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Abstract: A successful application of dense image matching algorithms to historical aerial 

photographs would offer a great potential for detailed reconstructions of historical 

landscapes in three dimensions, allowing for the efficient monitoring of various landscape 

changes over the last 50+ years. In this paper we propose the combination of image-based 

dense DSM (digital surface model) reconstruction from historical aerial imagery with 

object-based image analysis for the detection of individual buildings and the subsequent 

analysis of settlement change. Our proposed methodology is evaluated using historical 

greyscale and color aerial photographs and numerous reference data sets of Andermatt, a 

historical town and tourism destination in the Swiss Alps. In our paper, we first investigate 

the DSM generation performance of different sparse and dense image matching algorithms. 

They demonstrate the superiority of dense matching algorithms and of the resulting 

historical DSMs with root mean square error values of 1–1.5 GSD (ground sampling 

distance) and yield point densities comparable to those of recent airborne LiDAR DSMs. In 

the second part, we present an object-based building detection workflow mainly based on 

the historical DSMs and the historical imagery itself. Additional inputs are a current digital 

terrain model and a cadastral building database. For the case of densely matched DSMs, the 

evaluation yields building detection rates of 92% for grayscale and 94% for color imagery. 

Keywords: OBIA; DSM; digital surface model; historic; aerial imagery; photogrammetry; 

image matching; building detection; time series 
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1. Introduction 

In many countries, aerial photographs have been systematically collected over decades for military 

and civilian map production purposes and have fortunately been archived in many cases. These 

archives serve as a unique and extremely valuable historic memory of our landscape and our built 

environment permitting a detailed and objective look-back in time for almost a century. Some of these 

archives of aerial imagery are now being digitized in order to make them accessible for local 

authorities, urban developers, landscape planners, and researchers [1]. 

Historical aerial photographs have been used in numerous projects, but mostly as basis for manual 

digitization and visual human interpretation [2,3]. Digital processing of historical aerial photographs 

has successfully been applied to studies on large-scale areal phenomena such as vegetation dynamics [4,5]. 

However, there are no known studies reporting the successful use of historic grayscale aerial imagery 

for the automatic extraction of linear features or discrete objects such as buildings. However, changes 

in man-made structures, in particular buildings, are of interest when analyzing man-made impacts on 

the landscape, ecology, economy, and, for example, tourism [6]. The factors which thus far limited the 

use of historical aerial photographs for automated object and change detection include: the absence of 

multispectral or even color information, a limited radiometric resolution and a poor signal-to-noise 

ratio-compared to modern digital aerial or high-resolution satellite imagery. 

In our work we aim at overcoming these limitations by additionally exploiting the implicit depth 

information contained in overlapping imagery and by subsequently introducing the extracted digital 

surface model (DSM) information into an object-based image analysis (OBIA) process. The important 

role of DSMs for the successful building extraction and building change detection from airborne or 

spaceborne imagery is emphasized in numerous studies [7–9]. However, all of these studies rely on DSM 

data derived from airborne LiDAR or high-resolution stereo satellite imagery. Both types of data only 

became available in the early 21st century and, thus, both approaches suffer from the unresolved 

temporal transferability of the surface height information to earlier epochs. Automated DSM extraction 

from overlapping historical airborne imagery offers a solution to this problem. Earlier experiments with 

traditional sparse image matching approaches which had been carried out by Meier and Walch [10] as 

part of the interdisciplinary research project ProMeRe [11] demonstrated a certain potential but also 

revealed limitations due to the low density of the resulting surface models. The following investigations 

were motivated by recent progress in extending dense image matching (DIM) from the original computer 

vision environment to airborne and spaceborne imagery [12]—a development which had mainly been 

triggered by Hirschmüller’s invention of the Semi-Global Matching (SGM) algorithm [13] and which 

has been followed by a series of further investigations and developments. 

In this paper we present a building change detection approach from historical aerial photographs 

combining automatically extracted DSMs using image-matching approaches with OBIA methods. In 

the next section, we provide a literature overview on the two main aspects (a) automated image-based 

DSM extraction and (b) building change detection. In Section 3, we introduce the study area and the 

data used in our experiments. In Section 4, we employ a traditional sparse image matching solution 

and two state-of-the-art dense image matchers to historical grayscale aerial photographs and to more 

recent color aerial photographs. In Section 5, the different digital surface models extracted from the 
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historical aerial imagery are subsequently introduced into an object-based image analysis process aiming 

at the automatic extraction and identification of buildings for the urban change analysis and visualization. 

2. Related Work 

2.1. Digital Surface Model Extraction Using Dense Image Matching 

The automatic extraction of DSMs from aerial imagery using stereo-image matching was 

introduced in the early 1990s and relied on feature-based matching (FBM) algorithms [14]. FBM 

algorithms first extract feature points and then search for corresponding features in overlapping 

images. The selection of feature points was motivated by providing a certain level of certainty in the 

resulting point heights but also by restricted computational resources. FBM was considered as  

state-of-technology until very recently and can still be found in various DSM extraction software 

packages. In this paper, we will refer to feature-based matching as “sparse matching” in contrast to the 

more recent dense image matching approaches. 

More recent stereo algorithms aim at dense, pixel-wise matches [12]. They result in dense DSMs 

and 3D point clouds at resolutions in the order of the ground sampling distance (GSD) of the input 

imagery. Numerous software tools for image-based dense DSM reconstruction and 3D point cloud 

generation are currently being developed by academic groups and photogrammetric software vendors 

alike. The majority of these dense image matchers are based on Semi-Global Matching (SGM), as 

originally introduced by Hirschmüller [13]. A good overview of current dense image matching 

implementations in the airborne photogrammetry domain and a performance evaluation as part of the 

EuroSDR benchmark are provided by Haala [12]. Haala and Rothermel [15] also demonstrate, that—in 

case of high-resolution digital airborne imagery—dense image matching algorithms based on SGM are 

capable of successfully matching more than 99% of all pixels and of providing matching accuracies of 

0.1–0.2 pixels in image space or approx. 0.25  GSD in object space. 

