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Abstract: Industrial wastewater (IW) discharge, which is a known point source of pollution, 

is a major water pollution source. Increasing IW discharge has imposed considerable 

pressure on regional or global water environments. It is important to estimate the IW 

distribution in grid units to improve basin-scale hydrological processes and water quality 

modeling. For the first time, we use the nighttime light imagery produced by the Defense 

Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) to estimate 

the spatial and temporal variations in the IW distribution from 1992 to 2010 in China.  

The digital number values per unit area (DNP) of each stable light image were calculated 

using nighttime light imagery and were regressed against the IW per unit area (IWP) to 

estimate the total industrial wastewater (TIW) for each province. The results indicated 

strong positive correlations between the DNP and the IWP for each province during 

different years. The fitted linear regression models were used to estimate IW discharge in 

China with reliable accuracy. The IW estimation using the satellite data was consistent 

with the statistical results. The results also revealed that the IW discharge coverage 

expanded, whereas the IW discharge intensity decreased from 1992 to 2010 in China. 
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1. Introduction 

Economic development and population growth have caused depletion of global water resources and 

serious problems for water environments [1–3]. A key challenge to sustaining future water 

environments is estimating both current and future water pollution. Population growth and increasing 

food requirements have caused increasingly serious domestic sewage and agricultural diffuse source 

pollution [4]. Moreover, rapid economic development, especially in industrial enterprises, creates more 

industrial wastewater [5]. With increasing point and non-point source pollution, the threat to the global 

water environment has become more severe [6]. Water environmental problems are particularly 

challenging in China, because China has the largest population, a fast-growing economy, a rising water 

demand, relatively scarce water resources, a dated infrastructure and inadequate governance [7]. 

Understanding the spatial characteristics and differences in wastewater discharge is important for the 

development of a water conservancy plan in China. 

Industrial wastewater (IW) has been the most important source of water pollution since the 

Industrial Revolution [8]. A country’s IW is the total volume from each province, which is typically 

determined by adding the wastewater discharge from each administrative region. Currently, IW data 

are obtained from official statistical data that are collected by different administrative divisions, i.e., 

the province, county, township, the prefecture under the provinces and the village under the townships. 

However, water environmental problems generally occur at the basin or watershed scales, which 

correspond to the best natural unit for performing water pollution research and management [9,10]. 

Because hydrological processes and the establishment of water quality occur within individual basins, 

a distributed model that is based on a raster grid or hydrological response units (HRUs) is the most 

efficient method for examining problems related to water environments [11,12]. IW statistical data  

that are based on an administrative unit cannot be applied to hydrological processes or be used in a 

water quality model on the basin scale. Therefore, the use of basin-scale statistical IW data is an 

important issue.  

Considering that population, gross domestic product (GDP) or other socio-economic factors can be 

spatialized to grid cells retrieved from remote sensing data [13,14], we intended to establish a 

relationship between the IW statistical data and the remote sensing data. The Operational Linescan 

System (OLS) is a sensor controlled by the Defense Meteorological Satellite Program (DMSP). This 

instrument can detect nocturnal artificial lighting under clear night sky conditions without moonlight 

due to its low-light imaging capability [15]. The nighttime light (NTL) data collected by the 

DMSP/OLS measure the light on the Earth’s surface, such as that generated by human settlements,  

gas flares, fires and illuminated marine vessels [16]. Previous studies have shown that the DMSP/OLS 

nighttime light imagery is a reliable tool for monitoring the spatial distribution of human settlements 

and for evaluating socioeconomic parameters [17–20]. Moreover, several studies have shown a strong 

relationship between the NTL data and important socioeconomic variables, such as urbanization 
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dynamics [16,21–24], urban population estimates [25,26], population density [27,28], economic 

activity [29], GDP [14,30], energy consumption [20,31–33] and the distribution of released 

anthropogenic heat [34]. Recently, progress has been achieved in environmental issues, such as CO2 

emissions [33], the global distribution of anthropogenic nitrogen oxide emissions [35] and the global 

water footprint [3], using DMSP/OLS nighttime light imagery. However, no study has applied the 

NTL data to examine industrial wastewater, the chemical oxygen demand (COD) or discharged 

ammonia nitrogen (NH3N) at national or global scales. 

