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Abstract: Drought events cause changes in ecosystem function and structure by reducing 

the shrub abundance and expanding the biological soil crusts (biocrusts). This change 

increases the leakage of nutrient resources and water into the river streams in semi-arid 

areas. A common management solution for decreasing this loss of resources is to create a 

runoff-harvesting system (RHS). The objective of the current research is to apply  

geo-information techniques, including remote sensing and geographic information systems 

(GIS), on the watershed scale, to monitor and analyze the spatial and temporal changes in 

response to drought of two source-sink systems, the natural shrubland and the human-made 

RHSs in the semi-arid area of the northern Negev Desert, Israel. This was done by 

evaluating the changes in soil, vegetation and landscape cover. The spatial changes were 

evaluated by three spectral indices: Normalized Difference Vegetation Index (NDVI), 

Crust Index (CI) and landscape classification change between 2003 and 2010. In addition, 

we examined the effects of environmental factors on NDVI, CI and their clustering after 

successive drought years. The results show that vegetation cover indicates a negative 

∆NDVI change due to a reduction in the abundance of woody vegetation. On the other 

hand, the soil cover change data indicate a positive ∆CI change due to the expansion of the 

biocrusts. These two trends are evidence for degradation processes in terms of resource 

conservation and bio-production. A considerable part of the changed area (39%) represents 
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transitions between redistribution processes of resources, such as water, sediments, 

nutrients and seeds, on the watershed scale. In the pre-drought period, resource 

redistribution mainly occurred on the slope scale, while in the post-drought period, 

resource redistribution occurred on the whole watershed scale. However, the RHS 

management is effective in reducing leakage, since these systems are located on the slopes 

where the magnitude of runoff pulses is low.  

Keywords: remote sensing; normalized difference vegetation index; crust index; landscape 

cover; runoff-harvesting system; source-sink systems 

 

1. Introduction 

Shrublands in arid and semi-arid areas, on a small spatial scale, are characterized by a structure of 

a “two-phase landscape mosaic” of woody vegetated patches and bare or soil-crusted patches [1]. 

Water, sediments, nutrients and seeds flow across the system, between the components of 

the landscape mosaic, creating a functional “sink-source” relationship. The crusted soil matrix is 

the contributory source [2], while the scattered shrub patches act as sinks, capturing the fluxes of 

the abiotic and biotic elements [3–7]. The spatial variation of the two-phase mosaic in the landscape 

regulates the water flow and can be considered hydro-ecosystem engineering [8–11].  

In the last few decades, a rise in temperature, more frequent drought events and changes in the 

precipitation regime in arid and semi-arid areas have been observed and reported [12,13]. A number of 

climate models predict that desertification of many drylands worldwide will occur [14–17]. This focuses 

the attention of many researchers on the relationships between climate change and desertification in 

the semi-arid areas that are located in the transition zones between deserts and arable land, due to their 

high susceptibility to degradation [18]. The change in aridity poses a threat to ecosystems in these 

areas by altering landscape structure and function. On the one hand, a decrease in precipitation and 

higher temperatures are drivers of woody vegetation mortality [19–22], and on the other hand, stronger 

rainfall intensities increase the susceptibility of soil to erosion and flash floods [23]. These changes 

disturb the function of the present ecosystem source-sink relationship by reducing the shrub cover, which 

decreases the sink function, resulting in a reduction in resource conservation and an expansion of the 

biocrust areas that increase the source function of that system, resulting in the leakage of  

resources [24–26]. In addition to climatic changes, the shrublands in arid and semi-arid areas have been 

exposed to human activities for thousands of years. Land-use practices, such as livestock grazing and 

clear cutting, cause a reduction in the abundance of shrub patches and an increase in the biological soil 

crust cover [27]. Both climate and land-use changes reduce the sink function of the landscape, 

resulting in the resource leakage of water, organic matter and nutrients and, consequently, in low 

ecosystem productivity and biodiversity [4,11,25].  

On the watershed scale, the relationship between shrub abundance (sink patches) on the slope and 

river stream flow is based on the spatial configuration of runoff production: crust-covered areas 

(sources) and runoff-absorbing areas with woody vegetation, plant litter and depressions (sinks) in the 

watershed slopes [4,7]. While rainfall absorption and runoff production take place at the small scale, 
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due to differences in water infiltration in the sinks and sources [4,25,28], the magnitude and frequency 

of runoff flow on the slopes and into the river streams depend on the size and location of the source 

and sink areas, relative to each other. In the arid lands of Israel, where the shrub patches play a major 

role in the productivity and stability of the ecosystem as fertility islands, the reduction of sink patches 

makes the entire ecosystem vulnerable to degradation. Degraded arid lands tend to suffer from 

leakages of resources and water into nearby river streams, due to the system’s inability to retain them 

by physical or biological means [11,29,30].  

A common management solution for decreasing the loss of resources in semi-arid areas is to create 

human-made arrays of source and sink patches [31]. These arrays have a contoured shape, 10–15 m 

between the contour dikes, usually following the topographic contour [11,25]. These human-made 

mosaics are termed “contour line mini-catchments”. Each mini-catchment has three parts. The first is 

the gently sloped area covered mainly by biocrusts that function as a source of runoff, soil, organic 

matter and nutrients to the second part. The second is an elongated pit that absorbs and stores these 

resources, forming resource-enriched patches. The third includes one meter-high soil mounds that 

prevent the flow of the resources out of the mini-catchment. These contour catchments, termed 

“runoff-harvesting system” (RHS), spatially integrate natural and human-made arrays in order to 

harvest runoff water and their associated resources from the natural source area and to concentrate 

them in the water-enriched zones, where trees are planted and grow together with natural understory 

vegetation [11]. In Israel, RHSs were constructed along the desert fringe in an attempt to combat 

desertification and rehabilitate degraded shrubland. Adding human-made sink patches to the system 

alters the distribution of the abovementioned resources, modifies the landscape connectivity and 

stability and increases the productivity and diversity of desertified areas [32]. 

Changes in the configuration of runoff-producing areas (sources) and runoff-absorbing areas and 

depressions (sinks) in semi-arid regions were found to be essential for the eco-hydrology management 

of degraded lands [33,34]. Consequently, relatively large areas (about 5000 ha) in the northern Negev 

Desert have been changed during the last few decades from desertified shrublands to RHSs by the 

Forest Department of the Jewish National Fund (JNF) [11]. This initiative is called “savannization”, 

since trees are successfully grown in the sink patches, and the former degraded areas are now 

characterized by a planted-forest landscape with herbaceous vegetation as the understory, mainly in the 

human-made pits. The management is based on the idea that the production and diversity in desertified 

shrublands is not limited by a lack of resources, but by their spatial distribution. It has been proposed 

that existing water and nutrient resources are not used by biotic elements, because they leak from the 

landscape before they are concentrated in water-enriched patches and are able to be used by 

vegetation, animals and humans [35,36].  

Recent studies emphasized the importance of changes in vegetation and soil cover as indicators for 

identifying the changes in the extent, distribution and connectivity of runoff and sediment 

(e.g., [3,37,38]). These changes determine the movement of abiotic and biotic elements across the 

landscape and their concentration in resource-enriched patches. The movement and the concentration 

of the elements among patches from a source area to a sink area are the main drivers of the ecosystem 

dynamics and are defined as the “source and sink relations” among patches that create resource-deprived 

and resource-enriched patches on different scales [39]. One of the empirical models to predict runoff 

yield was developed by Karnieli, et al. [40]. This model assumes a linear relationship between annual 
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rainfalls for a given watershed, taking into account the reduction in runoff efficiency with the increase 

in catchment area. The model uses the statistical parameters of the rain in order to calculate the 

recurrence interval of runoff yields and, therefore, can be used to design and construct small 

catchments for runoff harvesting. Following the source-sink concept as a main controlling mechanism 

of system dynamics, the objective of the current research is to apply geo-information techniques, 

including remote sensing and geographic information systems (GIS), on a watershed scale, to monitor 

and analyze the spatial and temporal changes in response to drought of two source-sink systems, 

the natural shrubland and the human-made RHSs in the semi-arid environment of the northern Negev 

Desert. The strength of remote sensing data is providing temporally and spatially continuous 

information over a large scale on the effect of desertification processes on drylands [41].  

