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Abstract: Stable nighttime light (NTL) data, derived from the Defense Meteorological 

Satellite Program’s Operational Linescan System (DMSP/OLS), are typically considered a 

proxy measure of the dynamics of human settlements and have been extensively used to 

quantitative estimates of demographic variables, economic activity, and land-use change in 

previous studies at both regional and global scales. The utility of DMSP data for 

characterizing spatio-temporal trends in urban development at a local scale, however, has 

received less attention. In this study, we utilize a time series of DMSP data to examine the 

spatio-temporal characteristics of urban development in 285 Chinese cities from 1992 to 

2009, at both the local and national levels. We compare linear models and piecewise linear 

models to identify the turning points of nighttime lights and calculate the trends in 

nighttime light growth at the pixel level. An unsupervised classification is applied to 

identify the patterns in the nighttime light time series quantitatively. Our results indicate 

that nighttime light brightness in most areas of China exhibit a positive, multi-stage process 

over the last two decades; however, the average trends in nighttime light growth differ 

significantly. Through the piecewise linear model, we identify the saturation of nighttime 

light brightness in the urban center and significant increases in suburban areas. The maps 

of turning points indicate the greater the distance to the city center or sub-center, the later 

the turning point occurs. Six patterns derived from the classification illustrate the various 

characteristics of the nighttime light time series from the local to the national level. The 
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results portray spatially explicit patterns and conspicuous temporal trends of urbanization 

dynamics for individual Chinese cities from 1992 to 2009. 

Keywords: urbanization dynamics; night light; DMSP/OLS; piecewise linear model; 

turning point; China 

 

1. Introduction 

Over the past few decades, there has been increasing interest among policy makers and researchers 

in the spatio-temporal changes of urban areas. The world is experiencing rapid urbanization, 

accompanied by economic and population growth. The share of the world’s urban population has 

grown to over one-half, and this urban population is projected to grow by more than two billion people 

by 2050 [1]. The effects of urbanization, such as increasing human activity and impervious surfaces, 

may contribute to water and air contamination and climate change [2,3]. In addition, vegetation 

deterioration and biodiversity reduction are usually associated with the land-cover changes that 

accompany urbanization [4–6]. 

Because urbanization is associated with many crucial issues, various data and methods have been 

applied to investigate the spatio-temporal dynamics of urbanization. Socio-economic data, such as 

Gross Domestic Product (GDP) and demographics, are most frequently utilized to assess urbanization; 

however, the shortcomings of these indicators include their inconsistency over time, their lacking of 

distribution information, and their costliness to survey. These problem are worse in many developing 

countries, especially war-torn countries, where standard statistical sources are difficult to collect or 

unavailable. Consequently, developing alternatives for studying urbanization presents an urgent 

challenge for the scientific community. 

Satellite sensors provide a convenient way to inspect land-use changes. However, monitoring 

urbanization dynamics using remote sensing is difficult due to the spectrally diverse land cover types 

present in urban areas [7]. The nighttime light images acquired from the Defense Meteorological 

Satellite Program’s Operational Linescan System (DMSP/OLS) provide a unique proxy for monitoring 

urbanization dynamics. The DMSP/OLS dates to the 1970s [8] but was not widely noticed until 1992 

when the images became available in digital format. Since then, DMSP/OLS data have been utilized in 

numerous studies of urbanization that examine maps of city lights [9], urban areas [10,11], greenhouse 

gases [12], economic activity [13,14], population [15,16], electric power consumption [17], light 

pollution [18], gas flares [19], and in-use steel stock [20]. 

Most previous studies evaluate the correlation between nighttime light and urbanization indicators 

at various levels; however, only a few studies have investigated the multi-temporal characteristics of 

urban dynamics [21–24]. The development of an urban area is usually a multi-stage process during 

which a rural area changes into an urban area and suburbs develop around the downtown area. Each 

stage involves its own pattern of land-use change, public infrastructure, and economic and population 

growth. Identifying these patterns could improve our understanding of the dynamics of urbanization. 

The correlation between nighttime light and urbanization suggests that long-term DMSP/OLS data 
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could be employed to identify the spatio-temporal pattern of urbanization, as well as to detect when the 

urbanization process accelerated, slowed or reached equilibrium. 

The objectives of this study are to identify the spatio-temporal characteristics of urbanization and to 

quantify these trends and patterns of urbanization in 285 Chinese cities by analyzing DMSP data at the 

pixel level. First, we estimate linear and piecewise regressions on multi-temporal DMSP/OLS data for 

Chinese cities from 1992 to 2009 and determine the best-fitting model for each pixel. Second, we 

employ an unsupervised classification method for the regressionn results to identify patterns within the 

nighttime light data. Finally, we analyze the regression and classification results for nighttime light at 

the local and national levels to reveal the characteristics of urbanization for these 285 Chinese cities. 

Figure 1. Temporal-spatial changes in DMSP/OLS lit areas of Chinese cities located in 

Beijing-Tianjin region (top row, (a–c)), Yangtze River Delta (second row, (d–f)) and 

Pearl River Delta (third row, (g–i))) in 1992 (left column), 2000 (center column), and 

2009 (right column). The DN value of Night light brightness range from 12 to 63 is 

interpolated from green to red. Administrative boundaries are drawn by solid gray lines. 
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2. Data and Methods 

2.1. Multi-Temporal DMSP/OLS NTL Dataset 

The DMSP-OLS nighttime light time series data were obtained from the website of the National 

Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric Administration (NOAA), 

which initially collected global cloud cover and cloud top temperature data. The satellites sensors have 

a unique capability [25,26] to detect low-light moonlit clouds. In addition, the satellites are also 

sensitive to light emitted from cities, gas flares, fires, and fishing boats. An archive of cloud-free NTL 

data exists, from which the annual time series is produced from all available DSMP-OLS smooth 

resolution data since 1992. 

The version 4 time series of stable light span from −180 to 180 degrees longitude and −65 to 

75 degrees latitude with a spatial resolution of 30 arc-seconds. The images are composed of the annual 

average brightness level digital number (DN), which ranges from 0 to 63 with sunlit, glare and moonlit 

data excluded. There are five sensors collecting NTL data from 1992 to 2009: F10 (1992–1994), 

F12 (1994–1999), F14 (1997–2003), F15 (2000–2007), and F16 (2004–2009). Due to differences in 

satellite orbits and sensor degradation, measurements of NTL brightness could differ significantly even 

when the ground has not changed [22]. To minimize sensor errors, we estimate a second order 

regression model [19] to intercalibrate the yearly NTL data to match the F12 1999 data range. 