The primary objective of this study was to evaluate whether DMSP/OLS NTL data can be used as a 

potential remote sensing data source for estimating IW, COD and NH3N discharge spatial distributions 

in China. Statistical relationships between the NTL data digital number (DN) values and the industrial 

wastewater parameters were first determined for all provinces in China. Then, we interpreted the 

differences between the estimated IW discharge determined from the nighttime light imagery and the 

official statistical data. Finally, we analyzed the spatial and temporal variations in the industrial 

wastewater discharge from 1992 to 2010 in China. 

2. Data and Methods 

Nearly twenty years of DMSP/OLS stable light data (from 1992 to 2010) were used in this study. 

The data were obtained from version 4 of the NTL data and downloaded from the website of the 

National Geophysical Data Center (NGDC) at the National Oceanic and Atmospheric Administration 

(NOAA) [36]. The version 4 data contain 3000-km swath width NTL scan lines that are divided into 

an array of grids with a 0.55-km spatial resolution, which are aggregated and composited into 30 arc 

second grids. Each grid in the composite data contains a digital number (DN) that indicates the average 

nighttime light intensity observed within each year. Because the OLS passes over each location every 

day, multiple observations may be available for any single location over the course of a year. Several 

constraints were considered to identify the best quality nighttime light data for producing the 

composite image [37]. For example, ephemeral events, such as wildfires, were discarded. The final 

dataset contained lights from urban areas and other sites with persistent lighting, including gas flares. 

Background noise in the composite image was identified and replaced with a value of zero; the final 

DN values ranged from 0 to 63 [16]. Previous studies have shown that there was no substantial 

difference among the various satellite datasets in different years [34]. Therefore, it is feasible for the 

data from different nighttime light detection satellites to be applied in this study.  

A series of datasets were utilized to analyze the relationship between the light DN values and the 

IW discharge in China. The amount of discharged industrial wastewater and the gross industrial 

production (GIP) data for each province from 1992 to 2010 were obtained from the China Statistical 

Yearbooks from 1993 to 2011 [38]. These yearbooks were compiled by the National Bureau of 

Statistics of China and contain detailed statistics on all societal aspects in China, including the economy, 

population and resources. The statistics were separately compiled for each province and district. 

To obtain the correct area for analyzing the statistical relationship between the NTL and IW 

datasets, the ordinary spatial reference of the geographic coordinate system that was related to the 

WGS 84 datum was transformed to the Albers equal-area projection in China. Moreover, the spatial 

resolution of the NTL data was resampled to a 1 km × 1 km area. Vector data for the Chinese 
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provincial boundaries were also transformed to an equal-area projection. The provincial boundary map 

was overlaid on the nighttime light images, and the DN values per unit area (DNP) for all provinces 

were calculated for each of the 19 years from 1992 to 2010. The total IW (TIW) discharge for each 

province divided by the area of the province represents the amount of discharged IW per unit area 

(IWP). Then, statistical relationships between the IWP and the DNP were analyzed. The relative 

difference (RD) between the predicted TIW (PTIW) and the statistical TIW (STIW) was calculated as 

follows to analyze the accuracy of the fitted models: 

RD = (PTIW − STIW)/STIW (1)

where PTIW is the predicted total IW from the nighttime light image and STIW is the statistical total 

IW. For the COD and NH3N discharge calculation and analysis, similar methods were adopted.  

The acronyms of the variables involved in the calculations and analyses are shown in Table 1. 

Table 1. Acronyms of the variables involved in the calculations and analyses. COD, 

chemical oxygen demand; NTL, nighttime light. 

