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Abstract: A strong driver of water quality change in the Great Barrier Reef (GBR) is the 

pulsed or intermittent nature of terrestrial inputs into the GBR lagoon, including delivery 

of increased loads of sediments, nutrients, and toxicants via flood river plumes (hereafter 

river plumes) during the wet season. Cumulative pressures from extreme weather with a 

high frequency of large scale flooding in recent years has been linked to the large scale 

reported decline in the health of inshore seagrass systems and coral reefs in the central 

areas of the GBR, with concerns for the recovery potential of these impacted ecosystems. 

Management authorities currently rely on remotely-sensed (RS) and in situ data for water 

quality monitoring to guide their assessment of water quality conditions in the GBR. The 

use of remotely-sensed satellite products provides a quantitative and accessible tool for 

scientists and managers. These products, coupled with in situ data, and more recently 

modelled data, are valuable for quantifying the influence of river plumes on seagrass and 

coral reef habitat in the GBR. This article reviews recent remote sensing techniques 

developed to monitor river plumes and water quality in the GBR. We also discuss 

emerging research that integrates hydrodynamic models with remote sensing and in situ 
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data, enabling us to explore impacts of different catchment management strategies on GBR 

water quality. 

Keywords: remote sensing; Great Barrier Reef; ocean colour; water quality; marine 

monitoring program 

 

1. Introduction 

Coastal zones are experiencing increasing pressure from anthropogenic activities, compounded by a 

rapidly rising human population, with more than 60% of the world’s population located within the 

coastal zone [1,2]. Connections between environmental variability and ecological response can occur 

across a large range of interacting spatial, temporal, and organizational scales [3,4], which can 

influence, to various degrees, change in the natural system. Many approaches of management and 

policy have been applied to reduce these pressures in coastal zones globally [5], however, this is 

complicated by the highly dynamic characteristics of coastal zones, which can encompass a broad 

range of ecosystems and processes. 

In dynamic coastal areas with complex marine ecosystems, such as the GBR (Great Barrier Reef) 

lagoon, it has been a challenge for managers to acquire evidence of ecological responses to biophysical 

drivers, such as declining water quality. The natural environmental variability, the diversity of 

ecosystems, and replication of data over sufficient spatial and temporal scales to provide an adequate 

baseline, confound this challenge [6]. Collecting information that reflects both natural and  

human-induced environmental changes at relevant scales is essential for decision making [6] and 

relevant to the successful monitoring of large geographical systems such as the GBR [7]. The GBR is 

also characterised by large regional, seasonal, and inter-annual variability, highlighting the need for 

capacity to measure water quality conditions at a range of temporal and spatial scales. RS technologies 

can provide the synoptic window necessary for the characterisation of marine ecosystems through 

enhanced spatial and temporal data resolution obtained from remote sensors [8,9]. 

Declining water quality from land-based runoff is one of the most significant threats to the health of 

the GBR, with sediments, nutrients, and pesticides identified as the key contaminants of concern [10]. 

Wet season conditions are experienced from December–April in Northern Australia and are an 

important catalyst in the condition and variability associated with water quality within the GBR [9]. On 

average, 70 km3 of freshwater is discharged each year by rivers and streams into the GBR lagoon [11]. 

River flow is delivered in discrete flood events during the five-month summer wet season, forming 

distinctive river plumes in the coastal zone that can move north along the coast but can occasionally 

move out towards the mid and outer reef area. The content of the river discharge has changed through 

time with large increases in the loads of sediments, nutrients, and pesticides associated with the 

expansion of agricultural development of the GBR catchment [10–12]. Persistent, above average river 

flows over a seven year period have been associated with a number of changes in the GBR 

communities, such as reduction in seagrass cover [13], impacts on coral cover, increase in coral 

disease [14], and high mortality rates of dugongs and turtles [15–17]. 
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Management agencies in Australia are responding to these issues with the Australian and Queensland 

(State) Governments committing to the Reef Water Quality Protection Plan [10], a bilateral policy 

(initiated in 2003), that aims to ensure that ‘by 2020 the quality of water entering the GBR from 

broadscale land use has no detrimental impact on the health and resilience of the GBR’. The plan 

identifies a range of strategies and actions to achieve this goal including prioritisation of investment, 

adoption of improved land management practices, and evaluation of performance [18]. The Paddock to 

Reef Integrated Monitoring Program (P2R Program) [18] has been designed to support this evaluation and 

includes indicators of the adoption of improved land management practices, catchment condition, end of 

catchment pollutant load estimates, and marine water quality and ecosystem health. The marine 

component, known as the Marine Monitoring Program (herein referred to as the MMP), includes ambient 

and wet season water quality measurements, and inshore coral and seagrass health monitoring [13,19–22]. 

The onset and duration of river plumes into the GBR has been reported over several decades [20,23–30] 

and monitoring of river plumes [31] now forms an integral component of the MMP. However, it has 

been difficult to evaluate the complex responses of the seagrass and coral communities to changing 

water quality based on in situ water quality data only due to the limitations of the monitoring time 

frames and the uncertainty associated with the time lag between exposure and impact. 