There are two separate annual composites of different sensors for most years, and we utilize the  

best-fitting composite for each year: 1992–1994 (F10), 1995–1997 (F12), 1998 (F14), 1999 (F12), 

2000–2002 (F15), 2003 (F14), 2004 (F15), 2005 (F16), 2006 (F15), and 2007–2009 (F16). We exclude 

areas with DN < 12 in 2009, which are determined to be undeveloped areas by comparing them with 

Landsat images [23,26]. Furthermore, we extract NTL data for 285 Chinese cities utilizing their 

administrative boundaries in the same geo-reference system (Figure 1). 

2.2. Regression Analysis of NTL Data 

Piecewise, or segmented, regression is widely used in trend analysis to monitor the turning points in 

a time series [27,28]. Piecewise linear model, which is good at change detection compare to linear 

model, is one kind of piecewise regression model that the relations in the intervals are obtained by 

linear regression. To detect the most significant change in nighttime lights, we employ unweighted 

sliding-average smooth data with a smooth width of 3 years to reduce the noise produced by data 

acquisition and preprocessing. Then, we estimate a piecewise linear regression (Figure 2) to fit NTL 

time series at pixel level with two line segments connected at the turning point:  
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where α is the turning point, β0 is the interception, β1 is the slope of left line segment, β2 is the 

difference in slope, and β1 + β2 is the slope of right line segment. We also estimate a linear regression 

(Figure 2) to fit the NTL time series at pixel level for comparative analysis: 

0 1( ) l lf x xβ β= +  (2)

where βl0 is the interception, βl1 is the slope. 
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Figure 2. Schematic diagram of models for depict temporal variation of DMSP/OLS 

nighttime light brightness. Linear model (red lines): βl0 = interception, βl1 = slope. 

Piecewise linear model (blue lines): α = turning point, β0 = interception, β1 = left slope,  

β2 = difference in slope. 

 

Figure 3. Typical samples of trends of stable nighttime lights at pixel level from 1992 to 

2009. Two regression model are fitted: linear model (Red) and piecewise linear model 

(Blue). Yellow square represent the turning points of piecewise linear model. The p-value, 

davies-test, AICc and t-test are calculated to identify best-fitting model for each pixel. Six 

samples are identified as piecewise linear model (a–f), while three samples are identified as 

linear model (g–i). 
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It is noteworthy that the turning point is not prevailing for all urban development processes. Some 

regions display increasing urbanization with a constant growth rate or no significant alterations over 

time. Therefore, we compare the linear models with piecewise linear models to identify the best-fitting 

model. A Davies test [29] identifies the constantly developing regions by examining where there are 

no conspicuous changes in urban dynamics. However, applying the Davies test on unchanged regions 

is problematic. Although the area displays no significant alteration, errors from satellite sensors and 

data preprocessing may produce a false turning point. Therefore, Welch’s t-test is employed to 

recognize unchanged regions by determining whether two sets of DN values divided by the turning 

point differ significantly. In addition, the statistical significance of the linear model is tested using the 

t-statistic. All significance tests are performed under a 95% confidence level. We also employ the 

corrected Akaike information criterion (AICc) to quantify the information loss in both piecewise linear 

model and linear model. The model with the minimum AICc is considered the best fit. Through the 

Davies test, Welch’s t-test, and AICc, we identify best-fitting model for each pixel. Figure 3 displays 

the typical trends in the NTL data and regression results. According to our strategy Figure 3a–f are 

identified as piecewise linear model, while Figure 3g–i are identified as linear model. Although NTL 

data are available from 1992 to 2009, turning points are identified from 1994 to 2007 to insure 

statistical significance on both sides of the turning point. 

2.3. Classification and Trend Analysis of NTL Data 

Although the regression analysis recognizes the turning point of urbanization at the pixel level, one 

cannot distinguish among the urbanization patterns of cities or city regions from these regression 

results. Therefore, we follow an unsupervised classification procedure to recognize the patterns of 

urbanization and statistically quantify the long-term average trend of NTL in Chinese cities.  

The ISODATA clustering algorithm [30] identifies the classes by iteratively computing the clusters 

center through the minimum Euclidean distance. We transform the β1, β2 and DN values for 1992 into 

values that range from 0 to 1 to input into the ISODATA because these three variables potentially 

capture the long-term trend of NTL from 1992 to 2009. First, we set the maximum number of clusters 

to a high value, 10, to minimize information loss. Then, according to the dendrogram of attribute 

distances among classes and an empirical understanding of the data, we discard noisy classes. Of the 

10, 6 classes remain. Based on the cluster results, maximum likelihood classification was utilized to 

assign each pixel to one of the 6 classes. 

Nighttime light brightness may vary with urban development. To identify trends in urbanization, we 

obtain the average trend in nighttime light growth of an urban area by the sum of the slope of lit pixels 

divided by the total number of lit pixels located in the urban area. For comparison, we also calculate 

this variation at the national level. The slope of lit pixels is acquired from the best-fitting model. 

3. Results and Discussion 

3.1. Long-Term Trends at the National Level 

Previous studies indicate that China has been experiencing rapid urbanization since the 1990s [23,31]. 

Figure 4 presents the summary of statistical significance of long-term trends in NTL for all 
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285 Chinese cities for the period 1992–2009. As displayed in Figure 4, significant increases in 

nighttime light brightness are identified in 88% of pixels and turning points are identified in 70% of 

them by the piecewise linear model. Significantly decreased night light brightness was recognized in 

only 2% of pixels, including 1% identified by the linear model and 1% identified by the piecewise 

linear model. Most insignificant areas are identified by the linear model (6% of pixels increased and 

3% decreased) rather than the piecewise linear model because night light brightness in these areas 

generally exhibited gentle slopes (−0.5 to 0.5) without significant changes. These results imply that 

most areas in China experienced increasing urbanization over the last two decades, and the existence 

of turning points indicates the multi-stage characteristic of urbanization. In the following subsections, 

we first examine the spatio-temporal distribution of turning points, and then analyze the patterns and 

trends of urban dynamics based on the best-fitting models of multi-temporal NTL data. 

Figure 4. Statistical distributions of linear (red) and piecewise linear (blue) model for NTL 

data time series at pixel level. The significance of trend is tested under 95%  

confidence interval. 