The changes in the landscape cover (structure) and the relationships between biocrusts and woody 

vegetation in unmanaged and managed areas can indicate changes in the runoff-producing areas 

(sources) and runoff-absorbing areas (sinks) on the watershed scale. In addition to structural changes in 

land cover function, changes in productivity can indicate the ecosystem responses of the natural 

source-sink system to drought. From the structural changes, we can also infer functional changes, such 

as resource conservation and leakage on various scales and energy flow and nutrient fluxes. Changes 

in RHS function, in terms of productivity in relation to drought, can elucidate the functioning of the 

human-made source-sink ecosystem under extreme climatic conditions. To identify and assess 

structural and functional drought-induced changes in natural and human-made landscape mosaics, 

composed of resource-deprived and enriched patches, we generated three different spectral indices 

using high-resolution spaceborne images: (1) the Normalized Difference Vegetation Index 

(NDVI) [42] to evaluate changes in the woody vegetation state; (2) the Crust Index (CI) [43] to 

evaluate changes in the biocrust state; and (3) a landscape changes index to evaluate changes in the 

landscape classification cover. In addition, in order to explore spatial changes, environmental factors, 

such as slope, aspect, distance from the river stream and landscape change effects, were examined in 

conjunction with vegetation and soil cover after the drought years.  

In the present paper, we tested the comprehensive hypothesis that NDVI, CI and the landscape 

changes index (change detection methods) will provide suitable tools to assess temporal changes in the 

hydro-ecological dynamics of the desertified shrubland systems and the RHSs with respect to drought 

years. We specifically hypothesize about the following drought-induced changes in the hydro-ecology: 

(1) in desertified shrubland systems, drought will (i) decrease resource conservation and increase 

resource leakage and (ii) increase the scale connectivity of resource flow from the slope scale to the 

watershed scale; and (2) in RHSs, due to their high sink function, the effect of drought on their 

resource leakage of water, organic matter and nutrients will be small. However, the effect on the whole 

ecosystem will be extensive and significant in the context of the distribution and connectivity of runoff 

and sediment from the slop to the river stream. Therefore, the system can be considered as a  

drought-resistant system. In addition, we assume that the spatial data obtained and analyzed in this 

study, coupled with GIS methods and previous knowledge on the structure and function of source-sink 

systems, will provide a better understanding of the drought-induced environmental changes in 

unmanaged and managed drylands on the watershed scale.   
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2. Methods 

2.1. Study Area  

The study site is located within the Shaked Park near Beer-Sheva in the northern Negev Desert of 

Israel (31°17ʹN, 34°37ʹE, 190–200 m a.m.s.l.), which is a long-term ecological research (LTER) site 

(Figure 1). Climatically, the park lies in a transition zone between an arid climate zone and the 

Mediterranean climate (Figure 1). Average annual rainfall is approximately 150 mm (±48.8 mm 

standard deviation) (Figure 2), most of which occurs between November and March. The soil in general is 

loessial, about 1 m thick, and consists of 14% clay, 27% silt and 59% sand (USA classification: loess soil 

with sandy loam texture) on an Eocene chalky bedrock. The natural landscape is composed of a series 

of discontinuous shrub mounds within a matrix of biocrusts. The small patches of shrubs include 

mainly Noaea mucronata, Atractylis serratuloides and Thymelaea hirsuta. The biocrusts, which cover 

about 75% of the soil surface, consist of cyanobacteria, bacteria, algae and lichens [4,44]. The surface 

of the soil crust is flat and solid, because of the soil particle adhesion caused by polysaccharides, 

excreted mainly by cyanobacteria and soil algae [45]. The total area of the study system is 445 ha and 

includes different management regimes: (1) desertified shrubland with no grazing in the LTER (30 ha); 

(2) desertified shrubland with grazing; (3) managed RHS of 150 ha that was developed in 1985–1987 

and consists of contour catchments on hill-slope and mini-catchments as management practices to 

create sink patches; (4) unmanaged RHS; and (5) a managed river stream area. In the Shaked Park, 

a series of drought events occurred in September 2008, and October 2009, with 80.0 and 100.0 mm of 

rain, respectively (Figure 2). Note that the rainfall amounts in these years were below 1 standard 

deviation from the long-term annual mean. These consecutive two drought years caused large shrub 

mortality, along with severe reduction in the vegetation cover on the hill slopes and along the river 

streams. This unique phenomenon was the driver for the current research.  

Figure 1. (A) A Landsat-8 OLI image of 2 June 2013, covering the center of Israel and 

including the location of Shaked Park; (B) general view of the Shaked Park runoff 

harvesting system (RHS) and the desertified shrubland. 
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Figure 1. Cont. 

 

Figure 2. Long-term record of annual rainfall in Shaked Park. The solid horizontal line 

indicates the long-term average (at 150 mm), while the dashed lines the ±1 standard 

deviation from the mean. Note that the 2010 image was taken after two consecutive severe 

drought years. 

 

2.2. Vegetation Cover 

The vegetation cover provides a comprehensive evaluation of the ecosystem state and services, 

including measures of changes in ecosystem function [46–50]. In the present study, the woody 

vegetation cover at the end of the dry season (in the years 2003 and 2010) was evaluated, by 

calculating the commonly used NDVI, using remote sensing data [42,51]: NDVI = (ρ − ρ )(ρ + ρ )  (1)

where ρx is the reflectance at the given wavelength (Equation (1)). The NDVI is based on the contrast 

between the maximum radiation absorption of red (R, 600–700 nm), due to chlorophyll pigments, and 

the maximum reflectance in the near infrared (NIR, 700–1200 nm), caused by leaf cellular structure 

and the fact that soil spectra, lacking these mechanisms, typically do not show such a dramatic spectral 

difference. The satellite sensor data-based NDVI is often used as an indicator of vegetation activity, as 

it exhibits a nearly linear relationship with the fraction of photosynthetically-active radiation absorbed 

by the vegetation canopy [52] and also with net primary production (NPP) [53]. In addition, the NDVI 
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is a powerful monitoring tool for identifying changes of vegetation state in response to drought and 

climatic change [54]. Using spectral wavebands, this index is quantified by the abovementioned 

equation (Equation (1)). The NDVI values range between −1 and +1. A value of zero means no 

vegetation, while values close to +1 (0.8–0.9) indicate the highest vegetation index (green leaves).  

2.3. Biocrust Cover 

Several indices were used to identify and map cyanobacteria-dominated biocrusts [43] and  

lichen-dominated biocrusts using multispectral remote sensing [55] and hyperspectral imaging [56]. 

Other studies use different band combinations in different spectral regions for assessing the 

development of biocrusts [57,58]. In the current study, the evaluation of the biocrusts was calculated 

by the CI, using remote sensing data. This index aims to differentiate between crusted and uncrusted 

areas and to identify areas with different fine and organic matter contents [43]: CI = 1 − (ρ − ρ )(ρ + ρ )  (2)

where ρR and ρB are the reflectance in the red (R, 600–700 nm) and in the blue (B, 400–500 nm) 

spectral bands, respectively (Equation (2)). The CI takes advantage of a unique spectral feature of soil 

biocrusts containing cyanobacteria. It has been shown that the special phycobilin pigment in 

cyanobacteria contributes in producing a relatively higher reflectance in the blue spectral region than 

the same type of substrate without a biocrust. As a mapping tool, the CI image was found to be much 

more sensitive to the ground features than the original images. The absence, existence and distribution 

of soil crust are important information for desertification and climate change studies. CI values range 

between 0 and +2, but are typically between 0 and +1 [43,59]. The addition of 1 to the result is for 

obtaining the normalized difference and is recommended in order to create higher values for soils with 

high fine and organic matter contents. To avoid vegetation effects (photosynthetically-active 

radiation), all of the woody vegetation had been masked, based on the landscape cover classification, 

before processing the CI image.  

2.4. Landscape Cover Classification  

The landscape cover classification was carried out using a support vector machine (SVM) 

classification [60]. ENVI software was used for creating six classes, namely: trees and woody vegetation, 

white matrix (representing roads, bare soil and exposed rocks), light matrix (mainly representing light 

biocrusts), dark matrix (mainly representing pit and sink areas with soil organic matter and plant litter), 

very dark matrix (mainly representing high soil organic matter, plant litter and depressions)  

and shadow. The classification model was developed from 1500 calibration points in each class.  