2.2. Image-Based Building Detection and Change Monitoring 

There are countless OBIA applications focusing on the identification and classification of urban 

features, as pointed out by Blaschke [16]. In the following we will focus on research dealing with the 

image-based detection of buildings or building change. Even within this narrowed field of application, 

there is a great variation of detection approaches, which are driven by the available sensors and data on 

the one hand and by the detection task to be accomplished on the other.  

While most recent approaches for detecting buildings or building changes rely on a combination of 

OBIA methods with height information, there is some research relying on OBIA only—not requiring 

any height information [17,18]. Doxani et al. [17], for example, successfully perform urban land cover 

change detection using OBIA only. They perform an object-oriented classification of 5 urban land use 

classes—including buildings—based on high-resolution, multispectral satellite imagery following the 

commonly applied removal of vegetation using NDVI. With this approach they reported an overall 

accuracy of approx. 85% without providing any class specific values. The approach was extended in [18] 

to include a scale-space filtering approach with reported building change detection rates (completeness) 

of up to 95% and a precision (correctness) of close to 100%. 
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The great majority of research in the field relies on the combination of DSMs from spaceborne or 

airborne LiDAR sensors with mostly object-based image analysis. An approach relying on the height 

information from high-resolution stereo satellite imagery is presented in Dini et al. [9]. The authors 

employ SGM-based image matching to create DSMs for the different epochs and to derive subsequent 

DSM differences (nDSM). They further use morphological filtering to reduce artifacts along building 

edges. For a small test data set, the authors obtain a building change detection rate of approx. 90%, 

i.e., a false negative rate (FN) of approximately 10%, with a false positive rate (FP) of nearly 45%. 

Further work using DSMs from either LiDAR, airborne, and spaceborne digital sensors with OBIA 

for urban and building change detection include [7,19–22]. All of these approaches exploit the 

multispectral characteristics of digital imaging sensors in order to reliably separate vegetation from the 

process, typically by means of the NDVI vegetation index [7,19]. Most approaches also employ some 

kind of morphological filtering [9,19], in order to reduce the effects of artifacts along the building 

edges, which are mainly caused by inaccuracies in the co-registration of the multi-temporal DSMs and 

by different viewing geometries of the sensors used [19]. Some authors also apply thresholds to the 

nDSMs in order to avoid false alarms by co-registration errors and DSM noise [19]. In their recent 

research, Tian et al. [21] are investigating 3D change detection using DSMs from different sensors 

(LiDAR, high-res satellite, and airborne stereo imagery) with subsequent dense DSM extraction using 

SGM and they report building change detection rates between 80% and 93.3%. 

A third group of approaches, closely related to our research, uses stereo aerial imagery and DSMs 

from image-matching for (building) change detection, e.g., [22,23]. Many of these approaches were 

developed as part of a map updating process with the goal to detect any potential building change 

candidate for a subsequent manual verification process. In a recent study Gladstone et al. [22] use  

4-band multispectral digital aerial imagery and DSMs extracted with image matching as input for an 

OBIA change detection process with seven classes. The authors report a detection rate for the building 

class of 96.6%, i.e., a low FN rate of 3.4% as desired, and a FP rate of 14%. A noteworthy approach 

applying DSM extraction from analog imagery to building change detection—again with the goal of 

map database updating—is presented by Jung [23]. The author points out the great difficulty of 

reliably detecting individual buildings due to the low resolution and the low signal-to-noise ratio of the 

images. The challenge is addressed by a so-called focusing step comparing sparsely matched DSMs of 

the different epochs, which is followed by a classification step based on a decision tree. The author 

reports a FN rate under 2% for the focusing range and a final detection rate of >90% (FN rate < 10%) 

and FP rate of 10–15%. 

3. Study Area and Data 

3.1. Study Area Andermatt 

For the study, the alpine town and tourist resort of Andermatt was chosen. Andermatt is situated in 

Central Switzerland (Figure 1a) at an important traffic junction of the Alps—the Gotthard (N-S) and 

the Furka-Oberalp (E-W) routes. Andermatt and its surroundings served as study area in the earlier 

interdisciplinary project ProMeRe [11] with the goal of researching processes and methods for the 

collaborative spatial analysis and development. As part of the ProMeRe project OBIA methods had 
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successfully been applied to a number of research questions related to tourism, landscape development 

and change detection [6]. Among the ProMeRe project partners was the Swiss National Mapping 

Agency Swisstopo which provided a very comprehensive series of historical and current geodata from 

their geospatial archives [24], including terrestrial and airborne imagery covering almost a century. For 

the following investigations the study area was limited to the built-up area of the actual town of 

Andermatt shown in Figure 2. The figure also illustrates the main characteristics of the area: buildings 

with mainly two to four floors and mostly gable roofs; numerous free-standing buildings often 

surrounded by large trees; rows of buildings along the main street in the old part of town. 

Figure 1. (a) Map of Switzerland showing location of Andermatt in the central Swiss Alps 

(Source: EDK/Swiss World Atlas); (b) Orthoimage of Andermatt showing the perimeter of 

this study (red rectangle) with coordinates (m) in the Swiss National map projection system 

CH1903/LV03. Aerial image © swisstopo (DV094436). 

(a) (b) 

3.2. Experimental Data 

While the original time series of scanned historical aerial imagery of the study area encompasses six 

epochs, the following experiments were focusing on the earliest and the most recent epochs 1959 and 

2007. Details of the aerial imagery used are listed in Table 1 and their visual characteristics are shown 

in Figure 2. 

Table 1. Aerial imagery used for the study. 