Acronym TIW PTIW STIW IWP DNP TDN 

Full 

Name 

Total industrial 

water 

discharge 

Predicted TIW 

from nighttime 

light image 

Statistical TIW by 

National Bureau of 

Statistics of China 

Industrial wastewater 

discharge per unit 

area 

Digital number 

per unit area 

Total nighttime 

light digital 

number values 

Acronym GIP IWCOD IWNH3N IWCODP IWNH3NP  

Full 

Name 

Gross 

Industrial 

Production 

Quantity of 

COD in 

industrial 

wastewater 

Quantity of 

ammonia nitrogen 

in industrial 

wastewater 

COD discharge 

amount per unit area 

or unit NTL light 

values 

Ammonia 

nitrogen discharge 

amount per unit 

area 

 

3. Results and Discussion 

3.1. Relationship and Fitted Model between the DMSP/OLS Data and the Industrial  

Wastewater Discharge 

The industrial wastewater discharge per unit area (IWP) from 1992 to 2010 was calculated by 

dividing the TIW by the area of each province in China. The NTL digital number values per unit area 

(DNP) for all of the provinces were calculated using the ArcGIS zonal statistics tool. The relationship 

between the IWP and the DNP for each year was analyzed. Moreover, a linear model was fitted to the 

data and used to estimate the industrial wastewater discharge from the NTL light imagery data. 

The primary model criterion is that when the digital number (DN) of the nighttime image increases, 

the discharged IW should also increase. Therefore, the IW discharge was expected to increase with an 

increasing DN. Based on this assumption, different regression models, including the exponential, 

power function and quadratic polynomial models, were used. In addition, a statistical hypothesis test 

was conducted. A comparison among the different model results suggested that the linear model, i.e.,  

y = kx + b, performed the best. Here, k is the slope and b is the intercept of the linear function. 

Figure 1a–c depicts the linear relationships between the DNP and the IWP, the IWCODP and the 

IWNH3NP for 31 provinces in 2010, respectively. A high correlation was observed between the DNP 

and the IWP (Figure 1a) and between the DNP and the IWNH3NP (Figure 1c); the corresponding R2 
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values were 0.798 and 0.756, respectively. Although the correlation between the DNP and the 

IWCODP was the weakest among the three relationships (Figure 1b) with an R2 value of 0.512, all of 

the correlations were significant at the 0.01 level. These results of quantitative analysis between DNP 

and IWP are consistence with the current situation in China, because industry is mainly distributed in 

urban regions with higher NTL DN values. 

Furthermore, the model coefficients and the fitted model parameters for the relationships between 

the DNP and the IWP, IWCODP and IWNH3NP for all the provinces were calculated for each year. 

Table 2 shows the Pearson correlation coefficient (r), the slope (k) and the determination coefficient of 

the linear regression models that were constructed between the DNP and the IWP, IWCODP and 

IWNH3NP for 31 provinces from 1992 to 2010. 

Significant positive correlations between the DNP and the IWP, IWCODP and IWNH3NP are 

shown in Table 2. All of the Pearson correlation coefficients for the relationship between the DNP and 

the IWP exceeded 0.85, while the correlation coefficients range from 0.716 to 0.849 for the 

relationship between the DNP and the IWCODP in different years. Although the correlation 

coefficients between the DNP and the IWNH3NP were relatively low, i.e., ranging from 0.627 to 

0.870, all of the values exhibited a significant correlation at the 0.01 level according to a two-tailed 

test. Generally, the linear relationships between the DNP and the IWP, the IWCODP and the 

IWNH3NP were significant in each year. 

Figure 1. (a) The relationship between the DNP and the IWP (for 31 provinces); (b) the 

relationship between the DNP and the IWCODP (for 31 provinces); (c) the relationship 

between the DNP and the IWNH3NP (for 31 provinces) in 2010. 