This technique was followed by an accuracy assessment procedure using a high resolution orthophoto 

(2-m spatial resolution) with 500 validation points in each class. In addition, field measurements were 

performed to validate the accuracy assessment. The classification accuracy assessment and evaluation 

were quantified by the kappa coefficient, and the overall accuracy that was calculated from an error 

(confusion) matrix [61,62].  
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2.5. Data Analysis: Input to the Model 

The study evaluated the effect of temporal and spatial changes in the desertified shrublands and in 

the RHS. The purpose of the temporal analysis process was to gain a better understanding regarding 

the effect of drought events on vegetation, biocrust and landscape cover changes in these systems. 

Three main indices were calculated: NDVI for vegetation cover, CI for biocrust cover and landscape 

cover for landscape classification. The purpose of the spatial analysis process was to gain a better 

understanding regarding the environmental factors that spatially affect the NDVI and CI after drought 

events. The temporal analyses included several inputs and preprocessing methods. Two images with a 

high spatial resolution (2.5 m) and four multispectral bands were selected. The first was a QuickBird 

image from 17 September 2003, and the second was a WorldView-2 image from 28 October 2010 

(Figure 3). The differences between the spectral bands of the two sensors were evaluated, and no 

significant differences were found. The images were selected from the end of the dry season (after 

a long dry spell). This enabled the evaluation of the specific effects of the woody vegetation, avoiding 

the effects of wet soil, annuals and wet biocrusts.  

Figure 3. (A) QuickBird image from 17 September 2003; and (B) WorldView-2 image 

from 28 October 2010, of Shaked Park. Both are in false color composite; thus, the red 

color represents vegetation. In addition, the selected polygons of different management 

regimes and ephemeral river streams overlay the 2010 image. The polygons represent:  

(1) desertified shrubland with no grazing in a long-term ecological research station (LTER); 

(2) managed runoff harvesting system; (3) unmanaged runoff harvesting system; (4) desertified 

shrubland with grazing; and (5) a managed river stream. Note that the polygons were 

selected for the same river stream order. 
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Figure 3. Cont. 

 

Figure 4. Flowchart of the preprocessing stages of the temporal and spatial analyses. 
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The research flowchart of the preprocessing stages of the temporal and spatial analysis approach is 

presented in Figure 4. The preprocessing of the images included radiometric, atmospheric, topographic 

and geometric corrections. The geometric correction was conducted with respect to orthophoto images 

with a spatial resolution of 2 m. For the topographic correction, a digital elevation model with a spatial 

resolution of 2 m was used. The root mean square error (RMSE) of the geometric rectification in 

the 2003 image was 0.98 (with a standard deviation (SD) of 0.46 per pixel), and for the 2010 image, 

the RMS was 1.75 (with SD 0.75 per pixel). The radiometric correction (including the atmospheric 

correction) and the topographic correction were performed with ATCOR3 software. We used 

the NDVI, CI and the landscape classification changes by two change detection models. The spatial 

analyses (environmental variables) included solar radiation (representing the aspect of the detected 

area) and slope layers extracted from the digital elevation model (DEM, 2-m resolution). 

The Archydro tool in ArcGIS was used to create the river stream layer. These inputs were used to 

identify the spatial and temporal changes in the system, by analyzing the whole study system and 

polygons with respect to the different management regimes (Figure 3B). All selected polygons were 

within a similar area of 16 ha. In addition, all selected polygons had the same second river stream order. 

2.6. Spatial and Temporal Analyses 

2.6.1. Change Detection Model  

Change detection is the process of identifying differences in the state of an object or phenomenon by 

observing it in different periods. It involves the ability to quantify temporal effects using multitemporal 

datasets. The most commonly used is pixel-by-pixel comparison based on the original spectral 

information. In this case, the accuracy of the radiometric information between the images, the sensors 

inputs and the weather conditions between the dates are needed to avoid irrelevant changes [63]. Change 

detection has become one of the major applications of remote sensing data, because of the repetitive 

coverage in different time intervals and consistent image quality [64]. There are several methods for 

detecting land cover changes [65–67]. In the present study, two change detection approaches were used 

for assessing the main changes in the NDVI, CI and landscape cover, between 2003 and 2010. The first 

approach was to evaluate the changes within a given land cover type (NDVI and CI). The second 

approach was to convert between several land cover types (classes) by using a change matrix 

classification. The first approach was used to evaluate changes in NDVI and CI images (∆ ) [65]: ∆ = −  (3)

where the subscripts, 1 and 2, represent Dates 1 and 2, respectively, in either the NDVI or the CI 

images. The results of this operation correspond to an increase or decrease in vegetation or soil cover. 

A common way to assess changes is based on determining thresholds in terms of standard deviation 

levels from the mean of ΔCD [68,69]. In this manner, one can distinguish between changed and 

unchanged pixels, as well as between negative and positive changes [69,70]. In the case of negative 

changes, the threshold is determined as the maximal value (≈0), and in the case of positive changes, 

the threshold is determined as the minimal value (≈0), not in adjacency to the mean, in order not to 

lose meaningful information [66,71]. In the case of the ∆NDVI, changes were analyzed with steps of a 

half standard deviation, while in the ∆CI case, steps were set to one standard deviation. The selection 
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of the threshold steps in units of standard deviation is based on the dynamic range of the resulting 

difference data sets.  

In order to evaluate the changes in the landscape classification, the second approach of a “change 

classification matrix” between 2003 and 2010 was used (Figure 4). For each class, the numbers of 

changed and unchanged pixels were calculated. Furthermore, the total numbers of pixels for each of the 

six classes were compared between the two images (2003 versus 2010) in order to analyze shifts between 

classes. Then, the two classification images were overlaid, and a change map was extracted. The output 

“change classification image” included pixels that were transformed into a different class and unchanged 

pixels. This was done to evaluate the total change in the classification map. In addition, different changes 

between classes were converted into a transition matrix and normalized to the total study area. As before, 

the kappa coefficient and the overall accuracy values were selected for accuracy assessment. 

2.6.2. Geostatistics Analysis Models  

To evaluate the main environmental effects on NDVI and CI after years of drought, a geostatistics 

spatial analysis was used. The NDVI and CI prediction values were considered as the dependent 

variables. Four explanatory variables were examined as predictors in the different years: (1) landscape 

classification, represented by the landscape cover classification map; (2) aspect [72]; (3) slope; and 

(4) distances from a river stream. The spatial analysis model requires an input of point features. 

The images included almost 2 million pixels; therefore, in order to determine the optimal sample size, 

estimation was applied in which a confidence level of 95% was considered. This resulted in a sample 

size of about 10,000 points. The 10,000 random points were generated across the different layers, 

followed by extracting the raster values of each variable layer in associated random points. The two 

geostatistics analysis models that were used are the geographically weighted regression (GWR) and 

the hot-spot analysis.  

The GWR was designed to consider the location of points, so that spatially varying relationships 

could be explored [68,73,74]. The model outputs indicate the relations between the NDVI or CI and 

the four explanatory variables in the different years. The model enables us to understand what effects 

the explanatory variables have on the variability of NDVI or CI values in the study system. The GWR 

results include patterns of residuals, residual squares, R2 and adjusted and spatial autocorrelation. 

The model with the highest R2 for each explanatory variable or combination of variables has 

the strongest effect on the NDVI or CI.  

The second model, the hot-spot analysis, carried out using the Getis-Ord Gi statistic, was used to 

define the clustered regions and obtain a z-score output for every point [75]. The z-scores are measures 

of standard deviation that reflect the significance of the clustering. Extreme z-scores mean maximum 

clustering. In addition, the hot-spot analysis method indicates whether the cluster has high values (hot 

spot) or low values (cold spot). The final output displays where high and low values are clustered and 

whether the clustering is significant. 

2.7. Statistical Analysis 

Analyses of variances for the change in NDVI and CI between the different polygons were tested 

using an analysis of variance (ANOVA) for repeated measurement and a one-way ANOVA for the 
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average sample for each polygon. The separation of means was subjected to a Tukey test to detect 

significant differences. The differences between the change in NDVI and CI values were tested for 

their level of significance at p = 0.05 between different management regime polygons. 

3. Results  

3.1. Classification 

Figure 5A,B presents the vegetation cover, in terms of NDVI, calculated for the years 2003 and 

2010. Figure 5C,D presents the biocrust cover, in terms of CI, calculated for the years 2003 and 2010. 

Figure 5E,F presents the landscape cover classification, classified into six classes, calculated for the years 

2003 and 2010. These input results were used to identify the spatial and temporal changes in the system, by 

analyzing the whole study system and polygons with respect to the different management regimes.  