The use of RS (remotely-sensed) data in combination with in situ water quality measurements has 

provided a powerful source of data in the evaluation of water quality across the GBR. For example, 

river plumes have been mapped through a combination of aerial and satellite imagery and the 

coverage of GBR ecosystems visually assessed using satellite imagery [30–32]. More recently, RS 

studies using quasi-true colour (hereafter true colour) satellite images (Figure 1) and derived water 

quality level-2 products have been utilised to map and characterise the spatial and temporal 

distribution of GBR river plumes [28,33–37]. Recent work has also focused on the area and impact 

of these river plumes on GBR ecosystems [9,22,28,32–39]. 

To detect, map, and characterise these river plumes, remote sensors can exploit their differences in 

colour from ambient marine waters [40] (Figure 1). The optical signature of a river plume is related to the 

optical active constituents (hereafter OACs) of the water, including the presence and combination of 

chlorophyll-a, coloured dissolved organic matter (hereafter CDOM), and total suspended solids (hereafter 

TSS). Surface radiances are converted to reflectances, providing the spectral signatures required for 

quantifying the chlorophyll-a pigments, the CDOM, and the mineral suspended matter [40–44]. Monitoring 

OACs concentrations with RS techniques is notoriously challenging in optically complex (Case 2) coastal 

waters [8,45], which include the area of inshore GBR lagoon, typically within 20 km of the coast [35,37]. 

These limitations of the RS data must be understood and reported in order to efficiently use this data as an 

appropriate monitoring tool for the measurement and reporting of water quality in the GBR. 

This paper reports on the application of RS data and imagery (MODIS (Moderate Resolution 

Imaging Spectroradiometer) radiances, reflectances, and Level-2 data) and the development of RS 

products that have been specifically adapted or designed for monitoring of water quality in the GBR. 

RS products presented here have been developed from post processing of RS data and applied in the 

monitoring of acute (river plumes) and chronic wet season water quality conditions in the GBR. We 

also acknowledge the current challenges in utilising these data sources, and describe future 

developments of integrating RS data and products with modelling outputs that will continue to extend 

our ability to make spatial and temporal assessments of water quality across the GBR. 



Remote Sens. 2015, 7 12912 

 

 

Figure 1. MODIS (Moderate Resolution Imaging Spectroradiometer) satellite true colour 

images (Level-1 data) showing river plume waters extending from the Burdekin River in 

the central GBR (Great Barrier Reef) and the influence of the river water on the colour of 

the surface waters. 

2. Data and Methods 

2.1. Water Quality Monitoring in the GBR 

The MMP was established in 2005 to monitor the GBR inshore environment through the assessment 

of long-term changes in the condition of inshore water quality, seagrass, and coral reefs. This inshore 

area is at highest risk from degraded water quality and makes up approximately 8 per cent of the GBR 

Marine Park and is generally within 20 km of the shore. The inshore area supports significant 

ecological communities and is also important for recreational visitors, commercial tourism operations, 

and commercial fisheries. The current water quality program includes: (1) in situ ambient and wet 

season monitoring of sediments, nutrients, and pesticides [31,46,47], and (2) through a range of remote 

sensing techniques supported by the development of regionally specific algorithms, producing 

regionally-tuned MODIS ocean colour products for the GBR [36,37]. 

2.2. In situ Water Quality Sampling 

The ambient inshore MMP water quality program commenced in 2005, and targeted monitoring of wet 

season water quality data was initiated under the MMP in December 2007. This component of the MMP 

aims to investigate the acute and chronic influence of terrestrial runoff on inshore GBR water quality and 

coral and seagrass health [21,31,48]. This program samples the development and extent of the river plume 

waters, identifies concentration gradients of water quality parameters (i.e., salinity, temperature, particulate 

and dissolved nutrients, phytoplankton, suspended solids, Secchi depth, CDOM, chlorophyll-a, and 
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pesticides) and characterises wet season water quality conditions in the GBR. Water sampling is initiated at 

the onset of the wet season, targeting the first flush, the rise, peak, and flux of the rivers entering the GBR 

lagoon. Depth profiling is conducted using Conductivity-Depth-Temperature (CTD) casts that measure 

vertical attenuation of light coefficients (Kd (PAR)), temperature, dissolved oxygen, and salinity. 

Generally, for the wet season monitoring, the water samples are collected in a series of transects away 

from the river mouth along the river-influenced areas within the GBR, including: the Normanby 

(14.4°S), Russell-Mulgrave and Tully (18°S), Herbert (18.5°S), Burdekin (19.5°S), Mackay WS, 

(20.7°S), and Fitzroy (23.5°S) regions (Figure 2). Water samples taken at the surface, and at depth, are 

usually taken over a period of days to weeks, dependent on the intensity of the event and the logistics of 

vessel deployment. The majority of samples are collected inside the visible extent of the river plume. 