 

3.2. Spatio-Temporal Distribution of Turning Points 

Empirically, turning points in urbanization occur when population density and economic activity 

reach critical points. For example, villages or towns may change into urban areas when industry is 

established as occurred in Shenzheng. Some regions develop faster than neighboring regions do, and 

the speed of urbanization slows in the urbanized areas. To recognize the temporal trend and spatial 

distribution of turning points, we mapped the turning point, left slope and right slope of the piecewise 

linear model and slope of the linear model respectively for 285 Chinese cities. Figure 5 illustrates these 

parameters for three major Chinese cities: Beijing, Shanghai and Guangzhou. As indicated in Figure 5, 

nearly all city centers are identified by the linear model. Generally, these areas were characterized by 

intense development, high population density and economic activity before 1992; therefore, the 

nighttime light brightness of these areas remained high and suggested no significant changes from 

1992 to 2009. There exists a ring around the center in many cities that follows the piecewise linear 

model. Turning points usually occur earlier in the inner ring and later in the outer ring of cities, such as 

Beijing (Figure 5a) and Shanghai (Figure 5b). However, some cities exhibit no explicit structure, 

including Guangzhou (Figure 5c). By examining the piecewise slopes, we recognize that the nighttime 

light in these areas first develops quickly (the red areas in Figure 5d–f) then reach a saturation point 

when nighttime light brightness suggest no significant changes (the blue and yellow areas in Figure 5g–i). 
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In the outskirts of cities, turning points occur in two different patterns. First, in the ring zones around 

sub-centers, such as those surrounding the city center, nighttime light brightness stabilized after the 

turning point. Second, the remaining suburban areas first suggest no statistically significant trend; 

however, after the turning point, they exhibit remarkable increases in light brightness. As depicted in 

Figure 5a–c, the years in which turning points occur are associated with the distance to the city center. 

Generally, the greater the distance to the city center or sub-center, the later the turning point occurs. 

Moreover, the slopes of the linear models (Figure 5j–l) first increase and then decrease as the distance 

to the city center or sub-center increases.  

These results of nighttime lights may indicate the spatio-temporal distribution of turning points in 

urban development. According to the maps of piecewise slopes (Figure 5d–i), the spatial distribution 

of the two major types of turning points, deceleration and acceleration, could be identified. The former 

usually occurs in the city center and sub-center, while the latter usually occurs in suburban areas. The 

maps of turning points (Figure 5a–c) allow us to detect the spatial trends of the turning points. In 

addition, the maps of linear slopes (Figure 5j–l) depict nighttime light in areas without turning points. 

It is quite noticeable that the decrease in brightness in Fangshan (light blue areas in Figure 5j) may be 

related to gas flares reduction. Sinopec Beijing Yanshan Company upgraded the recycling systems and 

shut down 8 gas flares due to environmental concerns and energy efficiency during 1996 to 2004. The 

nighttime light brightness in Fangshan first sharply decreased then increased in recent years  

(Figure 5a,d,g) reflected this event. A previous study [32] show the decreases in brightness occurring 

in economically developed regions may associate with renovation of lighting system. Shanghai 

changed the street lighting type from incandescent lamp to high pressure sodium lamp, and upgraded 

the lighting system for energy conservation reasons since 2005. Street lights are dimed by intelligent 

control system after 11 p.m. These facts may lead to the noticeable and extensive decrease in 

brightness after the turning points in Shanghai (Figure 5h). 

3.3. Patterns of Nighttime Light Time Series 

Previous subsection provides an intuitional way to observe the urban dynamics; however, 

statistically quantify the patterns may enable us to better understand the differentiation of urbanization 

between Chinese cities. To analyze the patterns of nighttime light for 285 Chinese cities, we obtain  

6 classes following an unsupervised classification procedure. Three classes exhibit convex shapes and 

three exhibit concave long-term trend shapes for nighttime light brightness. Therefore, we define the 

convex classes as saturated patterns A to C because they saturated after the turning points, and define 

the concave classes as accelerated patterns D to F because they accelerated after the turning points. 

Generally, pattern A areas were already brightly lit in 1992, and reached saturation later with gently 

increasing slopes (Figure 3a). Pattern B areas rapidly reached saturation from lower light levels in 

1992 (Figure 3b). Pattern C areas exhibited even lower light levels in 1992 and reached saturation with 

sharply increase (Figure 3c). Pattern D areas first exhibit the same brightness as pattern C, but light 

brightness did not increase until the turning point (Figure 3d). Areas characterized by patterns E and F 

emitted dim light in 1992; however, after their turning points, brightness in pattern E increased sharply 

(Figure 3e) but increased at a very low rate in pattern F (Figure 3f). Figure A1 shows the spatial 

distribution of six patterns across 285 Chinese cities. 
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Figure 5. Spatial distribution of parameters of piecewise linear model and linear model in 

Beijing (left column), Shanghai (center column) and Guangzhou (right column): turning 

points (top row, (a–c)), left slope (second row, (d–f)) and right slope (third row, (g–i)) of 

piecewise linear model and slope of linear model (fourth row, (j–l)). In (d) to (l) yellow 

color is adjusted to represents parameter values of zero. 

 

To inspect the temporal variation in nighttime lights patterns, we partition each pattern by the year 

in which turning points occur (Figure 6). As indicated in Figure 6a, the long-term trend of total 

frequency of turning points at the national level reach a local peak in 1996 and global peak in 2000, 

which implies that 1996 and 2000 are pivotal years in Chinese urbanization. The two major patterns 
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indicate reverse trends (Figure 6a): the saturated patterns are slightly concentrated in the early and 

recent years, while the accelerated types center on the year 2000. The stacked percentage histogram 

(Figure 6b) illustrates the distribution of patterns from 1994 to 2007. As illustrated in Figure 6b, there 

are fewer saturated patterns than accelerated patterns except during 2006 and 2007. At first, patterns A 

and B each represented 20% of turning points in 1994, which decreased to minimums of 4% and 6% in 

2000, respectively, and increased to 12% by 2005. Pattern C exhibits a similar trend before 2002 but 

experienced subsequent rapid increases and reached more than 46% in 2007. Spanning the range from 

40% to 3% of turning points pattern D show reverse trend of pattern C. Pattern E increases from less 

than 1% of turning points to approximately 20% and then exhibits no significant changes until 2007, 

which then sharply decreased to 13%. Pattern F includes the most pixels of the six patterns and 

exhibits a unimodal distribution, which reached a maximum of 45% in 2001. These results indicate 

that neither the saturated patterns nor the accelerated patterns maintain stable proportions, which 

implies imbalances in Chinese urbanization. In 1996, the saturated patterns outnumbered accelerated 

patterns for the first time; however, from that time until 2000, the accelerated pattern increased 

sharply, and the turning points reached their maximum frequency, which indicates that Chinese cities 

had greatly expanded [33]. This pattern is likely correlated with the economic and technological 

development zones established in many Chinese cities in the 1990s [34,35]. From 2000 to 2007, 

significant increases were observed for pattern C that indicates significant expansion of city centers. 