Figure 5. (A,B) NDVI images; (C,D) CI images; and (E,F) landscape classification from 

2003 and 2010.  
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Figure 5. Cont. 
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Figure 5. Cont. 

 

3.2. Identified Changes in Land Cover 

The degradation processes and the mortality of the shrubs in the Shaked Park have been observed as 

white patches caused by the accumulation of hundreds of shells on the ground. In 2003, before the 

consecutive drought years, these snails used to feed on and hide in the shrubs (Figure 6A–C).  

We calculated the land cove features of the desertified shrubland by classifying an airborne image 

taken in year 2009. The evaluation of the landscape cover included: 39.8% biocrust cover; 29.6% 

organic matter cover, 25.6% snail shell accumulation; and only 5% woody vegetation cover (shrubs) 

(Figure 6D–E). This phenomenon of shrub mortality may evidence the degradation processes and the 

collapse of this shrubland system.  

Figure 6. (A) Shaked Park in 2003 with sparse shrub cover; (B) Shaked Park in 2009 

covered by white patches of snail shells; (C) accumulation of dying snail shells under a died 

shrub; (D) airborne true color photograph of Shaked Park in 2009; and (E) classification of 

the airborne photograph with the percent cover of the ground features.  
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3.3. Change Detection Models  

Table 1 summarizes the mean and standard deviation (SD) of the two change detection models. 

Positive means indicate improvement in CI or in NDVI, while negative means indicate degradation. 

The threshold value was based on SD from the mean change in cases where the mean was between 0.1 

and +0.1. When the mean was either smaller than −0.1 or greater than +0.1, the changes were set to 

zero as the reference point and were not related to the mean. In this study, since NDVI had mainly 

negative changes, the categories start from zero by adding half an SD towards the negative changes 

(Figure 7A,C). On the other hand, since CI had mainly positive changes, categories start from zero by 

adding one SD towards the positive changes (Figure 7B,D). Table 2 represents the results of 

the ΔNDVI and ΔCI for the different polygons. Significant differences were found in the NDVI 

between the managed RHS and the managed river stream and the other unmanaged regimes, with 

a considerably higher ΔNDVI. The ΔCI showed positive changes in most of the areas where no 

significant differences were found between the management regimes.  

Tables 1. Change detection analysis between images, along with the change statistics, 

mean and SD, for the NDVI and the CI. 

Image 1 Image 2 
ΔNDVI ΔCI 

Mean SD Mean SD 
17 September 2003 28 October 2010 −0.83 0.041 0.131 0.03 

Table 2. Image differencing results for the NDVI and the CI products for selected images 

along with the change statistics, mean and SD in different polygons that represent 

management regimes. The polygons that were significantly different between management 

regimes are marked in bold.  

Polygons for Management Regime 
ΔNDVI ΔCI 

Mean SD Mean SD 
Desertified shrubland with no grazing (LTERs) −0.086 a 0.021 0.149 a 0.031 

Desertified shrubland with grazing −0.098 a 0.025 0.135 a 0.025 
Unmanaged RHS −0.094 a 0.028 0.133 a 0.032 

Managed RHS −0.061 b 0.027 0.137 a 0.034 
Managed river stream −0.061 b 0.025 0.141 a 0.034 

Small letters represent significant differences between management regimes. 

In addition, change detection products were used in order to analyze category changes in 

the landscape cover classification. The input to the change classification model included two 

classification maps. The results of the kappa coefficient and overall accuracy that were calculated from 

the confusion matrix for the 2003 and 2010 classifications are presented in Table 3. The change 

classification matrix is presented in Table 4, showing the shifts between classes. Pixels that have 

changed from one class to another are presented in Figure 8. This map emphasizes the areas that are 

undergoing changes in landscape cover. Extensive changes are apparent, mainly in the pit patches of 

the RHSs that appear as contour lines. Thirty-nine percent of the total study area changed in 

classification from 2003 to 2010. Among all of the classes, the dark and light matrix classes went 
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through the largest change (16%) of the combined areas of both classes. Table 5 presents the changes 

in the categories of the landscape cover classification from 2003 to 2010. The results show large 

changes in the number of pixels of the white and dark matrices: an increase in the white matrix, 

representing an expansion in light biocrusts and bare soil, and a reduction in the dark matrix, 

representing a decrease in the pit and sink areas and in soil organic matter. 

Table 3. Kappa coefficient and the overall accuracy for the landscape cover classification 

input images.  

Classification Images Kappa Coefficient Overall Accuracy 

17 September 2003 93.61% 0.92 
28 October 2010 92.26% 0.91 

Figure 7. Products of image change detection in NDVI and in CI, along with the respective 

frequency histograms of the change categories; (A) image differencing of NDVI between 

2003 and 2010; (B) image differencing of CI between 2003 and 2010; (C) change frequency 

histogram for NDVI; (D) change frequency histogram for CI. 
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Figure 7. Cont. 

 

Table 4. Changes in the landscape cover classification from 2003 to 2010 by class 

categories. The unchanged pixels are marked in bold along the diagonal. 

Classes 
Trees and Woody 

Vegetation 

White 

Matrix 

Light 

Matrix 

Dark 

Matrix 
Shadow 

Very Dark 

Matrix 

Trees and woody 

vegetation 
10,445 119 459 6741 3497 1836 

White matrix 247 140,605 79,989 10,239 67 587 

Light matrix 1701 138,631 590,013 221,439 672 6380 

Dark matrix 13,835 25,539 259,654 587,707 8155 57,152 

Shadow 2741 98 188 3461 2684 1760 

Very dark matrix 1342 720 1967 27,961 1773 17,667 

Unchanged pixels 1,349,121 

Changed pixels 878,950 
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Figure 8. Change detection product for the landscape classification between 2003 

and 2010.  

 

Table 5. Number of pixels in each class in the years 2003 and 2010 and the total change in 

the number of pixels. 

Class 
Number of Pixels 

in 2003 

Number of Pixels 

in 2010 

Change in the Number of Pixels from 

2003 to 2010 

Trees and woody 

vegetation 
23,097 30,311 7214 

White matrix 231,734 305,712 73,978 

Light matrix 958,836 932,270 −26,566 

Dark matrix 952,042 857,548 −94,494 

Shadow 10,932 16,848 5916 

Very dark matrix 51,430 85,382 33,952 

3.4. GWR Statistical Tests  

The effect of environmental variables (landscape classification, slope, solar radiation and distance 

from river stream) on NDVI and CI was studied for each of the two years (2003 and 2010). The spatial 

analysis results for the GWR statistical tests are shown in Table 6 for the NDVI in both years, with 

the statistical models that were performed, R2 and adjusted R2 values. The results indicate that in the year 

2003, the landscape classification is the best explanatory variable for the NDVI (R2 = 0.58 and 

R2
adjusted = 0.52). Nevertheless, the group of all explanatory variables that gave the best explanation of 

NDVI in the year 2003 was the combination of all four environmental variables (R2 = 0.82 and 

R2
adjusted = 0.74). However, the GWR results indicate that in the year 2010, the best explanatory 

variable for the NDVI was distance from river stream (R2 = 0.69 and R2
adjusted = 0.62). In both the 2003 

and the 2010 results, joined explanatory environmental variables gave higher correlation results for 

the NDVI. The combination of the variables of distance from river stream, solar radiation and slope 

showed a higher spatial correlation to the NDVI (R2 = 0.95 and R2
adjusted = 0.93). The changes between 
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the years in the environmental explanatory variables of the NDVI can be explained due to the extreme 

landscape changes in this system.  

Table 6. GWR results for the NDVI extracted from the images in the years 2003 and 2010, 

as the dependent variable, versus the explanatory environmental variables. The bold values 

are the highest R2 results for each year. 