 

Figure 2. Selection of wet season sites sampled in the Northern, Central, and Southern 

GBR under the MMP (Marine Monitoring Program) (2006–2013). For full details, 

http://www.gbrmpa.gov.au/managing-the-reef/how-the-reefs-managed/reef-2050-marine-

monitoring-program). 
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The monitoring of river plume and wet season conditions under the MMP over the last seven years 

has extended a comprehensive data set that has been used for characterising the temporal and spatial 

variability of coastal water quality in the GBR [30,31]. Work has built on assessments of a single GBR 

region, the Tully River in the Wet Tropics (Figure 2), over a 20-year time frame [32], to reporting wet 

season water quality over multiple catchments over multi-annual time frames [34,38]. Data collected 

under the MMP has also provided a key contribution to several research and monitoring  

projects [20,28–30,38,39,49–52], the continued validation required in the development of regionally 

based RS algorithms [36,37] and products [28,29,53,54] for the GBR,  and for the validation of outputs 

generated by hydrodynamic models [53]. 

Regional differences and variability in water quality concentrations are evident between the six 

Natural Resource Management (NRM) Regions used for regional reporting (Figure 3). Concentrations 

of dissolved inorganic nitrogen (DIN) are highest in the waters associated with the Wet Tropics, 

Burdekin, and Fitzroy regions, with the highest TSS values in the Burdekin and Fitzroy regions. These 

variable concentrations represent the ecological risk to GBR ecosystems associated with different  

land activities [54]. 

 

Figure 3. Boxplots displaying the water quality data collected within each of the Natural 

Resource Management (NRM) Regions in the GBR. Water quality plots are presented for 

(a) DIN, (b) Dissolved Inorganic Phosphorus, (c) TSS, (d) Chlorophyll-a, (e) CDOM 

(coloured dissolved organic matter) and (f) Kd (PAR). Data presented has been collected 

over an extended wet season period (Nov–May) from 2006 to 2014 under the MMP water 

quality Program. Boxplot presents the mean (dark black line), ±1 SD (rectangle), and 

maximum-minimum value (vertical lines). Nudge was applied to data on x-axis for better 

data visualisation. 
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2.3. Remotely Sensed Satellite Data 

2.3.1. Water Quality Products 

Prior to RS imagery being easily accessible via free satellite imagery (from 2000), the dispersion of 

river plumes in the GBR lagoon was mapped using a combination of aerial photography, in situ water 

quality and salinity sampling from vessels [9,21,23]. Plumes are readily observable as brown turbid 

water masses contrasting with the clearer seawater, allowing the visible edge of the plume to be 

mapped at an altitude of 1000–2000 m in a light aircraft using a global positioning system (GPS). 

Plume dispersion was initially modelled based on salinity measurements [55]. These methods allowed 

a qualitative assessment of the extent of the river influence but are not able to retrieve estimates of 

water quality concentrations and information on the OACs. 

 

Figure 4. Conceptual model of the integration of data sources and the timing required to 

produce water quality monitoring products for the GBR. RS (remotely-sensed) products 

are described by the time scales available (daily, wet season, annual, multiple wet season, 

and multiple annual) and by the source of data that is required for the development of the 

product, including RS data (Level-1, Level-2), catchment load data, in situ data, modelled 

data, and ecosystem information (seagrass and coral reefs) for the GBR. 
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Satellite data provides a data source that can elucidate the composition of the surface water and provide 

a large source of data on coastal water quality processes. The extraction of satellite data involves complex 

and lengthy processing steps to go from the raw data stream (Level-0 data) through to maps of selected 

parameters and products (Level-3 data). The stages in this conversion process are known as product levels 

(or processing levels) and there is a canonical terminology used by remote sensing agencies and scientists 

and will be utilised in this manuscript to differentiate the different GBR products [56] (Table 1). 

The use of true colour data, in combination with in situ wet season data and hydrodynamic models, 

has been instrumental in advancing many aspects of our understanding of water quality in the GBR. 

This has been achieved with a transition from a 1-dimensional tool that provided information on the 

visible extent of freshwater flow to 3-dimensional models that allow us to investigate the extent, 

duration, and content of river plume water types in the GBR and the level of exposure of GBR 

ecosystems. The processing associated with RS data and the RS products, combined with other sources 

of data, for wet season monitoring is illustrated in Figure 4. 

The reporting of water quality through RS products for the GBR has been separated by the type of 

products described as either (i) annual monitoring Level-3 products derived from Level 2 data, (ii) wet 

season Level-3 products derived from Level 2 data, or (iii) wet season Level-3 products based on true 

colour. We will briefly describe all three categories of RS products and report in greater detail on the third 

category to outline the advances associated with the mapping of wet season and flood plume characteristics 

in the GBR. In addition, Table 2 [28,30–37,39,51,57–70] summarises the outputs associated with different 

approaches and products employed to map, report, and describe water quality in the GBR, and documents 

the advantages and disadvantages of each technique. The approaches that have been utilised in mapping of 

river plumes and wet season conditions are not always directly comparable, but are examples of the many 

different data sources that can provide information on events that are variable in space and time and can 

potentially impact across much longer time frames. 