Table A1 lists the statistical summary of six patterns for 285 Chinese cities. 

Figure 6. (a) Statistical distribution of six urbanization patterns in China from 1994 to 

2007. (b) Percentage of six urbanization patterns. 

 

Figure 7 displays the six patterns for some typical cities. Accelerated patterns in many cities 

increased around 2000, which was observed in Beijing, Shanghai, Changzhou, and Changsha. 

However, Beijing exhibits considerably different saturation patterns from Shanghai; an insufficient 
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area of Shanghai reached saturation before 2000 compare this city to Beijing. In Guangzhou, the 

proportions of saturated and accelerated patterns remain steady, which implies balanced urbanization. 

Some coastal regions, such as the Pearl River Delta, experienced rapid development under free and 

open economic conditions since the 1990s. In Dongguan, for instance, saturated patterns are dominant 

and exhibit a bimodal distribution, which likely indicates that this city underwent rapid urbanization 

and most city regions eventually reached saturation. Over the last two decades, many factories were 

established in Yangtze River Delta, which significantly extended the boundaries of cities. 

In Changzhou for example, the prevalence of accelerated patterns from 1998 to 2004 correlates with 

the numerous new factories and enterprises established. Some cities exhibit a trend towards decreased 

frequency. In Daqing, for instance, this decrease is most likely associated with a local recession within 

the petroleum industry. In some cities, such as Putian and Changsha, saturated and accelerated patterns 

concentrate in different periods, which imply imbalanced urbanization. Medium and small cities 

sometimes lack one or more patterns and always exhibit an imbalanced distribution of patterns. 

In Liaocheng, for example, patterns D and E are missing, and saturated patterns strongly concentrate in 

1996. These results imply that the investigation of nighttime lights patterns potentially reveals the 

characteristics of cities at different stages of urbanization. 

Figure 7. Diverse distributions of six patterns of nighttime lights in Chinese cities from 

1994 to 2007. 
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3.4. Average Trend in Nighttime Light Growth 

The NTL patterns show characteristics of Chinese cities in the urbanization process, study the 

trends in nighttime light could reveal how the urbanization process is affected by those characteristics. 

Figure 8 displays the average trend in nighttime light growth in China. The whiskers of the boxplot 

(Figure 8a) represent the data within the 1.5 interquartile range of the first and third quartiles, and the 

data beyond this range are excluded. As indicated in Figure 8a, nighttime light brightness in over 75% 

of Chinese regions increased from 1994 to 2007 as evidenced by all third quartiles above zero. The 

increased interquartile range over time likely implies that the imbalance in night light in Chinese cities 

intensified. Figure 8b compares the average trend obtained from the linear model to the combination of 

linear and piecewise linear models. The DN value grows at a constant rate of 1.02 per year according 

to the linear model; however, when the piecewise linear model is considered, the average trend 

fluctuates and intersects with the horizontal line at 2000. The average trend in night light growth 

implies that the speed of urbanization in China accelerated since 1994 and slightly slowed after 

reaching a maximum in 2004. 

Figure 8. (a) Boxplot of average trend in night light growth in China from 1994 to 2007. 

(b) Comparation of trends in night light growth generated from linear model (blue) and 

piecewise linear model (red). 

 

Figure 9 illustrates the average trend in night light growth in a selection of Chinese cities. Major 

cities exhibit stable growth of night light brightness between 0.8 and 1.6 DN per year such as Beijing, 

Shanghai and Guangzhou (Figure 9a). Nighttime light experienced significant growth between 1998 
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and 2002 in Wuxi, Suzhou, and Changzhou (Figure 9b), which potentially reflects the recent rapid 

development of the Yangtze River Delta. Some cities exhibit stable increased rates of nighttime light 

growth, such as Chuzhou, Baotou, and Fangchenggang (Figure 9c). The nighttime light growth in 

some cities first slightly increases and then sharply decreases at some point. Jinhua, Shaoxing, and 

Changsha, for instance, exhibit a significantly negative trend after 2003. In Huangshan, Nanchang, and 

Jiaxing, the growth of night light brightness first increased and then fell around 2002. A few cities 

exhibit a negative trend in the growth of nighttime light, such as Chaozhou, Dongguan and Wenzhou, 

which decreased from more than 2.4 DN per year in 1994 to less than 0.8 DN per year in 2007. These 

results suggest diverse trends in night light growth that correspond to diverse trends in the urbanization 

of Chinese cities, which implies the unbalanced development of Chinese cities; however most cities 

exhibit increasing growth rate of NTL brightness indicate Chinese cities experienced continuing 

development over the last two decades. 

Figure 9. Diverse average trends: stable (a), positive (b,c), negative (d), convex (e) and 

negative (f) in night light growth for 18 Chinese cities from 1994 to 2007. 

 

4. Conclusions 

Urbanization is a global transformation of human society that involves population migration, 

economic activity and land-use change. Due to night light brightness is verified associate with features 

of urbanization in many studies [36], nighttime light images derived from DMSP/OLS provide a 

unique proxy for urbanization. 

In this paper, we utilize time series of DMSP data to investigate the urban dynamics of 285 Chinese 

cities from 1992 to 2009 at the pixel level. Rather than examining the relationship between nighttime 

light and urban variables, we utilize nighttime light as a proxy for urban dynamics to examine the 

patterns and trends of urbanization at local and national levels. Linear and piecewise linear models are 

estimated and compared for NTL data, and AICc and Welch’s t-test are employed to identify the  

best-fitting model. To quantify the patterns of urbanization statistically, we apply an unsupervised 



Remote Sens. 2014, 6 7721 

 

 

classification procedure utilizing three variables: the DN value in 1992 and the left and right slopes of 

the piecewise linear model to generate six distinct patterns. Moreover, we calculated the average trend 

in nighttime light growth for the local and national levels. 

Our study suggests that the long-term nighttime light brightness of most areas follows the piecewise 

linear function, although some follow the linear function. 88% of lit pixels in China, of which 70% 

follow the piecewise linear function, show increasing brightness over the last two decades. We identify 

the turning point of the nighttime light time series according to the piecewise linear model. The  

spatio-temporal distribution of turning points are identified by the left and right slopes and turning 

point of the piecewise linear model and slope of the linear model. The maps of these parameters show 

NTL saturation in an urban center and growth in suburban areas; in addition, the greater the distance to 

the city center or sub-center, the later the turning point occurs. The yearly variation in the six night 

light patterns at city level reveals the diverse characteristics of cities at different stages of urbanization. 

