approaches. We only present the running time for polarimetric 

feature vector-based approaches, since those two Wishart model-based approaches have relatively poor 

accuracy performance. For the remaining six approaches, the time for feature extraction is not counted, 

since it is the same for all approaches. Besides, for superpixel-based approaches, the time for 

superpixel generation is added to the overall running time. It can be seen that both the JSRC-SQ 

approach and the JSRC-NLW approach have a rather long time cost compared with other approaches. 

This is because both approaches need to solve a joint sparse representation problem at each pixel. On 

the other hand, the proposed two approaches take much less time to produce the final classification 

result. The JSRC-SP is the most efficient approach among those six approaches. The reason is that in 

JSRC-SQ, the classification is performed at the superpixel level, thus the number of processing units is 

much less than the number of pixels in the image. This helps to save a lot time. The SRC-MV 

approach has a relatively low efficiency compared with JSRC-SP. Nevertheless, in this study case, it 

produces higher accuracy performance. 
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Table 2. The running processing time of different methods on the Flevoland dataset  

in seconds. 

Methods SRC SRC-MV JSRC-SP JSRC-SQ JSRC-NLW SVMCK 

Time (s) 261.57 303.45 112.83 7659.88 8577.88 137.43 

4.2. EMISAR Foulum Dataset 

This scene was acquired by the C-band fully-polarimetric EMISAR system in April, 1998, over the 

area of Foulum, Denmark. In Figure 5a, the 332 × 437-pixel false color image obtained by Pauli 

decomposition is illustrated. A reference map with five classes has been created [30], as shown in 

Figure 5b. The five classes are rye, coniferous, oat, winter wheat and water. Unlabeled pixels are 

shown in gray. This scene constitutes a challenging classification problem due to the highly intra-class 

heterogeneity and because of the unbalanced number of available labeled pixels per class. We 

randomly sampled 5% of the labeled pixels for each class as training samples, and the rest of the 

labeled pixels are taken as test samples. 

Figure 5. Foulum dataset collected by EMISAR. (a) The RGB image obtained by Pauli 

decomposition. (b) The reference map. Five terrain classes are identified, which are coded 

as: red, rye; dark green, coniferous; light green, oat; orange, winter wheat; blue, water. 

 
(a) (b) 

Similar to the processing of the first dataset, we conducted an experiment to decide the optimal 

initial patch size for superpixel generation. We find that the best accuracy performance is reached 

when the initial patch size is 7 × 7 (as shown in Figure 6). In Figure 7a, the generated superpixels are 

illustrated. The optimal neighborhood sizes for the JSRC-SQ approach and JSRC-NLW approach are  

7 × 7 and 9 × 9, respectively. Figure 6b–i shows the classification result obtained by different 

approaches. It can be observed that while the SRC approach produces much noise, like errors, the 

Wishart model-based approaches cause many errors for the water class due to the strong heterogeneity 

of the scattering mechanism. For the other approaches, evaluating the classification performance by 
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visual interpretation is difficult. Therefore, we computed quantitative indexes, which are reported in 

Table 3. 

Figure 6. The classification results vs. different initial patch size for the two proposed 

approaches on the EMISAR Foulum dataset. 

 

Figure 7. Classification results of the EMISAR Foulum dataset obtained with different 

approaches. (a) The generated superpixels. The rest are results obtained by: (b) SRC;  

(c) SRC-MV; (d) JSRC-SP; (e) JSRC-SQ; (f) JSRC-NLW; (g) SVK-CK; (h) Wishart-ML; 

(i) Wishart-MRF. 

 
(a) (b) (c) 

 
(d) (e) (f) 
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Figure 7. Cont. 

 
(g) (h) (i) 

Table 3. Classification accuracy measures on the EMISAR Foulum dataset. The best 

performance in each column is shown in bold. 

Method Water Rye Coniferous Winter Wheat Oat OA Kappa 

SRC 87.71 96.87 88.47 92.79 99.26 94.02 0.906 

SRC-MV 98.21 99.13 96.01 97.26 99.59 98.79 0.981 

JSRC-SP 96.48 95.35 96.01 93.16 98.96 97.44 0.958 

JSRC-SQ 95.48 92.07 97.09 91.04 99.13 96.90 0.951 

JSRC-NLW 96.35 92.51 95.15 92.79 99.66 97.49 0.960 

SVMCK 92.56 87.20 81.47 88.56 98.87 94.59 0.913 

Wishart-ML 76.08 84.87 89.87 93.41 97.72 88.18 0.818 

Wishart-MRF 78.32 90.33 92.78 95.65 99.02 90.21 0.848 

The running time of different approaches on the EMISAR Foulum dataset is shown in Table 4. 