Table 1. Terminology associated with the different processing steps to create levels of 

remotely sensed data. Terminology derived from [56]. 

Level Description Example 

0 

Reconstructed, unprocessed instrument and payload data at full 

resolution, with any and all communications artefacts (e.g., 

synchronisation frames, communications headers, and duplicate 

data) removed. 

Raw data—Ocean Colour 

1a 

Reconstructed, unprocessed instrument data at full resolution,  

time-referenced, and annotated with ancillary information, 

including radiometric and geometric calibration coefficients and 

georeferencing parameters. 

True Colour 

2 

Derived geophysical variables (e.g., ocean wave height, 

temperature, TSS) at the same resolution and location as Level 1 

source data. 

TSS 

CDOM 

Chlorophyll-a 

3 

Variables mapped on uniform space/time grid scales, usually with 

some completeness and consistency (e.g., missing points 

interpolated, complete regions mosaicked together from multiple 

orbits, etc.)  

Remapped (gridded) product 

based on geophysical values—

multiannual  

time scales 



Remote Sens. 2015, 7 12917 

 

2.3.2. Annual Water Quality Products from Level-2 Data (Table 2; I, II) 

RS techniques are a cost-effective method of determining spatial and temporal variation in  

near-surface concentrations of water quality parameters throughout the year. Retrieval and monitoring of 

annual water quality data in the GBR is achieved through the acquisition, processing using bio-optical 

algorithms, and validation of geo-corrected satellite ocean colour imagery, and i referred to hereafter 

as Level-2 products (Table 1). In the GBR, the key source of ocean colour data has been the Moderate 

Resolution Imaging Spectroradiometer [71] on board the NASA Earth Observing System (EOS) Aqua 

platform. This data has been primarily used because MODIS sensors have an adapted spatial resolution 

(250–1000 m resolution) and can provide up to 2 images per day of the GBR waters. 

As part of the MMP water quality program, regional algorithms were developed to provide better 

satellite retrieval of water quality concentrations in the optically complex coastal waters, or case II 

waters, of the GBR than the “NASA global algorithms” implemented in the SeaWiFS Data Analysis 

System (SeaDAS [72]) (the NASA’s comprehensive image analysis package for the processing, 

display, analysis, and quality control of ocean colour data [36,37,57,58,60,72]). This work has 

provided regionally parameterised inversion algorithms, including (i) the artificial neural network 

atmospheric correction and (ii) the adaptive linear matrix (aLMI) inversion algorithm for deriving 

chlorophyll-a, TSS, and CDOM [58,72]. These algorithms are now routinely used to provide  

regionally-tuned ocean-colour products from MODIS-Aqua satellite imagery. This regional 

parameterised, remote sensed chlorophyll-a, TSS, and CDOM data can be acquired as daily, annual, or 

multi-annual products from the eReefs Marine Water Quality dashboard [73]. The satellite data is 

derived from cloud-free daytime imagery and processed using SeaDAS [72] and the Bureau 

Operational Ocean Colour (BOOC) data-processing package [73]. These GBR specific ocean colour 

products, particularly CDOM, have also contributed to additional methods of mapping the extent and 

composition of river plume waters [29] (see Section 2.3.3). 

Recent work also includes the development of a regional bio-optical algorithm for determining 

regional Secchi depth (ZSD) related to turbidity, clarity, and TSS in coastal waters in GBR waters over 

wet and dry seasons [59,61]. This algorithm has been used to calibrate MODIS time series of photic 

depth in GBR waters using inshore water quality collected through long-term monitoring  

programs [74,75]). The correlations between river loads of fine sediment (or proxies for these loads) 

and remote-sensed photic depth have been reported across the GBR [61]. For years of high river flow 

and large fine sediment loads, strong correlations are found across the entire GBR shelf. The 

correlations are strongest inshore in water depths of less than 20 metres and weaker correlations are 

observed further offshore. The effect of lower clarity in large river discharge years is driven by the 

river plume-delivered fine material, which contains large amounts of organic material in flocs [76] 

being resuspended in periods of strong winds and large tides (a characteristic in the central-southern 

GBR). This work is an integral part of recent work on modelling the influence of river flow and 

suspended sediments on the dry season turbidity of the GBR [59,61]. 

However retrieval of RS water quality data in Case II waters is complex. It requires ongoing annual 

validation, particularly in response to sensor drift, including the evaluation of the regional algorithms 

performance associated with water types in different GBR regions and through the different seasons to 

ensure confidence in monitoring and assessment of water quality in the GBR [57,60,77]. 