Dependent Field and Explanatory Field 
R2  

(2003) 

R2
Adjusted  

(2003) 

R2  

(2010) 

R2
Adjusted 

(2010) 

NDVI versus landscape classification 0.58 0.52 0.65 0.60 

NDVI versus distance from river stream 0.47 0.37 0.69 0.62 

NDVI versus slope 0.48 0.35 0.68 0.59 

NDVI versus solar radiation 0.44 0.33 0.62 0.52 

NDVI versus landscape classification and slope 0.706 0.60 0.76 0.68 

NDVI versus landscape classification and solar radiation 0.73 0.64 0.77 0.76 

NDVI versus solar radiation and slope 0.49 0.33 0.88 0.82 

NDVI versus landscape classification, distance from river 

stream and solar radiation 
0.711 0.604 0.83 0.76 

NDVI versus distance from river stream and solar radiation 0.52 0.43 0.95 0.93 

NDVI versus landscape classification, solar radiation, slope 

and distance from river stream 
0.82 0.74 0.77 0.71 

Table 7. GWR results for the CI extracted from the images in the years 2003 and 2010, as 

the dependent variable, versus the explanatory environmental variables. The bold values 

are the highest R2 results for each year. 

Dependent Field and Explanatory Field 
R2 

(2003) 

R2
Adjusted 

(2003) 

R2 

(2010) 

R2
Adjusted 

(2010) 

CI versus landscape classification 0.46 0.39 0.38 0.27 

CI versus distance from river stream 0.47 0.37 0.28 0.17 

CI versus slope 0.34 0.28 0.25 0.144 

CI versus solar radiation 0.63 0.55 0.47 0.36 

CI versus landscape classification and slope 0.61 0.46 0.52 0.35 

CI versus landscape classification and solar radiation 0.70 0.60 0.62 0.47 

CI versus solar radiation and slop 0.59 0.46 0.49 0.30 

CI versus landscape classification, distance from river stream 

and solar radiation 
0.75 0.64 0.76 0.69 

CI versus distance from river stream, solar radiation and slope 0.78 0.71 0.77 0.71 

CI versus landscape classification, distance from river stream,  

solar radiation and slope 
0.79 0.70 0.81 0.72 

The results of the GWR statistical tests for the CI in both years are shown in Table 7, with 

the statistical models that were performed, R2 and adjusted R2 values. The results showed a similar 

pattern in both years. They indicate that the solar radiation was the best explanatory variable for the CI 

in both years (R2 = 0.63 and R2
adjusted = 0.55 in 2003, and R2 = 0.47 and R2

adjusted = 0.36 in 2010). 

Furthermore, as in the NDVI results, joined explanatory environmental variables gave higher spatial 

correlation results for the CI. The best combination of the explanatory environmental variables was 



Remote Sens. 2014, 6 8154 

 

 

the combination of all four environmental variables, showing a higher spatial correlation to the CI  

than any sole variable in both years (R2 = 0.79 and R2
adjusted = 0.70 in 2003, and R2 = 0.81 and  

R2
adjusted = 0.72 in 2010).  

3.5. Hotspot Analysis: Spatial Clustering 

The results of the hotspot analyses for the NDVI with high and low clustering values in 2003 and in 

2010 are shown in Figure 9A,B, respectively.  

Figure 9. Hotspot analysis spatial clustering for the NDVI extracted from the 2003 and 2010 

images: (A) hotspot analysis spatial clustering from the 2003 NDVI image; and (B) hotspot 

analysis spatial clustering from the 2010 NDVI image. 
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The pattern analysis enables us to observe changes in the spatial cover, created by random 

processes. Changes in NDVI with significantly high p-values indicate clear clustering, while low  

p-values mean that the observed spatial pattern is the result of a random process. Statistically, the 

higher the positive z-score values, the more intense the clustering of high values (hot spot), whereas 

the more negative the z-score values, the more intense the clustering of low values (cold spot). 

The results of the hotspot analysis from 2003 show a clear clustering of high values (hot spot) in the 

large river stream (third stream order) with a high positive z-score. This clustering is intensified in the 

results from the 2010 hotspot analysis. The results are in accordance with the positive changes in the 

NDVI, mainly in the large river stream. However, the negative z-scores mainly represent areas with 

biocrust expansion. In this case, the clustering of cold spots decreased in 2010. These results are also 

complementary with the CI change model that showed a positive development in the CI, but with no 

significant differences between the polygons in the different management regimes. 

4. Discussion 

A drier climate affects ecosystem functions through changes in the landscape structure that, in turn, 

affect the functional source-sink relations of abiotic and biotic flows through a reduction of the sink 

patches and an expansion of the source patches [76]. The changes in landscape mosaic determine the 

spatial distribution of water, transported solutes, sediments, diversity and productivity in dryland 

systems [5,38,77,78]. In these systems, the eco-hydrological functioning of watersheds on a small 

scale (within slope flows) and a larger scale (slope-river stream flows) is based on the spatial 

configuration of runoff-producing source areas (biocrusts) and runoff-absorbing sink areas (shrubs or 

human-made pits) in the watershed. 

Redistribution of water and overland runoff collection by human-made sinks, such as contour 

catchments, in order to improve productivity, diversity and ecosystem services, are widely used 

throughout the world (e.g., [33,79–81]). Previous studies have shown that RHSs enhance ecosystem 

function by increasing soil organic matter accumulation in the pits [4,25,77], increasing active carbon 

rates and nutrient accumulation, reducing the leakage of resources by accumulating runoff water and 

nutrients and preventing soil erosion [4,25]. In the current study, we used the knowledge gained about 

the relationships between the structure and function of natural and human-made, two-phase mosaics on 

a small scale to interpret them with regard to large-scale changes. We evaluated changes in vegetation, 

soil and landscape cover on the watershed scale, due to drought events and the effect of human-made 

RHSs on landscape structure. 

4.1. Spatial and Temporal Changes in Vegetation Cover 

The negative change in the NDVI shows that the whole system is in a degradation process in 

relation to energy flow. Drought years seriously affect the amount of water available for the woody 

vegetation, significantly reducing vegetation production as a result of water shortage. This effect is 

well demonstrated by the significant decrease in NDVI values in the unmanaged areas between the 

years 2003 and 2010. However, our results show significantly higher NDVI in the RHS and in the 

managed river stream. The effect of the RHS redoes the rate of resource leakage on various scales and 

on energy flow and nutrient fluxes in the ecosystem. However, the reduction in NDVI change values 
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occurs also in the managed RHS and indicates that the whole ecosystem (managed and unmanaged) is 

under degradation processes. These results can explain the different dynamics of the redistribution of 

water and nutrients in managed and unmanaged systems on various scales. The significantly higher 

NDVI values in the managed RHS are due to a reduction in resource leakage through reduced overland 

runoff-producing, an increase in rainfall absorption and the prevention of soil erosion in the human-made 

sink patches. The RHS reduces the degradation rate in the system by adding artificial sink patches that 

overcome the reduction of the natural shrub sink patches as a consequence of drought [4,25,36].  

The significantly high NDVI values in the third order river stream can indicate the higher contribution 

of water, soil, nutrients and organic matter from the crusted slope to the river that has a positive effect 

on the natural and planted woody vegetation in the river stream. We are, therefore, suggesting that the 

drought changes the scale of the source-sink relationships; at present, the whole slope, due to a high 

biocrust cover, is a source of abiotic and biotic flows, and the river is the sink. However, more studies 

from multiple sites over long-term periods are needed. In addition, additional observation and 

experimental studies that focus on links and feedbacks between hydrological, pedological and 

ecological processes at the watershed scale are needed. 

The changes that were observed in the GWR model between the years 2003 and 2010 in the 

environmental variables can explain the spatial variance by the high changes (39%) in the source-sink 

relationship. These changes are mainly due to the redistribution process of water and sediment.  

The hotspot analyses showed clear clustering in the third stream order that intensified from 2003 to 2010. 

The hotspot analysis, showing the processes of resources flowing from the slope into the river streams, 

suggests that redistribution influences the spatial clustering, not only of soil, vegetation and ecosystem 

properties [38], but also of hydrological and erosion sedimentation [82], in this degraded ecosystem. 

However, more hydrological studies are needed.  

4.2. Spatial and Temporal Changes of Biocrust Cover 

The development of biocrusts in arid lands contributes positively to the soil’s build up, stability, 

fertility and runoff generation. Additionally, they are of high importance regarding the landscape’s 

two-phase mosaic structure that drives soil and vegetation patterns and the redistribution of overland 

runoff in arid areas [4,7,11,83]. However, there is a tipping point where the functioning of the 

biocrusts changes the state of the system from a resource-conserving ecosystem into a resource-leaking 

ecosystem. This state change occurs when the crust cover is high in relation to the shrub cover, and 

this state is a typical desertification state. Therefore, the state of soil crusts within the landscape mosaic 

is important for desertification determination and for studies of climate change effects on 

desertification [44,59]. The present study shows the ability to detect and to map biocrust development, 

in semi-arid areas after drought years and the utility of applying spectral CI as an indicator of 

desertification processes. The results show positive changes in the CI with the expansion of the biocrusts 

in the ecosystem. The reduction in the woody vegetation patches and the biocrust expansion increased 

resource leakage in the ecosystem on the small, as we already indicated [7,11,83], and the large scale. 