Year Imagery Camera/Sensor Image Scale Avg. GSD 

1959 
analog, grayscale, 1 strip with 4 images,  

80% overlap (scanned at 21 µm resolution) 

Wild RC5, frame camera,  

18 cm × 18 cm, c = 115.26 mm 
1: 30,000 64 cm 

2007 
analog, color, 1 strip with 4 images,  

80% overlap (scanned at 13 µm resolution) 

Leica RC30, frame camera,  

23 cm × 23 cm, c = 152.51 mm 
1: 39,000 54 cm 

Figure 2a,b shows the extents of the study area as it was used in all the subsequent investigations 

and illustrations. The detail views in the lower row of Figure 2 illustrate the relatively poor contrast of 

both data sets, which in case of the grayscale imagery make the identification of buildings very 
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difficult—even for a human observer. The aerial photographs were provided with calibration protocols 

for the respective cameras, thus, allowing the reconstruction of original interior camera orientation. 

Figure 2. Study area in Andermatt with corner coordinates (m) in the CH1903/LV03 map 

projection system. (a) orthoimage from grayscale aerial photograph 1959; (b) orthoimage 

from color aerial photograph 2007; (c) detail view 1959; and (d) detail view 2007. 

Aerial images © swisstopo (DV094436). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

The experimental data for the study area also includes the following current geodata: 

• A LiDAR-based digital terrain model (DTM-AV) as part of the official cadastral survey of 

Switzerland with a grid spacing of 2 m and a nominal height accuracy of ± 0.5 m. 

• Building footprints from the official cadastral survey database to be used as input for the 

backdating process. 

3.3. Reference Data 

For our studies, two comprehensive reference data sets were available which had been collected as 

part of the earlier ProMeRe [11] project: 

Oblique terrestrial laserscans (see Figure 3a,b) using a Leica HDS4400 long range scanner had 

been collected from six elevated scan positions around Andermatt [25]. The density of the point cloud 

data varies with distance and exposition towards scanning source but is generally in the order of  

10–20 points per square meter. The average 3D point accuracy of the data in the town center is in the 
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order of 10–20 cm [25]. This data set served as a reference for the evaluation of the extracted 3D point 

clouds and DSMs. 

3D roof geometries (see Figure 3c) of all buildings in the study area had been collected manually by 

stereo restitution using ERDAS StereoAnalyst and Feature Assist for ArcGIS. This stereo restitution 

had been performed with imagery of all epochs including 1959 and 2007. The 3D roof geometry of 

each building was semi-automatically assigned to a building ID using the cadastral building footprint 

data (Figure 3d) and subsequently stored in a GIS database. In the subsequent experiments the roof 

geometry was used to evaluate the performance of the building detection process. 

Figure 3. Reference data. (a) oblique terrestrial long-range laserscans from six different 

scan locations [25] (perspective view of the study area shown in Figure 2); (b) building 

details within oblique TLS point cloud [25] (perspective view); (c) 3D roof geometry 

(perspective view); and (d) cadastral building footprints used as input for the backdating 

process with corner coordinates (m) in the CH1903/LV03 system. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

4. DSM Extraction from Historical Aerial Photographs 

4.1. Image Matching Software 

In our subsequent image matching experiments, three different image matching software packages 

were used—a feature-based sparse matching solution and two dense matching solutions: 
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LPS eATE is a DSM extraction module of the former ERDAS IMAGINE LPS product line (now: 

IMAGINE Photogrammetry). In the pre-2014 versions used, eATE incorporated a traditional  

feature-based sparse stereo matcher. (Note: as of 2014, eATE incorporates an implementation of the 

SGM algorithm [13]). Since LPS was designed for analog and digital aerial imagery, it supports the 

entire workflow from the reconstruction of the interior orientation of analog imagery, through bundle 

orientation and DSM extraction to orthoimage production. 

Agisoft PhotoScan [26] is a software product originating from the computer vision domain and 

supporting the photogrammetric 3D reconstruction workflow for small to medium format digital 

imagery. PhotoScan incorporates a dense image matcher based on structure from motion (SFM) and 

other undisclosed multi-view stereo algorithms. 

SURE [27] is a dense image matching software by the University of Stuttgart and its spin-off 

company nFrames [28]. SURE consists of modules for image rectification, dense image matching, 3D 

point cloud generation and triangulation. The dense image-matching module is based on the SGM 

algorithm by Hirschmüller [29]. 

Among the challenges of using multiple image matching solutions are their different inputs and 

outputs as illustrated by Cavegn et al. [30] and the fact that only LPS is currently supporting the full 

photogrammetric workflow for analog aerial imagery. 

4.2. Georeferencing of the Analog Aerial Imagery 

For the comparison of the results by the different image matchers, an accurate common 

georeference was to be established. The original strategy was to perform indirect georeferencing in one 

software solution, using ground control points and a bundle adjustment, and then to transfer the interior 

and exterior orientation parameters to the other two software solutions. However, due to partly 

undocumented, incompatible exterior orientations and lens distortion models, this strategy had to be 

modified. The solution for the 1959 and 2007 data sets consisted of: 

(a) indirect reference orientations in LPS 

(b) indirect image orientations in PhotoScan which were also applied to the input imagery for SURE 

(c) transformation of the resulting dense 3D point clouds from PhotoScan and SURE to the sparse 

3D point cloud of LPS in order to obtain co-registered DSMs for the subsequent investigations. 

The reference orientations in LPS for the 1959 and 2007 imagery were carried out using a bundle 

adjustment with four images and with approx. 10 natural GCPs (ground control points) each. 

The reference orientation yielded average control point 3D RMS values in the order of 4 pixels GSD 

(1959: 2.7 m and 2007: 2.4 m). One of the limiting factors proved to be the identification of identical 

GCPs over a period of up to 50 years. 