Remote Sens. 2015, 7 12918 

 

2.3.3. Wet Season Water Quality Products from Level-2 Data (Table 2; III, IV, V) 

Gradients of water quality within river plumes are highly dynamic, with deposition of the fine 

suspended sediment concentrations occurring close to the coast in lower salinity waters [38,76,78] and 

rapid transformations between nutrients, turbidity, and phytoplankton. These processes are difficult to 

fully capture with a traditional water quality program and RS data can provide a valuable dataset to 

fully capture these processes over adequate spatial and temporal scales. 

The regionally parameterised Level-2 water quality product, CDOM, (m−1) has been used to define 

the river plume extent through the relationship between CDOM and salinity, with a threshold CDOM 

value of 0.24 m−1 corresponding to a salinity value of 30 (±4) ppt representing the outer edge of the 

river plumes [27]. This relationship between CDOM and salinity has also been the basis of a 

preliminary assessment between CDOM, as the proxy for freshwater extent, and exposure to 

Photosystem II-inhibiting herbicides (hereafter PSII herbicides) [51,62]. This work found a significant 

positive association between CDOM and exposure to PSII herbicides in the Wet Tropics; however, there 

is an increased occurrence of the uncertainties around satellite retrieval during the wet season, when PSII 

herbicide exposures are typically higher, potentially confounding the results. MODIS Level-2 satellite 

data has also been used to characterise external boundaries of river plumes and water types within GBR 

river plumes using supervised classification of MODIS Level 2 satellite data processed by the NASA 

standard algorithms and a combination of CDOM, chlorophyll-a, and TSS (estimated from two RS 

proxies) threshold values [34]. 

Quantifying uncertainties inherent to the water quality monitoring datasets (satellite or in situ) is 

crucial in determining how accurate the designed water quality products are, and in identifying the best 

data sets and information sources for specific regions or seasons of the GBR. This is particularly 

relevant for the retrieval of Level-2 RS data in the complex coastal Case II waters of the GBR. 

Improvements in deriving data from Case II waters is ongoing, both at a GBR and an international 

scale, and requires extensive validation across coastal water types, particularly in wet season 

conditions where high concentrations of suspended sediment and CDOM co-occur with phytoplankton 

in river plume waters. To define and map wet season conditions, particularly through periods of high 

river flow, “alternative” RS methods based on the extraction and analysis of MODIS true colour data 

have been tested and are described more fully in the following section. 

2.3.4. Wet Season WQ Products from True Colour (Level-1 Data) (Table 2; VI–XI) 

In the GBR region, the use of MODIS true colour imagery has provided a spatially rich technique 

in the estimation of river plume extent and improved the assessment of the level of exposure of 

inshore coral reefs and seagrass meadows to river plumes. River plume mapping utilising true colour 

imagery has been applied as a method of characterising the water quality conditions associated with 

periods of elevated river flow. Various products have been produced using different methods of 

extraction, aggregation through annual and multi-annual time frames, and integration to provide 

robust information on wet season conditions and to report decadal time frames (2002–2015) of water 

quality status. 
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(a) Mapping Extent of River Plumes (Table 2; VI) 

River plumes maps are produced using MODIS Level-0 data acquired from the NASA Ocean 

Colour website (http://oceancolor.gsfc.nasa.gov) and converted into true-colour images with a spatial 

resolution of 500 m × 500 m using SeaDAS [72]. The true colour images are then spectrally enhanced 

from Red-Green-Blue to Hue-Saturation-Intensity colour systems and classified to six distinct river 

plumes water types defined by their colour (RGB/HSI signatures) properties (Figure 5, [63]) and 

hereafter referred to as plume colour classes. The clustering of the colour classes into six groups 

characterising the water types in the river plumes is through supervised classification using spectral 

signatures from the changes in colour associated with the gradient of river plumes. Each of the defined 

six colour classes (CC1–CC6) is characterised by different concentrations of optically active 

components (TSS, CDOM, and chlorophyll-a) which influence the light attenuation and can vary the 

impact on the underlying ecological systems. CC1–CC3 correspond to the brownish turbid water 

masses with high sediment and CDOM concentrations, CC4 and CC5 to the greener water masses with 

lower sediment concentrations favoring increased coastal productivity, and CC6 is the transitional 

water mass between plume waters and marine waters. 

 

Figure 5. Triangular colour plot showing the characteristic colour signatures of the Great 

Barrier Reef river plume waters (six plume colour classes) in the Red-Green-Blue space. 

A method has been developed to map the GBR river plumes and the different water masses 

inside the river plumes using these characteristic signatures and a supervised classification 

of MODIS true colour data [63]. 

These river plume maps are processed into weekly and multi-week (wet season, multi-seasonal) 

composite maps [28,30–35]. This method is used to map the extent, movement, and frequency of 

occurrence of river plumes in the GBR during the wet season. The production of river plume maps has 

changed the perception that river plumes are nearly always constrained to the coast, with recognition 

that river plume waters with elevated concentrations of chlorophyll and CDOM can be mapped at large 

distances offshore and move hundreds of kilometers north, particularly those out of the larger dry 

tropics rivers (Figure 6a). However, despite the occasional offshore movement of the river flood 

plumes, the main areas of inundation and exposure are found with 25 km along the Queensland coast, 
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with the strong prevailing south-easterlies driving a dominant northerly movement of river plumes 

along the GBR. 