 

Based on the previous assumption and the analyses between the DNP and the IW discharge 

variables, the slope and determination coefficients of the linear regression functions were obtained for 

each year (Table 2). These parameters and functions can be used to estimate the IW spatial distribution 

from the NTL light data in China. 
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Table 2. The Pearson correlation coefficient (r), linear regression model slope (k) 

and determination coefficient (R2) between the DNP and the IWP (unit: 104 t/km2), 

the IWCODP (unit: t/km2) and the IWNH3NP (unit: kg/km2) for 31 provinces from 1992 

to 2010. 

Year 

r 

between 

the DNP 

and the 

IWP 

k of the 

IWP 

Regression 

Model 

R2 of the 

IWP 

Regression 

Model 

r between 

the DNP 

and the 

IWCODP 

k of the 

IWCODP 

Regression 

Model 

R2 of the 

IWCODP 

Regression 

Model 

r between 

the DNP 

and the 

IWNH3NP 

k of the 

IWNH3NP 

Regression 

Model 

R2 of the 

IWNH3NP 

Regression 

Model 

1992 0.865 ** 0.807 0.747 - - - - - - 

1993 0.856 ** 0.732 0.732 - - - - - - 

1994 0.883 ** 0.529 0.779 - - - - - - 

1995 0.873 ** 0.510 0.762 - - - - - - 

1996 0.852 ** 0.535 0.726 - - - - - - 

1997 0.866 ** 0.415 0.750 - - - - - - 

1998 0.869 ** 0.380 0.754 - - - - - - 

1999 0.868 ** 0.354 0.753 - - - - - - 

2000 0.887 ** 0.297 0.786 - - - - - - 

2001 0.879 ** 0.277 0.772 - - - - - - 

2002 0.891 ** 0.242 0.793 - - - - - - 

2003 0.914 ** 0.260 0.835 0.849 ** 0.195 0.721 0.774 ** 15.99 0.599 

2004 0.914 ** 0.217 0.835 0.819 ** 0.153 0.670 0.675 ** 11.10 0.455 

2005 0.926 ** 0.199 0.857 0.793 ** 0.157 0.629 0.627 ** 11.76 0.393 

2006 0.913 ** 0.180 0.833 0.790 ** 0.134 0.623 0.772 ** 11.98 0.595 

2007 0.909 ** 0.177 0.826 0.789 ** 0.126 0.622 0.815 ** 11.45 0.664 

2008 0.908 ** 0.158 0.819 0.763 ** 0.103 0.565 0.835 ** 9.981 0.679 

2009 0.873 ** 0.142 0.761 0.753 ** 0.098 0.567 0.809 ** 7.693 0.654 

2010 0.894 ** 0.101 0.798 0.716 ** 0.062 0.512 0.870 ** 8.750 0.756 
** Represents that the correlation is significant at the 0.01 level (two-tailed); “-” indicates no data; n = 31. 

3.2. Differences between the TIW Predicted from the Nighttime Lights Data and the Statistical TIW 

The IWP was estimated using the linear regression model (as Table 2 shown) for each grid in 

China. The total IW (TIW) for each province was calculated as the total of the values from all of the 

grids within each province using the ArcGIS zonal statistics tool. Then, the predicted TIW (PTIW) was 

compared with the official statistical TIW (STIW) for all of the provinces. 

Table 3 shows the differences between the PTIW estimated from the nighttime lights data and the 

STIW for 31 provinces in 2010. As shown in Table 3, the linear model results were reasonable in most 

provinces, whereas significant errors occurred in specific areas. The relative difference ranged from  

0 to 0.5 in 16 of the 31 provinces, whereas the model exhibited significant errors in five provinces (i.e., 

the difference rate exceeded one). Despite these errors, the DMSP/OLS data provided useful estimates 

of the IW, IWCOD and IWNH3N spatial distributions in China, exhibiting a total error of −8.2%. 