The co-registration of the generated DSMs was performed using an implementation of the iterative 

closest point (ICP) algorithm by Besl and McKay [31] in CloudCompare [32]. The ICP-based 

transformation of each densely matched 3D point cloud to the respective sparse 3D point cloud resulted 

in RMS values in the range of 5 m and maximum residuals in the order of 70–90 m. It should be noted 

that these figures represent 3D point-to-point distances, which are directly affected by the sparse and 

uneven point spacing of the sparse reference DSMs for 1959 and 2007 generated with eATE. Thus, the 

few but large residuals represent mainly horizontal difference vectors to points in particularly sparse 
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areas of the eATE reference DSMs. Due to the very large number of points, i.e., ICP observations in the 

respective point clouds, the automatically generated transformation results are still acceptable. It should 

also be noted that the very steep and heavily vegetated area in the southeasterly (i.e., lower right) border 

of test area was excluded from the transformation. This results in cropped DSMs for the two dense 

matchers PhotoScan and SURE as shown, for example, in Figure 4c,e.  

Figure 4. Comparison of extracted DSMs (for the study area shown in Figure 2a,b) illustrating 

increasing sharpness and level of detail from sparse matching (top) to SGM based dense 

matching (bottom). Corner coordinates (m) in the CH1903/LV03 system. (a) eATE 1959;  

(b) eATE 2007; (c) PhotoScan 1959; (d) PhotoScan 2007; (e) SURE 1959; (f) SURE 2007. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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4.3. Discussion of Image-Based DSM Extraction Results 

The image-based DSM extraction results from the three different image matching solutions are 

illustrated in Figure 4, with the DSMs derived from the 1959 imagery in the left column and the DSMs 

from the 2007 imagery in the right column. The comparison shows an increasing sharpness and level 

of detail, starting from the sparse matcher eATE in the top row, followed by the dense matchers 

PhotoScan in the middle row and SURE in the bottom row. 

An even better comparison is offered by normalized digital surface models (nDSM) shown in 

Figure 5, which are calculated by subtracting the DTM (DTM-AV) from the respective DSM. Under 

ideal conditions, the nDSM should represent the heights of artificial or natural objects not belonging to 

the earth’s surface, e.g., buildings or vegetation. Figure 5 again shows the nDSMs extracted from the 

1959 grayscale imagery in the left hand column and those extracted from the 2007 color imagery in the 

right hand column. 

Figure 5. Normalized DSM (nDSM), representing DSM-DTM differences in (m). Corner 

coordinates (m) in the CH1903/LV03 system. Elevated objects such as buildings or vegetation: 

red, excavations or subsidence areas: blue. Results for different DSM: (a) eATE 1959;  

(b) eATE 2007; (c) PhotoScan 1959; (d) PhotoScan 2007; (e) SURE 1959; (f) SURE 2007. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 5. Cont. 

 
(e) 

 
(f) 

For a more detailed evaluation of the DSM quality, cross-sections of the DIM-based point clouds 

are compared with reference profiles from long-range oblique TLS. Such a profile comparison is 

shown in Figure 6. The visual inspection yields the following results: a reasonably good absolute 

orientation but poor level of detail of the sparsely matched eATE DSMs 1959 (Figure 6b) and 2007 

(Figure 6c); a vertical and horizontal offset of the 1959 absolute orientations of the PhotoScan  

(Figure 6d) and SURE (Figure 6f) DSMs in the order of 4–5 m as well as a horizontal offset of the 

2007 DSMs in the order of 3–4 m, which are clearly visible in (Figure 6g). These offsets are probably 

resulting from the current co-registration workaround described in the previous section. Finally, the 

very high point density and the high level of detail of the SURE DSM 2007 are shown in (Figure 6g). 

Figure 6. Evaluation of extracted DSM (red dots) using reference profiles from TLS 

(yellow and green dots). (a) Overview with profile location (blue) and with corner 

coordinates (m) in the CH1903/LV03 system; (b) eATE DSM 1959; (c) eATE 2007;  

(d) PhotoScan 1959; (e) PhotoScan 2007; (f) SURE 1959; and (g) SURE 2007. 

 
(a) 
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Figure 6. Cont. 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 7. Slope images of DSMs extracted from 2007 color aerial photographs with corner 

coordinates (m) in the CH1903/LV03 system. (a) sparse matching DSM (eATE); (b) dense 

matching DSM (SURE). 

 
(a) 

 
(b) 
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Figure 7 shows the gradients of the extracted DSMs for 2007. It illustrates the much sharper 

definition of the building edges within the densely matched DSM (SURE) shown in Figure 7b on the 

right in comparison to the sparsely matched DSM (eATE) in Figure 7a on the left. Finally, the 

examples of temporal DSM differences for sparsely and densely matched DSMs in Figure 8 

demonstrate the additional potential of using densely matched DSMs for rapid visual and analytical 

landscape change analyses which were not further investigated within our study. 

Figure 8. DSM Differences 2007–1959 with height increase in red and decrease in blue. 

Corner co-ordinates (m) in the CH1903/LV03 system. (a) Sparse matching (eATE);  

(b) Dense matching (SURE). 

 

(a) (b) 

4.4. Discussion of DSM Extraction Quality 

From the ongoing effort of establishing benchmarks for dense image matching algorithms in 

traditional and oblique airborne photogrammetry [12,15,33] a number of comparisons and suitable 

quality indicators have emerged. The following evaluation of point densities and accuracies based on 

point cloud scatter was carried out on the grounds of the methodology and tools developed by Deuber [33]. 

The point densities obtained with the SURE SGM-based dense matcher of 1.02 and 0.79 listed in 

Table 2 are close to the targeted value of 1 point per pixel for pixel-based matching–both for greyscale 

and color photographs. As expected, the point density provided by the sparse matcher eATE is much 

lower—in the order of 1/6 to 1/4 of the SGM density. The point densities obtained from PhotoScan  

are lower than expected. As shown by Deuber [33], similar point densities to those from SURE can  

be expected, when PhotoScan is applied to medium-format digital aerial imagery. However, even on 

high-end PC hardware, the large format aerial imagery of this project could not be processed with full, 

i.e., “very high” point density and had to be processed with reduced “high” density instead. Overall,  

it should be noted that state-of-the art dense image matching algorithms are capable of generating  

very high density DSMs with remarkable 2.5–2.7 points per square meter, even from historical  

aerial photographs. 