These patterns at national level implies that the urbanization of Chinese cities focused on established 

city areas in 1996, and Chinese cities expanded remarkably around 2000, while city centers have 

expanded significantly in recent years. The local nighttime light growth data suggest that Chinese 

cities exhibit varying trends in urbanization. However, the national trend implies that Chinese 

urbanization accelerated since 1994 until it decreased slightly after 2004. In addition, most areas 

experienced positive rates of nighttime light growth, which implies that most Chinese cities 

experienced consistent urban development during the last two decades. It is noteworthy that the 

problem of saturation in urban centers [37] and overglow effects [26] in DMSP data may blur the  

long-term trend and spatial distribution of urban changes. Therefore, further research should consider 

these problems, and improve the accuracy of DMSP data. The newly available nighttime lights 

products derived from Visible Infrared Imaging Radiometer Suite (VIIRS), which provide a 

more reliable way for investigating urbanization compare to DMSP [38,39], should be applied in 

further research. 
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Appendix 

Figure A1. Six patterns of NTL time series: saturated patterns A–C and accelerated 

patterns D–F to demonstrate spatial differentiation of urbanization in China. 

 

Table A1. The proportion of six patterns of NTL time series in 285 Chinese cities. 

City Name 
The Proportion of Urbanization Patterns (%) Total 

Frequency Saturated A Saturated B Saturated C Accelerated D Accelerated E Accelerated F 

Beijing 12.15 17.94 19.91 22.59 5.91 21.51 5384 

Tianjin 8.52 11.13 10.43 17.35 16.77 35.81 5177 

Shijiazhuang 25.00 29.61 24.67 16.45 0.00 4.28 304 

Tangshan 6.39 5.81 3.24 15.35 12.64 56.57 2254 

Qinhuangdao 22.37 20.09 0.46 42.92 4.57 9.59 219 

Handan 33.00 22.11 0.33 41.58 0.00 2.97 303 
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Table A1. Cont. 

City Name 
The Proportion of Urbanization Patterns (%) Total 

Frequency Saturated A Saturated B Saturated C Accelerated D Accelerated E Accelerated F 

Xingtai 42.65 35.29 19.12 2.94 0.00 0.00 68 

Baoding 36.36 43.94 10.61 3.03 0.00 6.06 66 

Zhangjiakou 13.00 10.00 0.00 24.67 24.33 28.00 300 

Chengde 3.08 4.79 2.05 28.42 18.49 43.15 292 

Cangzhou 6.49 22.08 36.36 3.90 14.29 16.88 77 

Langfang 4.29 4.63 17.32 7.03 11.15 55.57 583 

Hengshui 7.26 10.68 17.52 4.27 3.42 56.84 234 

Taiyuan 20.30 13.08 9.67 25.61 8.86 22.48 734 

Datong 12.60 24.88 9.52 21.35 13.52 18.13 651 

Yangquan 3.55 23.08 0.00 65.09 0.00 8.28 169 

Changzhi 10.38 14.15 0.94 25.00 0.47 49.06 212 

Jincheng 37.93 31.03 10.34 20.69 0.00 0.00 29 

Shuozhou 2.83 3.91 0.65 20.65 18.48 53.48 460 

Jinzhong 6.82 4.75 2.08 19.29 15.13 51.93 337 

Yuncheng 3.52 9.15 19.72 1.41 17.61 48.59 284 

Xinzhou 3.95 5.92 7.89 11.18 19.08 51.97 152 

Linfen 14.01 7.01 21.02 14.65 1.27 42.04 157 

Lvliang 2.11 9.15 4.23 28.17 10.56 45.77 142 

Hohhot 8.18 5.92 5.69 18.13 16.94 45.14 844 

Baotou 7.97 7.50 1.22 25.12 20.06 38.14 1067 

Wuhai 3.15 13.96 4.28 26.13 26.58 25.90 444 

Chifeng 4.47 4.71 0.00 25.56 31.51 33.75 403 

Tongliao 7.41 5.70 0.00 15.10 21.37 50.43 351 

Hulunbeier 6.47 5.18 0.00 21.04 45.95 21.36 309 

Bayannao’er 4.53 4.53 0.00 11.70 48.30 30.94 265 

Ulanqab 5.88 7.84 0.00 18.63 40.20 27.45 102 

Shenyang 11.36 8.92 5.19 30.66 19.00 24.87 2332 

Dalian 19.08 14.84 7.87 12.87 17.49 27.86 1321 

Anshan 21.41 21.65 9.41 34.82 2.35 10.35 425 

Fushun 28.37 13.48 0.00 48.58 0.71 8.87 282 

Benxi 13.97 9.32 1.64 32.33 8.77 33.97 365 

Dandong 14.59 10.81 1.08 35.14 4.86 33.51 185 

Jinzhou 28.78 12.95 3.60 30.94 10.79 12.95 139 

Yingkou 11.55 7.57 3.98 20.72 38.65 17.53 251 

Fuxin 14.71 12.75 7.35 43.14 0.00 22.06 204 

Liaoyang 14.90 8.86 0.43 44.71 5.62 25.49 463 

Panjin 50.00 16.25 5.00 16.88 1.25 10.63 160 

Tieling 20.65 13.04 1.09 35.87 0.00 29.35 92 

Chaoyang 7.03 6.07 0.00 17.25 33.55 36.10 313 

Huludao 12.39 12.83 5.31 30.53 7.96 30.97 226 

Changchun 12.85 7.65 6.47 10.33 29.18 33.52 1268 

Jilin 22.42 12.93 3.03 28.08 9.29 24.24 495 
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Table A1. Cont. 

City Name 
The Proportion of Urbanization Patterns (%) Total 

Frequency Saturated A Saturated B Saturated C Accelerated D Accelerated E Accelerated F 