Theoretically, industrial wastewater discharge is closely correlated with industrial development and  

the DMSP/OLS NTL data. The large relative difference may primarily be related to the significant 

differences in economic development in different areas. 
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Previous studies have shown that the DMSP/OLS data are closely correlated with the social and 

economic activities, such as the GDP and the population distribution [14,19]. For regions in which 

economic development was accompanied by industrial wastewater discharge, Table 3 demonstrates 

that the linear regression model results are generally credible. However, for regions in which economic 

development did not significantly rely on industrial activities, a significant estimation error occurred in 

the model. For example, the estimates were more accurate for the provinces with a higher percentage 

of STIW in China, such as Shandong, Henan, Guangdong and Jiangsu. The areas in which the model 

results overestimated the actual statistical data were typically the provinces that exhibited primary and 

tertiary industrial growth; these activities are typically related to less industrial wastewater being 

discharged in the process of economic development. These areas included Xizang, Beijing, Hainan, 

Qinghai, Heilongjiang, Yunnan and Jilin. Although the IW discharge was overestimated, the 

percentages of the TIW in China are very low in these provinces. Moreover, the error was not obvious 

in the national IW discharge amount. The model underestimated the results for the developing areas in 

which industry is important and the production efficiency is relatively low, such as in Guangxi, Hunan 

and Fujian provinces. In these regions, the IW discharge per unit gross industrial production (GIP)  

was higher. 

Consequently, regional differences in industrial productivity for economic development may be a 

major reason for the model errors. Industrial wastewater discharge is closely correlated with industry 

development and the DN values obtained from the DMSP/OLS NTL data. However, the relationship 

between the industrial wastewater discharge efficiency and the NTL DN value is complex.  

Table 3. Difference rate between the PTIW and the STIW for 31 provinces in China in 2010. 

Regions 

The PTIW from 

Nighttime Light 

Images (104 t/year) 

STIW 

(104 t/year) 

Difference 

Rate 

Percentage 

of the STIW 

in China 

(%) 

Gross Industrial 

Production 

(GIP) 

(108 Ұ) 

The STIW per 

108 Yuan of GIP 

(104 t/108 Ұ) 

Jiangsu 193,209 263,760 −0.27 11.1 21,753.93 12.12 

Zhejiang 122,004 217,426 −0.44 9.2 14,297.93 15.21 

Shandong 209,951 208,257 0.01 8.8 21,238.49 9.81 

Guangdong 169,951 187,031 −0.09 7.9 23,014.53 8.13 

Guangxi 57,405 165,211 −0.65 7.0 4511.68 36.62 

Henan 137,566 150,406 −0.09 6.3 13,226.38 11.37 

Fujian 61,161 124,168 −0.51 5.2 7522.83 16.51 

Hebei 161,895 114,232 0.42 4.8 10,707.68 10.67 

Hunan 45,013 95,605 −0.53 4.0 7343.19 13.02 

Hubei 59,487 94,593 −0.37 4.0 7767.24 12.18 

Sichuan 59,207 93,444 −0.37 3.9 8672.18 10.78 

Jiangxi 40,408 72,526 −0.44 3.1 5122.88 14.16 

Liaoning 101,177 71,521 0.41 3.0 9976.82 7.17 

Anhui 83,145 70,971 0.17 3.0 6436.62 11.03 

Shanxi 92,877 49,881 0.86 2.1 5234.00 9.53 

Shaanxi 77,147 45,487 0.70 1.9 5446.10 8.35 

Chongqing 23,668 45,180 −0.48 1.9 4359.12 10.36 
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Table 3. Cont. 