In a subsequent test the scatter of the respective densely matched DSMs was investigated as an 

indicator for relative DSM accuracy. In order to determine the scatter of the generated 3D point clouds, 
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three planar test areas per epoch were identified (see Figure 9), approximating planes were estimated 

and the respective point-to-plane residuals were computed to provide the RMS errors (RMSE) and 

maximum errors shown in Table 3. 

Table 2. Average point densities in (points/m2) and (points/pixel) GSD (shown in 

brackets). (*) See remarks below for PhotoScan results. 

[points/m2] ([points/pixel]) 1959 2007 

eATE 0.41 (0.17) 0.71 (0.21) 

PhotoScan (*) 0.77 (0.31) 0.67 (0.20) 

SURE 2.49 (1.02) 2.72 (0.79) 

Figure 9. Planar areas for scatter evaluation with corner coordinates (m) in the 

CH1903/LV03 system. (a) test areas 1959; (b) areas 2007. 

 
(a) 

 
(b) 

Table 3. RMSE values and max. errors for three planar test areas for the 1959 and 2007 epochs. 

  1959 (GSD 0.64 m) 2007 (GSD 0.54 m) 

Area  PhotoScan SURE PhotoScan SURE 

1 

# of points 708 2235 764 3215 

RMS (m) 0.29 0.19 0.48 0.47 

Max. error (m) 1.45 1.12 2.40 1.81 

2 

# of points 510 1727 1198 5189 

RMS (m) 1.82 0.84 0.56 0.64 

Max. error (m) 7.54 3.54 2.20 2.36 

3 

# of points 1345 5308 1942 7444 

RMS (m) 1.37 1.08 0.76 1.01 

Max. error (m) 10.09 6.99 2.53 3.24 

With the 1959 grayscale imagery, PhotoScan yielded DSMs with RMSE values between 0.29 m 

and 1.82 m and SURE with RMSE between 0.19 m and 1.08 m. This is equivalent to 0.5–2.8 GSD in 

the case of PhotoScan and 0.3–1.7 GSD in the case of SURE. With the 2007 imagery, PhotoScan 

delivered RMSE values between 0.48 m and 0.76 m and SURE yielded RMSE values between 0.47 m 

and 1.01 m. This corresponds to 0.9–1.4 GSD for PhotoScan and 0.9–1.8 GSD for SURE. In their 
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dense matching tests with modern high-resolution digital airborne imagery, Haala and Rothermel [15] 

obtained RMSE values for planar soccer grounds well under 0.5 GSD. However, considering the fact 

that our tests were carried out with historical grayscale and color aerial photographs with a limited 

radiometric and spatial resolution, the RMSE values of the historic DSMs in the order of 1–1.5 GSD 

are quite remarkable. 

5. DSM-Based Building Detection Using OBIA 

5.1. Building Change Detection Strategy and Workflow 

A suitable building change detection strategy largely depends on the goals and requirements of the 

targeted application. Our investigations are part of a long-term multi-disciplinary initiative [6,11] for 

monitoring and analyzing the historical and future development of alpine settlements and vegetation. 

Over the last 100 years, the development has been influenced by factors, such as tourism and 

agriculture—and, in certain areas, by the reduction of military forces. Within the initiative, the 

settlement development is analyzed from the different perspectives of historians, urban and territorial 

planners, as well as architects. The main characteristics and requirements of the settlement analysis in 

general and the building change detection in particular include: 

• The alpine settlement development over the last 100 years was dominated by the building or  

re-building of housing still in existence today with only few cases of major demolitions. 

• The process should be capable of detecting individual, identifiable buildings—not just changes in 

settlement areas—and should reliably deliver the epoch at which a building first appeared in one of 

the historic aerial images. 

• There is an existing official cadastral database including recent building footprints for large parts 

of Switzerland which could be used in relating detected buildings to current building identifiers. 

• The building change detection procedure should be robust and the results of the test area should be 

transferable to other alpine and rural regions. 

As a consequence, a back-dating approach based on today’s building database was incorporated into 

the building change detection process based on the historical DSMs from dense image matching 

discussed above and on the OBIA-based building detection process outlined below. Since the building 

detection process is conducted for each generation of imagery independently, it also results in a 

complete time series of detected buildings at each epoch. 

5.2. Our Earlier Building Detection Workflow 

Prior to the proposed DIM-based workflow, a building detection process incorporating DSMs from 

conventional sparse image matching and OBIA methods had been developed by Meier and Walch [10]. 

This process is briefly introduced in order to permit a later assessment of the improvements offered by 

the new DIM-based approach. 

The earlier workflow was developed using the same experimental data as listed in Section 3.2, with 

the difference that the imagery had included a total of six epochs between 1959 and 2007. The 

workflow included historical DSMs derived with an earlier version of the sparse image matching solution 
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eATE. The coarse nature of the historical DSMs generated at the time—in combination with the poor 

quality of the historical imagery—originally resulted in many false positives in the building detection 

process. In the final workflow this was successfully improved by the following two main measures: 

• The incorporation of a shadow detection process (based on IMAGINE Objective’s “Association 

Shadow” function), which allowed eliminating erroneous nDSM height cues resulting from DSM 

matching and interpolation errors and not from actual building geometries. While the shadow 

detection process works well for isolated buildings it suffers in dense built-up areas and in areas 

where buildings are intertwined with large trees. 

• The integration of the cadastral building database into the OBIA-based detection process—and not 

just in the final back-dating process. This prevents the process from detecting buildings which had 

potentially existed and which had since been demolished. 

With this process, a building detection rate of 88% was achieved [10]. However, the process is very 

time consuming and complex and lacks robustness and transferability, for example, due to manual 

adjustments of the association shadow settings. These settings require knowledge about image 

acquisition date and time, which might not be available for historic imagery. 