Siping 16.13 9.68 8.87 36.29 3.23 25.81 124 

Liaoyuan 13.39 4.46 0.00 34.82 9.82 37.50 112 

Tonghua 4.35 14.49 6.76 26.09 13.04 35.27 207 

Baishan 5.52 8.97 2.07 30.00 8.28 45.17 290 

Songyuan 17.35 12.06 0.88 26.18 11.47 32.06 340 

Baicheng 14.81 5.56 1.85 12.96 22.22 42.59 54 

Harbin 9.44 8.14 10.03 14.93 15.87 41.59 1695 

Qiqihar 8.52 4.42 2.84 25.24 5.99 53.00 317 

Jixi 11.81 19.69 0.79 59.84 0.00 7.87 127 

Hegang 23.28 17.24 0.00 26.72 0.00 32.76 116 

Shuangyashan 6.61 3.31 0.83 17.77 11.16 60.33 242 

Daqing 16.36 14.77 8.42 27.02 6.67 26.75 1828 

Yichun 1.51 6.40 7.16 18.83 23.16 42.94 531 

Jiamusi 13.82 4.07 3.25 24.39 0.00 54.47 123 

Qitaihe 8.03 13.87 9.85 31.75 4.38 32.12 274 

Mudanjiang 20.00 11.43 0.00 29.52 2.86 36.19 105 

Heihe 10.48 3.81 0.00 15.24 0.95 69.52 105 

Suihua 10.14 10.14 0.00 20.29 21.01 38.41 138 

Shanghai 7.33 18.38 24.23 19.39 16.51 14.15 4663 

Nanjing 6.83 10.14 9.71 22.22 14.21 36.90 2534 

Wuxi 6.00 5.57 4.33 36.67 33.95 13.48 1617 

Xuzhou 4.70 6.54 8.14 12.84 23.97 43.81 872 

Changzhou 3.51 3.95 5.21 13.49 43.64 30.20 2053 

Suzhou 3.73 6.22 6.52 8.01 53.56 21.95 2009 

Nantong 1.92 5.57 5.14 7.86 35.23 44.27 1615 

Lianyungang 4.90 12.05 14.88 5.46 34.09 28.63 531 

Huai’an 4.34 7.17 15.85 5.28 28.68 38.68 530 

Yancheng 2.67 5.15 7.44 2.86 32.44 49.43 524 

Yangzhou 4.64 4.85 4.54 6.60 33.64 45.72 969 

Zhenjiang 2.30 3.93 4.31 15.15 21.48 52.83 1043 

Taizhou 2.33 4.92 43.26 2.07 21.50 25.91 386 

Suqian 1.15 3.65 10.00 0.77 37.69 46.73 520 

Hangzhou 5.63 7.91 27.08 7.94 26.22 25.21 2681 

Ningbo 3.05 9.02 25.88 1.25 24.22 36.57 1441 

Wenzhou 5.34 6.45 58.56 0.00 5.71 23.94 543 

Jiaxing 2.85 3.51 17.01 1.65 24.26 50.71 911 

Huzhou 1.08 3.55 34.00 4.95 12.36 44.05 647 

Shaoxing 0.00 14.86 47.97 6.08 18.24 12.84 148 

Jinhua 0.00 7.23 30.35 1.16 5.20 56.07 346 

Quzhou 0.50 13.37 18.81 6.44 4.95 55.94 202 

Zhoushan 0.25 4.48 18.41 1.24 16.42 59.20 402 

Taizhou 0.84 7.74 55.27 0.42 1.41 34.32 711 
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Table A1. Cont. 

City Name 
The Proportion of Urbanization Patterns (%) Total 

Frequency Saturated A Saturated B Saturated C Accelerated D Accelerated E Accelerated F 

Lishui 0.00 4.31 9.48 0.00 40.09 46.12 232 

Hefei 11.22 15.27 11.22 10.98 31.50 19.81 419 

Wuhu 1.91 13.38 14.33 7.96 40.76 21.66 314 

Bengbu 3.98 9.95 14.43 7.96 7.96 55.72 201 

Huainan 2.93 5.86 7.11 28.45 14.23 41.42 239 

Maanshan 2.55 23.57 7.01 32.48 17.20 17.20 157 

Huaibei 1.10 14.29 5.49 34.07 13.19 31.87 182 

Tongling 0.00 7.79 3.90 50.65 5.19 32.47 77 

Anqing 7.89 12.28 28.07 6.14 8.77 36.84 114 

Huangshan 0.00 7.84 18.30 2.61 19.61 51.63 153 

Chuzhou 2.88 4.94 0.82 7.00 38.68 45.68 243 

Fuyang 0.00 8.19 21.98 1.72 13.79 54.31 232 

Suzhou 0.00 0.78 1.18 15.69 19.22 63.14 255 

Lu’an 0.00 7.36 10.82 2.60 16.45 62.77 231 

Bozhou 2.03 3.38 19.59 4.05 10.14 60.81 148 

Chizhou 0.00 2.03 0.00 10.14 74.32 13.51 148 

Xuancheng 0.00 0.78 1.56 12.50 25.78 59.38 128 

Fuzhou(Fujian) 15.51 20.90 39.55 1.57 3.37 19.10 445 

Xiamen 8.04 7.18 15.41 7.37 37.22 24.78 1045 

Putian 0.99 6.06 17.04 5.35 30.56 40.00 710 

Sanming 2.63 12.28 10.53 11.40 0.88 62.28 114 

Quanzhou 8.37 10.59 50.49 0.00 12.56 17.98 406 

Zhangzhou 12.56 14.07 23.62 17.59 3.02 29.15 199 

Nanping 0.00 12.50 17.19 10.94 0.00 59.38 64 

Longyan 4.82 11.65 28.51 2.01 6.43 46.59 249 

Ningde 0.00 1.35 33.78 0.00 14.86 50.00 74 

Nanchang 2.39 13.15 8.37 29.08 22.71 24.30 251 

Jingdezhen 1.30 27.27 10.39 2.60 0.00 58.44 77 

Pingxiang 0.00 14.29 65.71 0.00 0.00 20.00 35 

Jiujiang 2.76 2.76 15.17 11.03 0.00 68.28 145 

Xinyu 0.58 3.49 2.33 12.79 30.23 50.58 172 

Yingtan 1.67 10.00 16.67 5.00 8.33 58.33 60 

Ganzhou 2.55 5.61 11.22 12.24 21.94 46.43 196 

Ji’an 0.00 4.85 13.94 12.12 9.09 60.00 165 

Yichun 0.00 10.71 28.57 7.14 10.71 42.86 56 

Fuzhou(Jiangxi) 0.00 2.37 9.47 2.37 27.22 58.58 169 

Shangrao 0.00 4.48 0.00 8.96 14.93 71.64 67 

Jinan 7.67 8.38 5.61 18.18 24.05 36.11 1551 

Qingdao 13.94 13.22 25.64 3.36 23.30 20.55 983 

Zibo 11.74 15.14 2.88 41.09 7.52 21.63 971 

Zaozhuang 1.18 5.31 0.74 19.62 15.78 57.37 678 

Dongying 9.11 20.24 34.40 6.07 7.08 23.10 593 
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Table A1. Cont. 