Regions 

The PTIW from 

Nighttime Light 

Images (104 t/year) 

STIW 

(104 t/year) 

Difference 

Rate 

Percentage 

of the STIW 

in China 

(%) 

Gross industrial 

Production 

(GIP) 

(108 Ұ) 

The STIW per 

108 Yuan of GIP 

(104 t/108 Ұ) 

Inner 

Mongolia 
51,152 39,536 0.29 1.7 6367.69 6.21 

Heilongjiang 128,012 38,921 2.29 1.6 5204.11 7.48 

Jilin 73,122 38,656 0.89 1.6 4506.31 8.58 

Shanghai 29,966 36,696 −0.18 1.5 7218.32 5.08 

Yunnan 59,218 30,926 0.91 1.3 3223.49 9.59 

Xinjiang 30,440 25,413 0.20 1.1 2592.15 9.80 

Ningxia 15,764 21,977 −0.28 0.9 827.91 26.55 

Tianjin 33,444 19,680 0.70 0.8 4840.23 4.07 

Gansu 24,666 15,352 0.61 0.6 1984.97 7.73 

Guizhou 24,711 14,130 0.75 0.6 1800.06 7.85 

Qinghai −9,616 9031 −2.06 0.4 744.63 12.13 

Beijing 36,141 8198 3.41 0.3 3388.38 2.42 

Hainan 19,494 5782 2.37 0.2 571.00 10.13 

Xizang −32,445 736 −45.08 0.0 163.92 4.49 

China 2,179,338 2,374,733 −0.082 100.0 220,064.77 10.79 

3.3. Spatial and Temporal Variations in the Chinese IW Discharge Distribution 

The spatial distribution of the grid-scale IW discharge from 1992 to 2010 in China is shown in 

Figure 2. The annual evolution of the IW discharge was comparable to economic development and 

urban expansion in China.  

The IW discharge was spatially concentrated in eastern, northeastern and southeastern China, 

especially in the Jing-Jin-Ji urban circle, the Yangtze River Delta, the Pearl River Delta and other 

coastal cities of China. The results show that the inland cities appear as spots on the IW distribution 

map, whereas the eastern portion of China and the coastal cities exhibit an intermittent distribution 

pattern (Figure 2). 

The increasing IW discharge area and decreasing IW discharge intensity (IW discharge quantity  

per km2) trends are clearly depicted in Figure 2. The IW distribution in 1992 (Figure 2a) suggests that 

the IW discharge area was not extensive, except in economically developed areas, in which the 

discharge intensity was high. Several years later, the IW discharge region expanded beyond the 

developed areas. A significant enhancement in the IW discharge in eastern China is shown in the IW 

discharge distribution map in 1998 (Figure 2b). The trend in the IW distribution in 2004 (Figure 2c) 

and 2010 (Figure 2d) in China suggests that the IW discharge region continued to expand. For the 

IWCOD and the IWNH3N distributions, the spatial patterns and the temporal trends were consistent 

with the IW distribution. The extent of the distribution clearly broadened from 2003 (Figure 2e,g) to 

2010 (Figure 2f,h).  

The temporal changes in the IW discharge intensity exhibit a good trend. Figure 2 shows that the 

trend in the IW distribution in China suggests that the IW discharge intensity gradually decreased, 
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although the IW discharge region continued to expand. This trend is also shown in Table 2 in which 

the slope of the linear regression model decreases from 1992 to 2010. A decreasing slope indicates that 

the IW discharge intensity decreased even though the light DN values remained constant each year. 

The highest predicted IW discharge intensity decreased from 50.071 × 104 t·km−2 in 1992 to  

6.332 × 104 t·km−2 in 2010. The highest IWCOD discharge intensity decreased from 12.815 t·km−2 in 

2003 to 4.429 t·km−2 in 2010. Moreover, the highest IWNH3N discharge intensity also decreased from 

1057.05 kg·km−2 in 2003 to 562.79 kg·km−2 in 2010. According to these findings, the total IW 

discharge increased in conjunction with economic growth. However, the IW discharge intensity 

decreased due to economic development. 

Figure 2. Estimated industrial wastewater discharge distribution in China. (a–d) The predicted 

IWP (104 t/km2) distribution in 1992, 1998, 2004 and 2010, respectively; (e–f) the 

predicted IWCODP (t/km2) distribution in 2003 and 2010, respectively; and (g–h) the 

predicted IWNH3NP (kg/km) distribution in 2003 and 2010, respectively. 