 

Figure 6. Outputs, expressed as GBR spatial maps, from the analysis and processing of 

true colour (Level-1) data extracted across the GBR. Maps include: (a) the extent and 

frequency of river plume in the GBR, reported as a multi-seasonal value for the period 

2003–2013. The frequency value is calculated as the number of weeks within the wet 

season (December–April, ca. 22 weeks) over the 10-year period in which the pixel was 

exposed to river plume waters. River plume was identified by the extraction of colour class 

categories (CC1–CC6); (b) wet season water quality maps showing the mean colour class 

associated with each pixel for the wet season period December 2010–April 2011. Each 

colour class category is described by mean water quality values for TSS, CDOM, 

chlorophyll-a, and Kd (PAR); (c) surface load maps (or concentration maps) of Dissolved 

Inorganic Nitrogen (DIN) representing the mean surface concentration of DIN (reported as 

µM) per 500 m × 500 m pixel for the wet season period December 2010–April 2011; and 

(d) spatial risk maps showing the qualitative categories of risk associated with different 

permutations of plume frequency (as a proxy for intensity of impact) and the mean colour 

class value (as a proxy for the water quality concentration gradient). 

(b) Wet Season Water Quality Maps (Table 2; VII) 

Wet season water quality maps are defined as maps where water quality concentrations associated 

with the level of land-sourced contaminants are measured or predicted, and are produced by normalising 
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the frequency of the plume colour classes over multi-year time scales (Figure 6b). Information on plume 

water quality can then be extracted from these frequency maps by reporting the characteristics of the 

corresponding in situ wet season water quality data with the colour class or plume water type frequency 

values. Several land-sourced pollutants are investigated through match-ups between in situ data and the 

six plume colour class maps. Dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus 

(DIP), TSS, chlorophyll-a, Kd (PAR), and CDOM have all shown consistent patterns of variation 

across the six-colour classes (Figure 7). All these parameters present a general reduction trend from 

CC1 (more inshore waters)–CC6 (more offshore waters). The wet season water quality maps are 

produced as multi-week (wet season, multi-season) composite maps for the GBR [30,33,34]. 

Composite, multi-seasonal plume colour class maps (Figure 6b) provide a more broad-scale approach 

to reporting contaminant concentrations in the GBR marine environment and to map the range of 

statistical values (average, minimum, maximum) from the long term multi-seasonal water quality 

values associated with the colour class values. 

 

Figure 7. Box plot representing the data collected on two water quality measurements 

(a) Dissolved Inorganic Nitrogen, DIN (µM) and (b) Dissolved Inorganic Phosphorus, DIP 

(µM), the three main optical attenuating components of (c) TSS (mg/L), (d) CDOM (m−1), 

(e) chlorophyll-a (µg/L), and (f) light attenuation (Kd)PAR), m−1), are shown over each 

river plume colour class and “out of the plume”  in wet season conditions. Boxplot presents 

the mean (dark black line), ±1 SD (rectangle) and maximum-minimum value (vertical 

lines). Nudge was applied to data on x-axis for better data visualization. Data is sourced from 

the Wet Season water quality monitoring program under the MMP between 2007 and 2015. 
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(c) Pollutant Surface Load Maps (Table 2; VIII, IX) 

Pollutant surface load maps integrate three sources of data to map the dispersion of land-sourced 

pollutants. The load maps are produced by combining in situ data collected in the wet season (ca. 

December–April, inclusive) with river plume maps derived from MODIS true colour imagery 

(Figure 6c) and annual monitored end-of-catchment pollutant load [79]. River discharge in the wet 

season accounts for 78% of the total annual discharge (Department of Natural Resources and Mines, 

http://watermonitoring.dnrm.qld.gov.au/host.htm), so even though water quality parameters and river 

plume maps are for the wet season period only, they are used to produce annual load maps by 

incorporating annual pollutant loads delivered into the GBR for each river [80–82]. The in situ water 

quality data provides the pollutant mass variation as a function of the movement of the river plume 

away from the river mouth. The satellite imagery provides the direction and intensity of the pollutant 

mass dispersal over the GBR lagoon. As a result, this method produces an estimate of pollutant surface 

dispersion into the GBR, expressed in mass per area, generating a map of the “potential” risk of 

pollutant exposure in the marine environment for TSS, DIN, and particulate nitrogen (Figure 6c, [82]). 

The pollutant surface load maps within the GBR are produced as annual and multi-annual composite 

maps. As an example, the multi-annual map of DIN is shown for the period between 2003 and 2013, 

with the colour gradient representing the variation in the mean surface DIN reported as mass per area 

(kg/ha) (Figure 6c). 