5.3. New OBIA Workflow Incorporating DSM from Dense Image Matching 

Among the main innovations of the new workflow shown in Figure 10 are the incorporation of the 

high-resolution historical DSMs from dense image matching and the integration of the new 

segmentation algorithm (Full Lambda Schedule Algorithm) [34] implemented in IMAGINE Objective. 

Figure 10. Simplified overview of the new DIM-based building detection workflow. 

 

The key elements of the DIM- and OBIA-based workflow are the following. First, training areas are 

chosen for buildings and for non-residential areas, i.e., classification background, including forest, rivers, 

trees, roads, fields, gardens, gravel spaces, etc. (see examples in Figure 11). Next, the ortho imagery 

derived from the historical imagery is segmented based on defined training areas in IMAGINE Objective 

using the ‘Segmentation Lambda Scheme’ [34] in which spectral, textural, size and shape properties can 
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be weighted individually. The resulting potential housing segments are filtered with a size and a 

probability filter, which eliminates small segments and segments with a low probability for housing. 

Normalized DSMs (nDSM) are generated for each epoch by subtracting the recent DTM from the 

respective historical DSM. Next, an upper and lower threshold is applied to the nDSM in order to 

extract significant height differences, i.e., potential object elevations above ground. The lower 

threshold value is used to exclude small height differences created by DSM noise, minor changes to 

the terrain, low growing vegetation, and small structures, such as parked cars and sheds. The upper 

threshold can be used to exclude gross errors and tall trees common to alpine areas. 

Intersection of nDSM and image segmentation—In a rule-based approach the filtered segments are 

combined with the nDSM. Thus, all pixels with high probability for the class buildings and with height 

differences within the threshold values are selected. 

Vectorization and Cleaning—The resulting pixel segments are then cleaned by means of 

morphological operations (dilation, erosion), reclumped and vectorized. An additional Island Filter is 

applied to eliminate holes in the resulting polygons. 

The subsequent backdating is conducted in ArcGIS by spatially joining the output polygons from 

the vectorization and cleaning process with the building footprints of the cadastral survey database. If a 

polygon matches a building, then the building is being marked as existing at the given epoch and a 

time stamp is written to the attribute table. Polygons not matching any building in the database are an 

indication for possible false positives or demolished buildings. 

As part of our study, the quality of the building detection process is evaluated by comparing the 

detected buildings with the reference 3D roof data collected with stereo restitution using the same 

historical imagery. The results obtained in these experiments and the building detection accuracies 

achieved are discussed in the following sections. 

5.4. Discussion of OBIA Building Detection Results 

The building detection experiments were carried out using the three data sets listed in Table 4. 

Grayscale ortho images for 1959 and color ortho images for 2007 were derived from the original aerial 

images described in Section 3.2, using the LiDAR-based DTM (DTM-AV), as basis for the image 

rectification. In order to evaluate the influence of sparse versus dense image matching, DSM extraction 

results from the sparse image matcher eATE (LPS 2013) and from the dense image matcher SURE 

were chosen for each epoch. In order to exploit the DSMs in the OBIA software ERDAS Objective, 

they were first converted to a regular grid. 

Table 4. Summary of input data used for the building detection experiments. 

Year Ortho Imagery  

(Color Bands and GSD) 

DSM (GSD) DTM (GSD)  

DTM-AV eATE SURE 

1959 1 band greyscale, GSD 50 cm 50 cm 50 cm 
2 m 

2007 3 band RGB, GSD 44 cm 35 cm 50 cm 

Training areas for the subsequent segmentation process were chosen for each epoch (see  

Figure 11). The selection of suitable training areas is an important factor for a successful segmentation 

and is the only part of the workflow which is specific to each epoch. While some training sites can be 
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re-used over several epochs, re-definitions are frequently required due to land cover changes such as 

shown in Figure 11. 

Figure 11. Training areas used for the segmentation in IMAGINE Objective overlayed on 

their respective orthoimages with corner coordinates (m) in the CH1903/LV03 system:  

(a) 1959; (b) 2007. Yellow: background training areas; Purple: building training areas. 

 
(a) 

 
(b) 

Segmentation—For the segmentation of the historical imagery we employed the Segmentation 

Lambda Schedule Filter which has recently been added to ERDAS Objective based on the Full 

Lambda Segmentation Algorithm (FLSA) by Redding et al. [34,35]. FLSA is a bottom up region 

merging algorithm aiming at minimizing the Mumford-Shah energy functional. In ERDAS Objective 

the merge cost function incorporates spectral information as well as segment’s texture, size and shape. 

Furthermore, the pixel per segment ratio, i.e., the average number of pixels per output segment, as well 

as minimum and maximum segment size constraints can be defined.  

Figure 12. Image segmentation results from ortho imagery with coordinates (m) in the 

CH1903/LV03 system: (a) 1959 and (b) 2007. 

 
(a) 

 
(b) 
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The selection of optimal segmentation parameters depends on the geometric and radiometric 

characteristics of the imagery and requires a certain amount of trial and error, as well as user 

experience. In our case a pixel per segment ratio of 500 in combination with high relative weights of 

0.8 for the spectral and texture parameters and low weights of 0.2 for the parameters size and shape 

were used. The segmentation results obtained are shown in Figure 12a,b. The individual weights 

proved to be particularly valuable for separating trees from buildings. Their differentiation based on 

height (nDSM) only would otherwise be difficult, especially in greyscale imagery. 

Intersection of normalized DSMs with segmentation results—Before the nDSM was intersected 

with the segmentation results, the optimal lower and upper thresholds were determined. These 

thresholds are mainly influenced by the quality of the historical DSMs. For our test area and data, a 

lower threshold of 3 m proved to be suitable in order to filter out DSM noise and small artifacts as well 

as low vegetation and small structures. An upper threshold of 25 m was chosen, since there were no 

taller buildings in the area and since it also allowed to reliably eliminating large fir trees which are 

common to the area. A disadvantage of setting the lower threshold at the chosen height difference is 

that this erodes the size and shape of the nDSM blob representing one or more buildings. 