 

 

 
 

(b) (a) 

(d) (c) 

(f)(e) 
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Figure 2. Cont. 

 

Figure 3 shows the ratio of the TIW to the total DN (TDN) and the TIW to the GIP from 1992 to 

2010 in China. An obvious decreasing trend was observed. The IW discharge quantity per light DN 

value decreased gradually over the 20-year period. The trend was similar to the variations in the GIP to 

the TIW ratio. Similarly, the IW discharge per unit GIP decreased in conjunction with increased 

production efficiency in China. 

Figure 3. Temporal trends in the TIW to the TDN ratio and the TIW to the GIP ratio from 

1992 to 2010 in China. 

 

4. Conclusions 

This study highlighted the possibility of using the Defense Meteorological Satellite Program’s 

Operational Linescan System (DMSP/OLS) nighttime light (NTL) imagery to retrieve both spatial and 

temporal variations in the industrial wastewater (IW) distribution from 1992 to 2010 in China.  

We found strong positive correlations between the digital number values per unit area (DNP) and the 

IW per unit area (IWP) for each province in different years. The Pearson correlation coefficients (r) 

between the DNP and the IWP are greater than 0.85, while the r ranges from 0.716 to 0.849 for the 

relationship between DNP and the chemical oxygen demand discharge amount per unit area 

(IWCODP). Moreover, the r between DNP and the ammonia nitrogen discharge amount per unit  

area (IWNH3NP) ranges from 0.627 to 0.870, and all of the values show a significant correlation at  

the 0.01 level. 

Based on the fitted linear model between DNP and IWP, the DMSP/OLS NTL data provided a 

dependable estimation of the IW discharge with a total error of −8.2% in 2010. The estimation was 

0

100

200

300

0

0.1

0.2

0.3

0.4

1992 1995 1998 2001 2004 2007 2010

T
IW

/G
IP

 (
10

4 t
/1

08 y
ua

n)

T
IW

/T
D

N
 (

10
4 t

/D
N

 
va

lu
e)

Year

TIW/TDN
TIW/GIP

(h)(g) 



Remote Sens. 2014, 6 7576 

 

 

more accurate for the provinces with a higher percentage of IW discharge in China, such as Shandong, 

Henan, Guangdong, Jiangsu, etc. Fitted linear regression models could be used to estimate the IWP, 

the IWCODP and the IWNH3NP from 1992 to 2010 in China with reliable accuracy. The amount of 

IW estimated using the satellite data was consistent with the statistical results. 

The industrial wastewater discharge distribution maps for individual grid units, which were 

produced using the satellite data, were significantly more credible and detailed compared to the 

statistical maps. The IW discharge was spatially concentrated in eastern, northeastern and southeastern 

China, especially in the Jing-Jin-Ji urban circle, the Yangtze River Delta, the Pearl River Delta and 

other coastal developed cities, while the IW discharge is lower in undeveloped areas, such as 

northwestern and southwestern provinces in China. The grid-scale industrial wastewater discharge data 

retrieved from the NTL data can be used in large-scale basin water quality models. The results also 

revealed that the IW discharge coverage expanded while the IW discharge intensity decreased from 

1992 to 2010 in China. The maximum of IWP changed from 50.071 × 104 t·km−2 in 1992 to  

6.332 × 104 t·km−2 in 2010. The maximum of IWCODP decreased from 12.815 t·km−2 in 2003 to  

4.429 t·km−2 in 2010, and the maximum of IWNH3NP also decreased from 1,057.05 kg·km−2 in 2003 

to 562.79 kg·km−2 in 2010. 

Future endeavors should improve the prediction accuracy by considering other factors that affect 

the IW discharge in the fitted regression models. The use of satellite imagery by integrating industrial 

wastewater data, domestic sewage and agricultural non-point source pollution is another challenge for 

water environment pollution. 
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