Several studies have shown that on a sandy substrate, biocrusts stabilize shifting dunes [84]. However, 

on a loess substrate, as in our case, biocrusts increase resource and nutrient loss with runoff [28,44,85] 

and reduce the ability of plants to germinate [86]. The decreased production resulting from crust patch 



Remote Sens. 2014, 6 8157 

 

 

expansion indicates desertification processes in our study area as a result of high frequency drought 

events [87]. Therefore, we suggest that CI could be an effective indicator for detecting large-scale 

desertification processes due to climate change and as a tool for studying biocrust dynamics [84]. 

CI is an effective indicator due to the signals driven by the external morphology of the biocrusts, 

whose development and species composition are highly affected by climate (radiation, temperature, 

soil structure and moisture). Changes in signals are driven by changes in the morphology of the soil 

crust by biocrust development that is determined by low moisture (drought) and high radiation.  

This explains why solar radiation was the best explanatory variable for the CI in both years. Other studies 

have shown that the species composition of biocrusts in the interslope is dependent on radiation [88]. 

Detecting changes in the morphology of the biocrusts by CI is important for understanding how materials, 

such as dust, water and seeds, move across the soil surface covering vast regions in drylands  

worldwide [57]. Therefore, CI could serve as a universal index for determining the function of a two-phase 

landscape mosaic in relation to its hydro-geological and biological components. CI indicates 

the potential of the system to retain or lose water, soil and nutrients and to utilize these resources to 

produce biomass and to conserve biodiversity.  

4.3. Spatial Patterns of Landscape Cover’s Structure and Function 

This study demonstrates the importance of identifying the combined climate and human-driven 

landscape cover changes in landscape structure as an indicator for changes in its hydro-ecological 

functions. In semi-arid areas, the function is dependent on two types of structures: (1) structures that 

enhance the movement of abiotic and biotic elements across the landscape; and (2) structures that 

intercept the movement of these elements and conserve them in resource-enriched patches. The first 

structures are either formed naturally by cyanobacteria, lichens and mosses as ecosystem engineers and 

are known as biocrusts or by humans using mechanical means and are known as physical crusts  

(e.g., [4,28,44]). The second structures are either formed naturally by plants and animals or 

intentionally by humans in the form of pits and mounds. The two types of structures are linked in their 

functionality; the crust contributes biotic and abiotic elements to the pits and the mounds that make 

them resource-enriched patches. These processes create a landscape mosaic made of resource-enriched 

and resource-deprived patches. The number, size and configuration of the two patch types control 

resource conservation and leakage on the patch, slope, river stream and the watershed scales.  

Soil and nutrient conservation and leakage in drylands occur in pulses driven by rainfall duration 

and intensity [89]. The frequency and magnitude of resource conservation or leakage are controlled by 

pulse intensity and landscape mosaic, and therefore, they are spatial-scale dependent. Studies have shown 

that on a slope scale, the magnitude of water leakage increases with the spatial scale [7]. On a watershed 

scale, studies have found that the frequency of runoff generation in the river streams is negatively related to 

watershed size [40], whereas the magnitude is positively related to watershed size [40,90]. The  

scale-dependent principles, in relation to resource conservation and leakage, were demonstrated in this 

study. Before the drought, due to the high abundance of shrubs on the slope and the river stream, most 

of the resources were conserved on the slope and in the first order watershed. After the drought, with 

the increase of CI, water, soil and nutrients leaked from the slope and from the first and second stream 

order and accumulated in the large river stream (third stream order). The drought-induced changes, on 
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the scale of resource transportation, are the main causes of desertification on the small watershed 

scales and of the increase of plant productivity in the large river stream. 

Our study shows that mapped changes in NDVI and CI across the landscape demonstrate that 

human intervention, by constructing RHSs, can mitigate the effect of drought and function as  

a hydro-ecological ecosystem. RHS mimics the function of the shrub patches through the construction 

of large pits that increase the sink function in the landscape. In addition, the sink function increases by 

changing the spatial configuration of the pits. While the shrubs form a spot pattern, the contour 

catchment system creates a bended pattern that prevents resource leakage. In the RHS, water and 

materials flow from the natural matrix dominated by soil crust to the human-made catchment as an 

integrated system that forms highly resource-enriched patches.  

Our results show that the RHS is an effective system for reducing the rate and counteracting 

the negative effects of drought. However, more studies from multiple sites over greater time periods 

are needed. In addition, more observations and experimental studies that are focused on links and 

feedbacks among hydrological, pedological and ecological processes at the watershed scale are required 

to validate this conclusion. RHSs prevent leakage, because they are located on the slope where 

the magnitude of runoff pulses is low [11]. RHS is an adaptive system, functioning as a source-sink 

system that can be controlled by adjusting: (1) the distances between the banded catchments; 

(2) the number of banded contour catchments along the slopes; and (3) the proportional size of 

the contour catchment area in the RHS and the natural source matrix area [4,25]. However, there are 

constraints on the number of contour catchments, since there is a trade-off between the distribution of 

runoff to the slope and to the large river stream. Too many contour catchments limit the movement of 

water to the large river stream and reduce its productivity. This demonstrates the complexity of 

landscape management through adding sink functions as a means for combating desertification and 

mitigating climate change. 

5. Summary and Conclusions 

This study evaluated the changes in soil, vegetation, and landscape cover due to a series of drought 

years in a managed and unmanaged desertified shrubland in the northern Negev, Israel. This was done 

using two spectral indices (i.e., NDVI, CI) combined with landscape classification. In addition, the 

study examined the environmental effects on the indices behavior and their statistical clustering after a 

drought period. Our main conclusions are as follows: 

a. Two opposite trends indicate ecosystem degradation (39% of total area). The NDVI shows 

negative change (mean change = −0.83; SD = 0.041 indicating vegetation reduction) while the 

CI shows positive change (mean change = 0.131; SD = 0.03 indicating expansion of biocrusts). 

The measured changes represent redistribution processes of water, sediments, and seeds in a 

watershed scale.  

b. The study utilizes a novel combination of a spectral, spatial, and temporal analysis approach 

based on the use of remote sensing and geographic information systems. With this in mind, 

short-term landscape changes following a period of successive drought years are identified by 

the integrated framework.  
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c. More specifically, for the first time spectral CI is applied as a change detection indicator in 

conjunction with NDVI. This indicator is used to quantify landscape degradation processes in a 

watershed scale, especially in arid environment where high vegetation is scarce. 

d. Future studies should test the success of this framework in different sites and different 

degradation states. In addition, spaceborne remote sensing (multispectral and hyperspectral) 

can assist in upscaling the hydrological, pedological, and ecological processes to a regional scale. 

Acknowledgments 

Financial support by the Transnational Access to Research Infrastructures activity in the 7th 

Framework Program of the EC under the ExpeER project (REA grant Agreement No. 262060) for 

conducting the research is gratefully acknowledged. In addition, the research is funded by the Forest 

Department of the Jewish National Fund (JNF), Israel.  

Author Contributions 

Tarin Paz-Kagan initiated the research and was the principal to all phases of the investigation.  

All other co-authors equally contributed to the study and to the manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References  

1. Valentin, C.; d’Herbès, J.M.; Poesen, J. Soil and water components of banded vegetation patterns. 

Catena 1999, 37, 1–24. 

2. Mendoza-Aguilar, D.; Cortina, J.; Pando-Moreno, M. Biological soil crust influence on 

germination and rooting of two key species in a Stipa tenacissima steppe. Plant Soil 2014, 

375, 267–274. 

3. Aguiar, M.N.R.; Sala, O.E. Patch structure, dynamics and implications for the functioning of arid 

ecosystems. Trends Ecol. Evol. 1999, 14, 273–277. 

4. Eldridge, D.; Zaady, E.; Shachak, M. Microphytic crusts, shrub patches and water harvesting in 

the Negev Desert: The shikim system. Landsc. Ecol. 2002, 17, 587–597. 