(d) GBR Plume Risk Maps (Table 2; X) 

The river plume maps and wet season water quality maps can be overlaid with information on the 

presence or distribution of “contamination receptors”, i.e., GBR ecosystems susceptible to the land-sourced 

contaminants. This method can help identify ecosystems which may experience acute or chronic high 

exposure to contaminants in river plumes (exposure assessment) and, thus, help evaluate the 

susceptibility of GBR ecosystems to land-sourced contaminants [64]. For example, a recent study [39], 

mapped the occurrence of turbid water masses in Cleveland Bay (Burdekin marine region, Figure 1) in 

each wet season between 2007 and 2011 and compared the results to changes in the seagrass 

community. This analysis, realised though the production of plume frequency maps (Figure 6b), 

correlated with measurements of seagrass area and composition. The correlation indicated that the 

decline in seagrass meadow area and biomass was positively linked to high occurrence of turbid 

water masses and confirmed the impact that decreased clarity can have on seagrass health in the 

GBR [64,65,83]. 

One step further toward the production of “risk” maps for GBR ecosystems (Figure 6d) is to compare 

predicted pollutant concentration in river plumes (Figure 6b) to published ecological threshold values for 

ecological consequences [83,84] and combine this information to estimate the probability of 

environmental harm from exposure to river plumes and degraded water quality. Examples of these 

consequences include, but are not limited to, increased bleaching susceptibility in coral from nitrate 

exposure [85], phytoplankton blooms enhancing Crown of Thorn outbreaks from increased DIN  

loads [66,86,87], and reduced resilience in seagrass and corals due to reductions in light availability [83]. 

Ideally, the risk models should incorporate the potential of cumulative impacts [85,86] from multiple 
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pollutants in river plume waters and the susceptibility of specific ecosystems (seagrass or coral reefs) 

should be taken into account [67,87]. This exercise is, however, challenging because the response of 

GBR ecosystems to an amount and/or duration of exposure to land-sourced contaminants (respectively or 

combined) in river plume waters is often unknown at a regional or ecosystem level [87]. Work in this 

area has progressed by using time series data of MODIS river plume water masses [33,68] to establish 

measures of frequency (as a proxy for intensity) (Figure 6a) with water quality gradients measured 

through the mapping of the 6CC’s. These maps can help summarise the likelihood and magnitude of 

the river plume risk, by spatially clustering water masses with different concentrations and proportions 

of land-sourced contaminants against a risk framework (Figure 6d). This framework produces river 

plume risk maps for seagrass and coral ecosystems based on a simplified risk matrix [33]. The “risk” 

of elevated nutrients and sediments needs to be closely linked to research identifying ecological 

thresholds to allow the qualitative framework expressed in Figure 6d to move to quantitative 

thresholds that can influence ecosystem decline and impact on GBR resilience [64,68,69,84]. 

Knowledge of these thresholds can identify ecosystems which may experience acute or chronic high 

exposure to contaminants in river plumes and help evaluate the susceptibility of GBR ecosystems to 

land-sourced contaminants. Spatial maps of potential risk associated with water quality thresholds are 

also an important data visualization tool for communicating environmental risks to managers and 

providing information on prioritising land based management. Work is in progress to test and improve 

this approach [68]. 

(e) Future Applications—Integration with Models (Table 2; XI) 

Recent work has focused on the integration of empirically derived products with hydrodynamic 

models. Virtual (modelled) river tracers [53,70] allow the assessment of the relative pollutant 

contribution of each watershed to observed river plume characteristics and the impacts that di fferent 

land management scenarios will have on river plume-ecosystem interactions. For example, this 

approach is being combined with coral trajectory models, to assess the future vulnerability of reefs to 

both local (water quality) and global (climate change) stressors [88]. Initial analysis has used in situ 

samples to calibrate river tracers to better reflect DIN spatial and temporal dynamics. Results will 

help with marine spatial planning decision making, by identifying those reefs that will most benefit 

from land management improvements, and which catchments should be prioritized from a  

cost-benefit point of view. 
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Table 2. Examples of remote sensed products currently applied in water quality monitoring of the Great Barrier Reef. Products in bold relate 

to analysis of true colour data collected in the wet season only. Based on MODIS data 2002–2014, processed into single-day and multi-day 

(week, month, season, and annual) composite maps. MODIS products also require continued access to in situ water quality monitoring data 

for parameterisation and validation. WQ = water quality. 

Product Name Description/Key Processes Data Source  Advantages Disadvantages References 

Annual monitoring–Level 3 products 

I: Marine water 

quality indices for 

the GBR (Chla, 

NAP and CDOM) 

MODIS time series of water quality 

indices in GBR waters (Level 2 

products) using regionally paramaterised 

bio-optical algorithms: Artificial Neural 

Network  

(CROC-ANN) and Linear Matrix 

Inversion (aLMI). 