City Name 
The Proportion of Urbanization Patterns (%) Total 

Frequency Saturated A Saturated B Saturated C Accelerated D Accelerated E Accelerated F 

Yantai 9.59 8.14 15.36 6.91 28.25 31.75 970 

Weifang 4.00 4.88 5.11 17.54 24.64 43.84 901 

Jining 4.73 6.08 12.16 7.66 11.94 57.43 444 

Taian 2.76 6.67 29.66 0.00 9.66 51.26 435 

Weihai 3.17 9.33 14.44 0.00 24.30 48.77 568 

Rizhao 2.65 7.01 8.52 1.52 40.15 40.15 528 

Laiwu 4.10 6.35 6.35 28.69 12.30 42.21 488 

Linyi 3.12 5.28 6.64 8.24 24.56 52.16 1250 

Dezhou 5.38 6.73 27.80 0.00 20.18 39.91 223 

Liaocheng 8.46 9.06 37.46 0.00 1.51 43.50 331 

Binzhou 2.58 4.92 0.70 24.36 20.37 47.07 427 

Heze 1.29 7.12 16.18 4.53 12.94 57.93 309 

Zhengzhou 5.44 8.82 15.60 9.00 35.56 25.58 1122 

Kaifeng 12.02 14.90 16.35 8.65 18.27 29.81 208 

Luoyang 10.48 15.49 13.67 23.01 14.81 22.55 439 

Pingdingshan 9.03 10.32 2.58 35.16 12.90 30.00 310 

Anyang 16.34 16.34 14.38 18.95 0.00 33.99 153 

Hebi 5.00 18.33 0.00 24.17 6.67 45.83 120 

Xinxiang 10.00 20.00 13.64 37.27 12.73 6.36 110 

Jiaozuo 5.21 13.27 9.00 56.87 1.42 14.22 211 

Puyang 29.84 20.97 5.65 12.90 0.81 29.84 124 

Xuchang 2.99 16.42 29.85 19.40 14.93 16.42 67 

Luohe 4.22 13.92 26.58 1.69 10.97 42.62 237 

Sanmenxia 23.44 21.88 15.63 1.56 10.94 26.56 64 

Nanyang 4.02 8.67 16.41 9.60 11.76 49.54 323 

Shangluo 0.00 0.81 0.00 14.63 43.09 41.46 123 

Xinyang 0.36 5.73 1.79 12.54 32.97 46.59 279 

Zhoukou 3.08 26.15 24.62 13.85 16.92 15.38 65 

Zhumadian 0.00 12.90 18.71 1.29 8.39 58.71 155 

Wuhan 2.25 8.77 17.31 17.27 12.28 42.13 2224 

Huangshi 8.22 35.62 38.36 15.07 0.00 2.74 73 

Shiyan 3.70 16.67 7.41 20.37 8.33 43.52 108 

Yichang 0.00 9.09 32.03 1.73 0.00 57.14 231 

Xiangfan 2.56 24.18 14.65 16.85 9.89 31.87 273 

Ezhou 1.51 4.02 9.05 22.11 0.00 63.32 199 

Jingmen 0.99 4.95 45.54 0.00 0.00 48.51 101 

Xiaogan 0.00 1.20 10.84 9.64 10.84 67.47 83 

Jingzhou 3.75 15.00 20.00 11.25 2.50 47.50 80 

Huanggang 0.00 14.81 50.62 1.23 0.00 33.33 81 

Xianning 0.00 12.04 2.78 18.52 25.00 41.67 108 

Suizhou 0.00 4.04 3.03 6.06 3.03 83.84 99 

Changsha 10.68 21.92 26.85 7.67 20.00 12.88 365 
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Table A1. Cont. 

City Name 
The Proportion of Urbanization Patterns (%) Total 

Frequency Saturated A Saturated B Saturated C Accelerated D Accelerated E Accelerated F 

Zhuzhou 6.56 15.85 7.65 31.15 7.10 31.69 183 

Xiangtan 0.00 7.34 35.59 13.56 0.00 43.50 177 

Hengyang 4.24 5.93 1.69 28.81 1.69 57.63 118 

Shaoyang 0.00 3.75 1.25 28.75 11.25 55.00 80 

Yueyang 1.26 12.58 24.53 8.18 1.26 52.20 159 

Changde 1.50 8.61 49.06 0.00 0.00 40.82 267 

Zhangjiajie 0.00 2.20 35.16 0.00 0.00 62.64 91 

Yiyang 0.00 2.83 56.60 0.94 0.00 39.62 106 

Chenzhou 0.00 10.58 35.58 0.00 0.00 53.85 104 

Yongzhou 0.00 6.67 17.33 24.00 1.33 50.67 75 

Huaihua 3.95 18.42 9.21 2.63 6.58 59.21 76 

Loudi 0.00 13.54 30.21 6.25 0.00 50.00 96 

Guangzhou 20.13 17.76 23.04 11.48 12.33 15.25 2708 

Shaoguan 1.19 5.06 5.06 18.15 14.29 56.25 336 

Shenzhen 50.23 23.75 18.14 3.15 2.57 2.16 1714 

Zhuhai 8.80 4.80 5.92 21.92 14.08 44.48 625 

Shantou 5.89 10.46 49.85 3.25 5.58 24.97 985 

Foshan 17.18 23.25 20.13 10.66 15.87 12.91 3144 

Jiangmen 8.15 8.06 19.70 8.42 6.71 48.97 1117 

Zhanjiang 7.92 12.38 4.46 3.47 4.95 66.83 202 

Maoming 16.80 11.48 27.46 20.49 0.00 23.77 244 

Zhaoqing 2.78 6.60 6.25 7.64 7.29 69.44 288 

Huizhou 5.08 8.08 5.87 26.39 9.80 44.78 1398 

Meizhou 12.00 18.67 50.67 0.00 0.00 18.67 75 

Shanwei 4.35 2.90 11.59 12.32 13.04 55.80 138 

Heyuan 1.56 3.12 0.62 9.35 49.22 36.14 321 

Yangjiang 7.69 15.38 25.00 0.00 0.00 51.92 52 

Qingyuan 1.76 2.14 0.00 11.59 44.21 40.30 794 

Dongguan 27.66 29.28 35.78 2.65 2.42 2.20 2722 

Zhongshan 15.79 21.42 34.24 10.81 7.18 10.55 1545 

Chaozhou 30.88 20.59 45.59 0.00 0.00 2.94 68 

Jieyang 11.61 12.26 72.26 0.65 0.65 2.58 155 

Yunfu 1.71 5.98 6.84 12.82 1.71 70.94 117 

Nanning 7.68 4.69 12.76 7.28 30.81 36.79 1003 

Liuzhou 10.36 7.71 3.61 21.20 19.04 38.07 415 

Guilin 25.97 13.81 11.60 16.02 0.55 32.04 181 

Wuzhou 2.99 2.99 3.73 27.61 16.42 46.27 134 

Beihai 3.52 0.00 0.00 5.63 2.82 88.03 142 

Fangchenggang 0.00 4.41 0.00 13.24 35.29 47.06 136 

Qinzhou 2.82 1.06 1.41 8.45 26.41 59.86 284 

Guigang 2.49 3.60 1.39 14.68 15.24 62.60 361 

Yulin 1.54 5.38 8.08 5.77 19.62 59.62 260 
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Table A1. Cont. 