5. Li, X.J.; Li, X.R.; Song, W.M.; Gao, Y.P.; Zheng, J.G.; Jia, R.L. Effects of crust and shrub 

patches on runoff, sedimentation, and related nutrient (C, N) redistribution in the desertified 

steppe zone of the Tengger Desert, northern China. Geomorphology 2008, 96, 221–232. 

6. Moreno-de las Heras, M.; Saco, P.M.; Willgoose, G.R.; Tongway, D.J. Assessing landscape structure 

and pattern fragmentation in semiarid ecosystems using patch-size distributions. Ecol. Appl. 2011, 

21, 2793–2805. 

7. Shachak, M.; Pickett, S.T.A. Chapter 8. Linking ecological understanding and application: 

patchiness in a dryland system. In The Ecological Basis for Conservation—Heterogeneity, 

Ecosystems, and Biodiversity; Pickett, S., Ostfeld, R.S., Shachak, M., Likens, G., Eds.;  

Springer-Verlag: New York, NY, USA, 1997; Volume 21, pp. 108–119. 



Remote Sens. 2014, 6 8160 

 

 

8. Jones, C.G.; Lawton, J.H.; Shachak, M. Positive and negative effects of orfanisms as physical 

ecosystem engineers. Ecology 1997, 78, 1946–1957. 

9. Segoli, M.; Ungar, D.U.; Shachak, M. Shrube enhance resilience of semi-arid ecosystem by 

engineering regrowth. Ecohydrology 2008, 1, 330–339. 

10. Segoli, M.; Ungar, E.D.; Shachak, M. Fine-scale spatial heterogeneity of resource modulation in 

semi-arid “islands of fertility”. Arid Land Res. Manag. 2012, 26, 344–354. 

11. Shachak, M.; Sachs, M.; Moshe, I. Ecosystem management of desertified shrublands in Israel. 

Ecosystems 1998, 1, 475–483. 

12. Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate 

extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. 

13. De Ridder, K.; Gallée, H. Land surface-induced regional climate change in southern Israel.  

J. Appl. Meteorol. 1998, 37, 1470–1485. 

14. Glantz, M.H.; Orlovsky, N. Desertification: A review of the concept. Desertif. Control Bull. 1983, 

9, 15–22. 

15. Kefi, S.; Rietkerk, M.; Alados, C.L.; Pueyo, Y.; Papanastasis, V.P.; ElAich, A.; de Ruiter, P.C. 

Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems. Nature 

2007, 449, 213–217. 

16. Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; 

Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: 

Building a science for dryland development. Science 2007, 316, 847–851. 

17. Verstraete, M.M.; Schwartz, S.A. Desertification and global change. Vegetation 1991, 91, 3–13. 

18. Ravi, S.; Breshears, D.D.; Huxman, T.E.; D’Odorico, P. Land degradation in drylands: 

Interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology 2010, 

116, 236–245. 

19. Adams, H.D.; Guardiola-Claramonte, M.; Barron-Gafford, G.A.; Villegas, J.C.; Breshears, D.D.; 

Zou, C.B.; Troch, P.A.; Huxman, T.E. Temperature sensitivity of drought-induced tree mortality 

portends increased regional die-off under global-change-type drought. Proc. Natl. Acad. Sci. USA 

2009, 106, 7063–7066. 

20. Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; 

Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and 

heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 

2010, 259, 660–684. 

21. Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev.: Clim. Chang. 2011, 

2, 45–65. 

22. Le Houérou, H.N. Climate change drought and desertification. Arid Environ. 1996, 34, 133–185. 

23. Mulligan, M. Modelling the geomorphological impact of climatic variability and extreme events 

in a semi-arid environment. Geomorphology 1998, 24, 59–78. 

24. Boeken, B.; Orenstein, D. The effect of plant litter on ecosystem properties in a Mediterranean 

semi-arid shrubland. J. Veg. Sci. 2001, 12, 825–832. 

25. Eldridge, D.J.; Zaady, E.; Shachak, M. Infiltration through three contrasting biological soil crusts 

in patterned landscapes in the Negev, Israel. Catena 2000, 40, 323–336. 



Remote Sens. 2014, 6 8161 

 

 

26. West, N.E. Structure and function of microphytic soil crusts in wildland ecosystems of arid to 

semi-arid regions. In Advances in Ecological Research; Begon, M., Fitter, A.H., Macfadyen, A., Eds.; 

Academic Press Inc.: New York, NY, USA, 1990; Volume 20, pp. 179–223. 

27. KrÖPfl, A.I.; Cecchi, G.A.; Villasuso, N.M.; Distel, R.A. Degradation and recovery processes in 

semi-arid patchy rangelands of northern Patagonia, Argentina. Land Degrad. Dev. 2013, 24, 393–399. 

28. Zaady, E.; Offer, Z.Y.; Shachak, M. The content and contributions of deposited aeolian organic 

matter in a dry land ecosystem of the Negev Desert, Israel. Atmos. Environ. 2001, 35, 769–776. 

29. Bertrand, B.; Shachak, M. Desert plant communities in human-made patches-implications for 

management. Ecol. Appl. 1994, 4, 702–716. 

30. Schlesinger, W.H.; Raikes, J.A.; Hartley, A.E.; Cross, A.F. On the spatial pattern of soil nutrients 

in desert ecosystems. Ecology 1996, 77, 364–374. 

31. Mussery, A.; Leu, S.; Lensky, I.; Budovsky, A. The effect of planting techniques on arid 

ecosystems in the northern Negev. Arid Land Res. Manag. 2013, 27, 90–100. 

32. Turner, M.G.; O’Neill, R.V.; Gardner, R.H.; Milne, B.T. Effects of changing spatial scale on the 

analysis of landscape pattern. Landsc. Ecol. 1989, 3, 153–162. 

33. Zhang, S.; Carmi, G.; Berliner, P. Efficiency of rainwater harvesting of microcatchments and the 

role of their design. J. Arid Environ. 2013, 95, 22–29. 

34. De Winnaar, G.; Jewitt, G.P.W.; Horan, M. A GIS-based approach for identifying potential runoff 

harvesting sites in the Thukela River Basin, South Africa. Phys. Chem. Earth Parts A/B/C 2007, 

32, 1058–1067. 

35. Sache, M.; Moshe, I. Savannization: An ecologecal vible menagement approach to desertified regions. 

In Arid Lands Management: Toward Ecological Sustainability; Hoekstra, T., Moshe, S., Eds.; 

University of Illinois Press: Champaign, IL, USA, 1999; pp. 248–253. 

36. Zaady, E.; Shachak, M.; Moshe, I. Ecological approach for afforestation in arid regions of 

the northern Negev Desert, Israel. In Deforestation, Environment, and Sustainable Development: 

A Comparative Analysis; Vajpeyi, D.K., Ed.; Greenwood Publishing Group, Inc.: Praeger, CT, 

USA, 2001; pp. 219–238.  

37. Buis, E.; Veldkamp, A. Modelling dynamic water redistribution patterns in arid catchments in the 

Negev Desert of Israel. Earth Surf. Process. Landf. 2008, 33, 107–122. 

38. Imeson, A.C.; Prinsen, H.A.M. Vegetation patterns as biological indicators for identifying runoff 

and sediment source and sink areas for semi-arid landscapes in Spain. Agric. Ecosyst. Environ. 

2004, 104, 333–342. 

39. Maestre, F.; Cortina, J. Spatial patterns of surface soil properties and vegetation in a Mediterranean 

semi-arid steppe. Plant Soil 2002, 241, 279–291. 

40. Karnieli, A.; Ben-Asher, J.; Dodi, A.; Issar, A.; Oron, G. An empirical approach for predicting 

runoff yield under desert conditions. Agric. Water Manag. 1988, 14, 243–252. 

41. Mu, Q.; Zhao, M.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A remotely sensed global 

terrestrial drought severity index. Bull. Am. Meteorol. Soc. 2012, 94, 83–98. 

42. Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher 

northern latitude normalized difference vegetation index and growing season trends from 1982 to 

1999. Int. J. Biometeorol. 2001, 45, 184–190. 



Remote Sens. 2014, 6 8162 

 

 

43. Karnieli, A. Development and implementation of spectral crust index over dune sands. Int. J. 

Remote Sens. 1997, 18, 1207–1220. 

44. Grishkan, I.; Zaady, E.; Nevo, E. Soil crust microfungi along a southward rainfall gradient in 

desert ecosystems. Eur. J. Soil Biol. 2006, 42, 33–42. 