Similar to the observation on the RadarSat-2 Flevoland dataset, a significant running time reduction 

has been achieved by the proposed approaches compared with JSRC-SQ and JSRC-NLW. The  

JSCR-SP approach is the most efficient one among the compared approaches. SRC-MV costs more 

time than JSRC-SP, SRC, as well as SVMCK, but produces better accuracy performance. 

Table 4. The running processing time of different methods on the EMISAR Foulum dataset 

in seconds. 

Methods SRC SRC-MV JSRC-SP JSRC-SQ JSRC-NLW SVMCK 

Time (s) 18.68 28.33 13.05 418.91 432.68 17.87 

5. Conclusions 

In this paper, we have investigated the classification of PolSAR images with sparse  

representation-based classifiers and have gained several achievements. We investigated the feasibility 

of using sparse representation-based methods for PolSAR image classification. It is shown that by 

using sparse representation-based classification methods, superior classification performance can be 

obtained for PolSAR images when compared with traditional Wishart model-based classifiers. 

Moreover, two novel strategies, based on majority voting and joint sparse representation with 

superpixels, respectively, were proposed to incorporate contextual information for sparse 
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representation-based PolSAR image classification. It is shown that sparse representation-based 

PolSAR image classification can benefit from incorporating contextual information with superpixels. 

When compared with the pixel-wise SRC classifier, using contextual information helps to improve the 

classification performance. Moreover, using superpixels not only makes the contextual information 

adaptive, but also helps to save on computational burden. Therefore, the proposed approaches can 

achieve favorable classification accuracy with reduced computational burden when compared to 

previous joint sparse representation-based approaches for remote sensing image classification. 

Comparative experiments with real PolSAR datasets have been conducted to verify the performance 

of the proposed approaches. Two real PolSAR images have been used: a RadarSat-2 dataset over the 

region of Flevoland and an EMISAR dataset over the area of Foulum. Experimental results 

demonstrate that the proposed approaches provide favorable classification performance when 

compared against the region-based Wishart-ML classifier, Wishart-MRF classifier, SVMCK classifier, 

pixel-wise sparse representation-based classifier and two other joint sparse representation-based 

classifiers. The proposed SRC-MV approach achieves the highest classification accuracy on both 

tested datasets (95.72% on the RadatSat-2 dataset and 98.79% on EMISAR dataset). The other 

approach proposed in this paper (JSRC-SP) also produces accurate classification result on both 

datasets. The overall accuracy is 92.89% on the RadarSat-2 dataset and 97.44% on the EMISAR 

dataset, which are noticeably higher than SRC, Wishart-ML, Wishart-MRF and SVMCK and are 

competitive compared with other two joint sparse representation-based classifiers. Further evaluation 

of the running time demonstrates that the proposed two approaches have favorable efficiency. Among 

the compared approaches, the proposed JSRC-SP is the most efficient one (112.83 s for the RadarSat-2 

dataset and 13.05 s for the EMISAR dataset). Considering its high efficiency, the JSRC-SP approach 

could be an interesting candidate approach when efficiency is an important factor. 

In consideration of the above achievements and results, we not only enrich the family of sparse 

representation-based classification methods by using superpixels for incorporating contextual 

information, but also provide interesting alternate approaches for PolSAR image classification. 

Future work will be focused on improving the performance of PolSAR image classification with 

sparse representation techniques. One possible direction is to construct a better dictionary with 

dictionary learning methods. It is expected that the classification accuracy will be further enhanced by 

exploiting the discriminant information in the training samples when learning the dictionary. Another 

line is to cope with the possible non-linear property of PolSAR features with kernel methods. Other 

strategies to exploit contextual information will also be studied. For example, it is possible to combine 

SRC with smooth-promoting models, such as the MRF model or variational methods. The key issue 

will be how to take advantage of the outputs of SRC in those models. 
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