Figure 13. Intersection of nDSMs with thresholds and image segmentation results with 

corner coordinates (m) in the CH1903/LV03 system. (a) eATE DSM 1959; (b) eATE DSM 

2007; (c) SURE DSM 1959; (d) SURE DSM 2007. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 



Remote Sens. 2014, 6 8329 

 

The results of the raw, pixel-based intersection results for the different nDSMs with the segmentation 

results for 1959 and 2007 are shown in Figure 13. The results for 1959 (left column, Figure 13a,c), being 

based on greyscale imagery, are clearly more fragmented than those for 2007 (right column,  

Figure 13b,d), which were derived from color photographs. The results based on densely matched DSMs 

(lower row, Figure 13c,d) yield a larger number of building candidate segments with contours that are 

generally better defined than in the results based on sparse DSM matching (upper row, Figure 13a,b). 

Vectorization and Cleaning—For further processing, the raw pixel segments resulting from the 

intersection operation were first morphologically filtered using “dilate” and “erode” functions in order 

to obtain coherent individual building segments with optimal shape. These filtered pixel segments 

were then vectorized and an “island filter” was subsequently applied to the vector objects in order to 

eliminate holes within the polygons.  

Figure 14. Filtered vector output of candidate buildings ready for backdating with corner 

coordinates (m) in the CH1903/LV03 system. (a) eATE DSM 1959; (b) eATE DSM 2007; 

(c) SURE DSM 1959; (d) SURE DSM 2007. 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

The output of the filtering and vectorization step is illustrated in Figure 14. A visual inspection of 

the 1959 results reveals many missing, i.e. “unmarked” small buildings in the upper left quadrant of 

Figure 14a for the sparse image matcher with a significant improvement in Figure 14c showing the 
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result based on the densely matched DSM. For the 2007 data in Figures 14b,d, the visual differences 

between the two matching solutions are much smaller. In all cases, no individual buildings are 

recognizable in the densely built-up area of the town center (lower right quadrant). Therefore, 

additional processing steps are required, if individual buildings are to be detected—as specified in 

Section 5.1—and not just changes in settlement areas. 

Backdating—The candidate building areas shown in were subsequently spatially joined with the 

building layer of the cadastral database in order to determine the existence of individual buildings at a 

specific epoch. The final results of our building detection process after the backdating step are 

illustrated in Figure 15. 

Figure 15. Building detection results based on backdating with the GIS with corner 

coordinates (m) in the CH1903/LV03 system: (a) eATE DSM 1959; (b) eATE DSM 2007; 

(c) SURE DSM 1959; (d) SURE DSM 2007. Legend: cadastral building database: black 

outlines; detected buildings from sparse matching input (eATE): purple; detected buildings 

from dense matching input (SURE): dark red; underlying reference 3D roof data (not 

detected in our extraction process): light blue. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15 shows the detected buildings in purple (sparse matching input) and dark red (dense 

matching input) overlayed onto the footprints of the current building database and the orthoimage of 
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the respective epoch. For illustration purposes only, the results are also overlayed onto the 3D building 

reference data shown in light blue. This allows for visually highlighting undetected buildings (false 

negatives) present in the reference data—but not footprints incorrectly identified as buildings (false 

positives), since this information is covered by the respective layers of extracted buildings (in purple or 

dark red). While the number of false positives is very small (see following section), numerous false 

negatives occur. They are well visible in the 1959 data sets and in particular in the upper left quadrant 

of Figure 15a with the extraction results based on the sparsely matched DSM obtained with eATE. The 

SURE DSM workflow shows significantly better results for both epochs. 

5.5. Discussion of Building Detection Accuracies 

For the evaluation of the building detection quality, all buildings present in the 1959 and 2007 aerial 

imagery were manually digitized using stereoscopic restitution. As part of this process, the collected 

3D roof geometry was grouped into building objects using Feature Assist for ArcGIS and stored in the 

GIS. The 3D roof geometry of these building objects served as reference data for the following 

evaluation of the detection quality. The resulting statistics for 1959 are listed in Table 5; those for 2007 

are shown in Table 6. 

Table 5. Building detection statistics for the 1959 grayscale imagery. 

1959 
Total #  

Buildings 

True Positives  

(TP) 

False Positives 

(FP) 

False Negatives 

(FN) 

True Negatives  

(TN) 

Detection  

Rate 
Correctness 

eATE 258 212 3 46 114 82% 99% 

SURE 258 236 7 22 110 92% 97% 

Table 6. Building detection statistics for the 2007 color imagery. 

2007 
Total #  

Buildings 

True Positives  

(TP) 

False Positives 

(FP) 

False Negatives 

(FN) 

True Negatives  

(TN) 

Detection  

Rate 
Correctness 

eATE 357 323 2 34 16 91% 99% 

SURE 357 335 3 22 15 94% 99% 

The reference data for 1959 includes 258 buildings, of which 212 true positives were correctly 

detected by the process using the eATE sparse matching DSM and 236 by the one using the SURE 

dense matching DSM. 46 buildings in existence at the time had not been detected (false negatives) by 

the process based on the eATE DSM and 22 by the process based on the DSM generated with SURE. 

Both approaches yielded a very low rate of incorrectly detected buildings (false positives) of 3 and  

7 buildings respectively. Thus, the results for 1959 show a detection rate (i.e., a completeness or 

producer’s accuracy) of 82% for the sparsely matched eATE DSM input and 92% for the densely 

matched SURE DSM input with very high correctness rates (i.e., precision or user’s accuracy) of 99% 

and 97% respectively. 