45. Zaady, E.; Groffman, P.; Shachak, M. Nitrogen fixation in macro- and micro-phytic patches in the 

Negev Desert. Soil Biol. Biochem. 1998, 30, 449–454. 

46. Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation 

interactions that maintain soil functions. Agronomy 2002, 94, 38–47. 

47. Running, S.; Loveland, T.R.; Pierce, L.L.; Nemani, R.R.; Hunt, E.R. A remote sensing based 

vegetation classification logic for global land cover analysis. Remote Sens. Environ. 1995, 51, 39–48. 

48. Running, S.W.; Coughl, J.C. A general model of forest ecosystem processes for regional 

applications I. Hydrological balance, canopy gas exchange and primary production processes. 

Ecol. Model. 1988, 42, 125–154. 

49. Running, S.W.; Nemani, R.; Heinsch, F.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous 

satellite-derived measure of global terrestrial primary production. BioScience 2004, 54, 547–560. 

50. TurHorst, C.P.; Munguia, P. Measuring ecosystem function: Consequences arising from variation 

in biomass-productivity relationships. Community Ecol. 2008, 9, 39–44. 

51. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf 

area index. Remote Sens. Environ. 1997, 62, 241–252. 

52. Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test 

using senescent tree leaves. Int. J. Remote Sens. 1998, 19, 657–675. 

53. Goward, S.; Tucker, C.; Dye, D. North American vegetation patterns observed with the NOAA-7 

Advanced Very High Resolution Radiometer. Vegetatio 1985, 64, 3–14. 

54. Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global correlation analysis for NDVI and climatic 

variables and NDVI trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. 

55. Chen, J.; Zhang, M.Y.; Wang, L.; Shimazaki, H.; Tamura, M. A new index for mapping  

lichen-dominated biological soil crusts in desert areas. Remote Sens. Environ. 2005, 96, 165–175. 

56. Weber, B.; Olehowski, C.; Knerr, T.; Hill, J.; Deutschewitz, K.; Wessels, D.C.J.; Eitel, B.; Büdel, B. 

A new approach for mapping of biological soil crusts in semidesert areas with hyperspectral 

imagery. Remote Sens. Environ. 2008, 112, 2187–2201. 

57. Rozenstein, O.; Karnieli, A. Identification and characterization of biological soil crusts in a sand 

dune desert environment across Israel-Egypt border using LWIR emittance spectroscopy. J. Arid 

Environ. 2014, doi:10.1016/j.jaridenv.2014.01.017. 

58. Qin, Z.; Li, W.; Burgheimer, J.; Karnieli, A. Quantitative estimation of land cover structure in 

an arid region across the Israel-Egypt border using remote sensing data. J. Arid Environ. 2006, 66, 

336–352. 

59. Karnieli, A.; Kidron, G.J.; Glaesser, C.; Ben-Dor, E. Spectral characteristics of cyanobacteria soil 

crust in semiarid environments. Remote Sens. Environ. 1999, 69, 67–75. 

60. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support 

vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. 

61. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. 

Remote Sens. Environ. 1991, 37, 35–46. 



Remote Sens. 2014, 6 8163 

 

 

62. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 

2002, 80, 185–201. 

63. Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 

2004, 25, 2365–2401. 

64. Tian, J.; Cui, S.; Reinartz, P. Building change detection based on satellite stereo imagery and 

digital surface models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 406–417. 

65. Mas, J.F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. 

Remote Sens. 1999, 20, 139–152. 

66. Lambin, E.F.; Strahlers, A.H. Change-vector analysis in multitemporal space: A tool to detect and 

categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens. 

Environ. 1994, 48, 231–244. 

67. Johnson, R.D.; Kasischke, E.S. Change vector analysis: A technique for the multispectral 

monitoring of land cover and condition. Int. J. Remote Sens. 1998, 19, 411–426. 

68. Foody, G.M. Geographical weighting as a further refinement to regression modelling: An 

example focused on the NDVI–rainfall relationship. Remote Sens. Environ. 2003, 88, 283–293. 

69. Volcani, A.; Karnieli, A.; Svoray, T. The use of remote sensing and gis for spatio-temporal analysis 

of the physiological state of a semi-arid forest with respect to drought years. For. Ecol. Manag. 

2005, 215, 239–250. 

70. Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global 

vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. 

71. Lambin, E.F.; Strahler, A.H. Indicators of land-cover change for change-vector analysis in 

multitemporal space at coarse spatial scales. Int. J. Remote Sens. 1994, 15, 2099–2119. 

72. Kumar, L.; Skidmore, A.K.; Knowles, E. Modelling topographic variation in solar radiation in a 

GIS environment. Int. J. Geogr. Inf. Sci. 1997, 11, 475–497. 

73. Wang, Q.; Ni, J.; Tenhunen, J. Application of a geographically-weighted regression analysis to 

estimate net primary production of chinese forest ecosystems. Glob. Ecol. Biogeogr. 2005, 

14, 379–393. 

74. Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. 

Soc.: Ser. D (Stat.) 1998, 47, 431–443. 

75. Reese, D.C.; Brodeur, R.D. Identifying and characterizing biological hotspots in the northern 

California current. Deep Sea Res. Part II: Top. Stud. Oceanogr. 2006, 53, 291–314. 

76. Opdam, P.; Wascher, D. Climate change meets habitat fragmentation: Linking landscape and 

biogeographical scale levels in research and conservation. Biol. Conserv. 2004, 117, 285–297. 

77. Boeken, B.; Shachak, M. Colonization by annual plants of an experimentally altered desert 

landscape: Source-sink relationships. J. Ecol. 1998, 86, 804–814. 

78. Porporato, A.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Ecohydrology of  

water-controlled ecosystems. Adv. Water Res. 2002, 25, 1335–1348. 

79. Mbilinyi, B.P.; Tumbo, S.D.; Mahoo, H.F.; Senkondo, E.M.; Hatibu, N. Indigenous knowledge as 

decision support tool in rainwater harvesting. Phys. Chem. Earth Parts A/B/C 2005, 30, 792–798. 

80. Critchley, W.; Siegert, K. A Manual for the Design and Construction of Water Harvesting 

Schemes for Plant Production; Food and Agriculture Organization of the United Nations: Rome, 

Italy, 1991. 



Remote Sens. 2014, 6 8164 

 

 

81. Falkenmark, M.; Fox, P.; Persson, G.; Rockstroem, J. Water harvesting for upgrading of rainfed 

agriculture. In Problem Analysis and Research Needs; SIWI Report II; Stockholme International 

Water Institute: Sveavagen, Sweden, 2001; pp. 76–87. 

82. Pickup, G. The erosion cell—A geomorphic approach to landscape classification in range 

assessment. Rangel. J. 1985, 7, 114–121. 

83. Shoshany, M.; Lavee, H.; Kutiel, P. Seasonal vegetation cover changes as indicators of soil types 

along a climatological gradient: A mutual study of environmental patterns and controls using 

remote sensing. Int. J. Remote Sens. 1995, 16, 2137–2151. 

84. Zaady, E.; Katra, I.; Yizhaq, H.; Kinast, S.; Ashkenazy, Y. Inferring the impact of rainfall 

gradient on biocrusts’ developmental stage and thus on soil physical structures in sand dunes. 

Aeolian Res. 2014, 13, 81–89. 

85. Maestre, F.T.; Huesca, M.; Zaady, E.; Bautista, S.; Cortina, J. Infiltration, penetration resistance 

and microphytic crust composition in contrasted microsites within a mediterranean semi-arid 

steppe. Soil Biol. Biochem. 2002, 34, 895–898. 

86. Zaady, E.; Gutterman, Y.; Boeken, B. The germination of mucilaginous seeds of t Plantago 

coronopus, Reboudia pinnata, and t Carrichtera annua on cyanobacterial soil crust from the 

Negev Desert. Plant Soil 1997, 190, 247–252. 

87. Shachak, M.; Lovett, G.M. Atmospheric deposition to a desert ecosystem and its implications for 

management. Ecol. Appl. 1998, 8, 455–463. 

88. Nevo, E. “Evolution canyon”: A microcosm of life’s evolution focusing on adaptation and 

speciation. Isr. J. Ecol. Evol. 2006, 52, 501–506. 

89. Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. 

90. Evenari, M.; Shanan, L.; Tadmor, N. The Negev: The Challenge of a Desert; Oxford University 

Press: London, UK, 1983. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