City Name 
The Proportion of Urbanization Patterns (%) Total 

Frequency Saturated A Saturated B Saturated C Accelerated D Accelerated E Accelerated F 

Baise 2.00 9.00 39.00 0.00 0.00 50.00 100 

Hezhou 0.00 18.42 36.84 21.05 0.00 23.68 38 

Hechi 0.00 9.26 20.37 5.56 16.67 48.15 54 

Laibin 0.00 1.07 2.40 4.27 9.60 82.67 375 

Chongzuo 0.00 0.00 0.00 4.30 43.01 52.69 93 

Haikou 0.73 4.36 28.36 9.82 11.64 45.09 275 

Sanya 0.00 0.77 8.21 7.18 24.87 58.97 390 

Chongqing 6.40 7.39 19.75 5.41 12.32 48.73 2922 

Chengdu 8.38 7.54 10.52 9.42 25.03 39.11 1910 

Zigong 0.00 15.87 23.81 28.57 0.00 31.75 63 

Panzhihua 6.72 17.23 23.95 14.29 5.88 31.93 238 

Luzhou 0.00 10.94 35.16 0.00 0.78 53.13 128 

Deyang 3.71 3.47 0.99 13.37 6.19 72.28 404 

Mianyang 3.89 9.73 39.66 2.68 0.00 44.04 411 

Guangyuan 0.00 7.83 0.00 16.27 9.04 66.87 166 

Suining 2.21 5.52 0.55 14.92 19.34 57.46 181 

Neijiang 0.00 0.00 17.39 13.04 0.00 69.57 23 

Leshan 0.00 3.73 20.90 0.00 0.00 75.37 134 

Nanchong 0.87 1.74 11.30 6.09 0.00 80.00 115 

Meishan 0.00 0.00 11.57 17.36 1.65 69.42 121 

Yibin 0.00 9.65 32.46 10.53 0.00 47.37 114 

Guang’an 0.00 0.00 74.42 0.00 0.00 25.58 86 

Dazhou 8.51 23.40 12.77 25.53 0.00 29.79 47 

Ya’an 0.00 0.00 55.00 0.00 0.00 45.00 20 

Bazhong 0.00 0.00 61.29 0.00 0.00 38.71 62 

Ziyang 0.00 4.65 0.00 33.72 1.16 60.47 86 

Guiyang 8.17 6.48 16.90 11.97 8.03 48.45 710 

Liupanshui 0.92 13.76 21.10 22.94 0.00 41.28 109 

Zunyi 0.00 12.66 45.57 11.39 0.00 30.38 79 

Anshun 1.05 13.68 22.11 5.26 20.00 37.89 95 

Kunming 9.83 12.90 18.43 9.83 14.62 34.40 814 

Qujing 6.81 13.09 21.47 0.52 14.14 43.98 191 

Yuxi 4.03 6.38 34.23 0.00 16.11 39.26 298 

Baoshan 0.00 4.65 16.86 0.58 11.63 66.28 172 

Zhaotong 0.00 7.69 14.42 1.92 30.77 45.19 104 

Lijiang 0.00 0.00 54.55 0.00 20.20 25.25 99 

Puer 1.37 5.48 4.11 12.33 15.07 61.64 73 

Lincang 0.00 0.00 69.64 0.00 1.79 28.57 56 

Lhasa 8.02 17.90 37.04 1.23 15.43 20.37 162 

Xi’an 6.80 6.89 4.45 15.75 19.22 46.89 2045 

Tongchuan 0.00 6.01 20.22 16.94 7.65 49.18 183 

Baoji 5.59 9.12 1.18 27.06 12.06 45.00 340 
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Table A1. Cont. 

City Name 
The Proportion of Urbanization Patterns (%) Total 

Frequency Saturated A Saturated B Saturated C Accelerated D Accelerated E Accelerated F 

Xianyang 7.24 7.44 20.94 20.94 10.18 33.27 511 

Weinan 7.46 6.97 2.49 14.93 29.85 38.31 201 

Yan’an 0.00 2.67 36.53 2.13 3.47 55.20 375 

Hanzhong 13.74 11.45 0.00 16.03 16.79 41.98 131 

Yulin 0.00 1.91 11.07 1.15 47.33 38.55 262 

Ankang 1.69 6.21 6.21 11.30 3.95 70.62 177 

Shangqiu 2.96 5.93 21.85 3.70 10.37 55.19 270 

Lanzhou 21.47 18.08 13.56 22.60 3.67 20.62 354 

Jiayuguan 10.82 10.31 6.19 16.49 29.90 26.29 194 

Jinchang 15.96 9.57 0.00 35.11 12.77 26.60 94 

Baiyin 7.45 12.77 0.00 44.15 7.45 28.19 188 

Tianshui 8.47 11.86 9.32 22.88 0.00 47.46 118 

Wuwei 2.38 13.10 28.57 3.57 2.38 50.00 84 

Zhangye 2.97 10.89 18.81 14.85 6.93 45.54 101 

Pingliang 0.00 5.07 8.70 15.22 14.49 56.52 138 

Jiuquan 1.13 5.08 2.82 7.34 27.12 56.50 177 

Qingyang 0.00 0.00 2.27 4.55 18.75 74.43 176 

Dingxi 0.00 2.04 2.04 42.86 0.00 53.06 49 

Longnan 0.00 0.00 0.00 25.00 41.67 33.33 36 

Xining 14.86 12.69 17.34 16.72 10.84 27.55 323 

Yinchuan 13.57 8.00 7.83 21.91 11.30 37.39 575 

Shizuishan 11.18 7.89 0.00 32.89 12.50 35.53 152 

Wuzhong 0.00 13.79 18.39 8.05 31.03 28.74 87 

Guyuan 0.00 4.39 2.63 10.53 24.56 57.89 114 

Zhongwei 0.00 3.24 0.54 14.59 46.49 35.14 185 

Urumqi 16.29 15.50 12.14 22.20 3.35 30.51 626 

Karamay 6.76 9.85 11.78 18.73 26.83 26.06 518 
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