In 2007 the identical test area included 357 buildings. The building detection process using a 

sparsely matched DSM input yielded 323 true positives, 34 false negatives and only two false 

positives, corresponding to a detection rate of 91% and a correctness of 99%. The process based on 
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densely matched DSM input produced 335 correct detections, 22 false negatives and three false 

positives with a detection rate of 94% and a correctness of also 99%. 

For the grayscale imagery of 1959 and the color imagery of 2007 there is a significant improvement 

of the building detection rate from sparsely matched DSM input to densely matched DSM input: for 

1959 an improvement from 82% to 92% and, for 2007, an improvement from 91% to 94%. This 

corresponds to a major reduction of the FN rate to less than half, from 18% to 8% for the 1959 

grayscale imagery and by a third from 9% to 6% for the 2007 color imagery. A closer inspection of the 

false negatives reveals that in the 2007 imagery only 5 buildings with an area of >25 m2 had not been 

detected. All the other false negatives were caused by undetected small buildings such as cabins or 

carports, etc. which are contained in the cadastral building database for legal reasons. Thus, if 

considering main buildings only, the detection rate would be significantly higher. The very high 

correctness rate of around 99% is mainly due to the backdating process which only accepts building 

candidates overlapping the footprints of the current cadastral building database. 

Our results compare well with those listed in Section 2.2, in particular with related work by [22,23] 

which is also based on aerial imagery. However, a direct comparison is difficult for a number of 

reasons: first, our goal of tracing the first occurrence of each building in historical aerial imagery is 

different from that of other reviewed applications; second, our approach adds a backdating step and 

assumes the availability of a recent building database which makes the detection process more robust 

than a global search process and thus leads to a significantly lower FP rate. Last but not least, unlike in 

the other cases using fairly recent aerial imagery, some of our results are obtained from historical aerial 

photographs which were captured more than half a century ago. 

Of particular relevance and interest is a direct comparison with the results from earlier work at our 

Institute by Meier and Walch [10]. Their research had focused on the same goals and had used the same 

test data, but their building detection process was based on sparsely matched DSM input since dense 

image matching was not yet available at the time. The average building detection rate achieved in their 

studies was 88%. In case of our sparsely matched DSM inputs, i.e., our eATE solutions, the detection 

rate was reduced to 82% for the 1959 imagery and improved to 91% for the 2007 imagery. This mixed 

outcome is an indication that the earlier building detection process largely relied on the associated 

shadow model and the direct use of the building database (see also Section 5.2). Both components were 

removed from the new approach in order to improve its robustness and transferability.  

However, our main motivation was to investigate the influence of the newly introduced DSMs from 

dense image matching with the hypothesis, that their use would substantially improve the performance 

of building detection in historical aerial imagery. A comparison with the results of Meier & Walch [10] 

shows significant improvements in the building detection rate from the earlier 88% to 92% for 

grayscale imagery and to 94% for color imagery. This improved performance of the new approach is 

complemented by a substantial simplification and further automation of the new process, leading to 

major time and cost savings compared to the original solution. 

6. Conclusions 

In this article we introduced a novel approach for building detection and building change 

monitoring based on historical aerial photographs and object-based image analysis. The new approach 
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uses DSMs extracted from the historical imagery using dense image matching together with the actual 

imagery itself as inputs to an OBIA process. Additional inputs include a current DTM from any 

suitable source and a current building database, which is used to identify individual buildings and to 

automatically record their first appearance in the historical imagery. In combination with emerging 

regional or national historical aerial image archives, this allows establishing a spatio-temporal building 

database dating back well over half a century with a very high level of automation. The new building 

detection process yielded a detection rate of 92% for the 1959 historical grayscale imagery and of 94% 

for the 2007 color imagery. 

With this first systematic study on image matching with historical aerial imagery we demonstrated that 

dense DSMs can successfully be extracted both from greyscale and color photographs. The extracted 

historical DSMs show point densities of 2.5 to 2.7 points per m2 which are similar to recent airborne 

LiDAR DSMs and RMSE values in the order of 1 pixel GSD. These findings are remarkable, since dense 

image matching algorithms were originally developed for digital imaging sensors with high dynamic range 

and large image overlaps and since the low signal-to-noise ratio of the historical imagery makes the reliable 

identification and delineation of buildings a challenging task—even for human operators. 

The presented combination of historical DSMs from dense image matching with state-of-the-art 

OBIA methods offers unique opportunities for exploiting archives of historical aerial photographs, 

which provide a uniquely rich memory of our environment—in some cases over almost a century. The 

DSM extraction capabilities demonstrated in this paper cannot only be applied to building change 

detection but to the reconstruction of historical 3D landscapes in general, thus, offering further 

opportunities in landscape change monitoring. 

The building detection results demonstrated in this paper leave room for further improvement. The 

main limiting factor within our experiments is the georeferencing accuracy of the DSMs extracted 

from the different epochs of aerial imagery (see Section 4.2 and Figure 6). The accurate georeferencing 

of historical aerial imagery is generally a very challenging process—even if camera calibration values 

are available. This is mainly due to the difficulty of identifying natural control points that can still be 

localized today and subsequently measured in three dimensions. Once the exterior orientations of a set 

of historical images have successfully been reconstructed using a suitable photogrammetric software, 

users are faced with the problem that the majority of dense image matching software originates from 

computer vision and was originally developed for images from small to medium format digital sensors 

only. Thus, they usually do not support the reconstruction of the interior orientation of analog imagery 

using fiducial marks and quite often, they also do not support advanced lens distortion models required 

and used in airborne photogrammetry. However, with the addition of SGM-based dense image 

matching to photogrammetric software packages (e.g., LPS eATE 2014) and with the addition of 

advanced lens distortion models to dense matching software (e.g., to SURE), it is expected that the 

ICP-based georeferencing workaround used in this study will no longer be required. And due to the 

better absolute georeferencing accuracies of the extracted DSMs, the building detection rates are likely 

to be further improved in the future. 
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