MODIS imagery  

+ CSIRO regional algorithm 

+ The eReefs research 

platform (operational 

production at BOM a) 

In situ water quality data for 

validation 

- High spatial and temporal 

coverage 

- No costs associated with the 

MODIS imagery 

- Account for atmospheric 

Correction 

- Valuable quantitative WQ 

information, such as the WQ 

concentration of CDOM, TSS, 

chlorophyll-a, or Z% 

- Data from 2002 only. 

- High processing requirements 

- Retrieval of L2 data 

notoriously challenging in 

optically complex (Case 2) 

coastal waters  need for 

regionally-tuned and validated 

algorithms  

[36,37,57,58,60] 

II: Marine water 

clarity for the 

GBR (Z%) 

MODIS time series of photic depth in 

GBR waters using a regionally tuned 

bio-optical algorithm. This algorithm 

has been implemented to intensively 

describe the effects of river run-off on 

water clarity of the central GBR 

MODIS imagery  

+ University of Queensland 

algorithm 

 

Secchi depth (ZSD) data for 

validation 

[59,61] 

Wet season monitoring–Level 2 products 

III: River plume 

maps (extent) for 

the GBR 

MODIS time series of River plume 

extent based on a CDOM threshold 

correlated to 34ppt salinity. Level 2 

CDOM value converted to salinity. 

Annual measurements of exceedance (1) 

or non exceedance (0) 

Marine CDOM product for 

the GBR (product I)  

- High spatial and  

temporal coverage 

- No costs associated with the 

MODIS imagery 

- Account for atmospheric 

Correction 

- Valuable quantitative WQ 

information, such as the WQ 

concentration of CDOM 

- Data from 2002 only. 

- Use regional Level 2 CDOM 

products: high uncertainty 

associated with Case 2 waters, 

particularly in plume conditions 

with high TSS, chlorophyll-a, 

and CDOM. 

[28]  
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Table 2. Cont. 

Product Name Description/Key Processes Data Source  Advantages Disadvantages References 

IV: Marine PSII 

(Photosystem II 

herbicides) maps 

for the GBR 

MODIS time series of Photosystem II 

(PSII) herbicides in GBR waters. Based 

on correlation between the marine 

CDOM product for the GBR (product I: 

used as a proxy for salinity) and PSII 

herbicides concentrations. Focused on 

wet season data only. 

Marine CDOM product for 

the GBR (product I) 

 

PS II herbicide 

concentration data 

- High spatial and temporal 

coverage 

- No costs associated with the 

MODIS imager 

- Account for atmospheric 

Correction 

- The threshold method assumes 

fixed WQ CDOM concentration 

thresholds to delineate  and thus 

ignores potential temporal and 

spatial variability 

[51,62] 

V: River plume 

maps (extent and 

plume water 

types) for the 

GBR 

MODIS time series of river plume 

extent and of three plume water types 

using supervised classification of 

MODIS Level 2 satellite data processed 

by the NASA standard algorithms and a 

combination of CDOM, Chlorophyll a 

and TSS (estimated from two RS 

proxies). Identification of potential 

L2/WQ threshold values. 

MODIS imagery  

+ NASA global algorithms  

+ In situ WQ data from the 

flood plume program of the 

MMP 

- High spatial and temporal 

coverage 

- No costs associated with the 

MODIS imagery 

- Account for atmospheric 

Correction 

- Data from 2002 only. 

- Use standard Level 2 CDOM, 

chlorophyll, and TSS proxy 

products: high uncertainty 

associated with Case 2 waters, 

particularly in plume conditions 

with high TSS, chlorophyll-a, 

and CDOM. 

- The L2 threshold method 

assume fixed WQ value/ 

concentration thresholds to 

delineate plumes and plume 

water types  and thus also 

ignores potential temporal and 

spatial variability 

[33,34] 
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Table 2. Cont. 

Product name Description/Key Processes Data Source  Advantages Disadvantages References 

Wet season monitoring–True colour products 

VI: River plumes 

maps (extent and 

water types) for 

the GBR 

MODIS time series of river plume 

extent and six plumes water types 

defined by their colour (RGB/HSI 

signatures) properties. Based on a 

supervised classification using spectral 

signatures from river plume water in the 

GBR. 

MODIS true colour imagery - High spatial and temporal 

coverage 

- No costs associated with the 

MODIS imagery 

- Simple and objective 

method by clustering the 

information contained in 

MODIS true colour 

composites (Red Green Blue 

bands) 

- Data from 2002 only. 

- High processing requirements 

- Relies on non-atmospherically 

corrected data 

- The spectral signature used to 

classify images does not 

incorporate potential temporal 

and spatial variability. 

- Quantitative WQ information 

(WQ concentrations) not directly 

available through the clustering 

of the true-colour composites. 

[28,30–35,63] 

VII: a) Wet 

season frequency 

maps of colour 

class and b) wet 

season water 

quality  maps for 

the GBR 

(a) MODIS time series of maps 

representing the multi-seasonal 

frequency of occurrence of the six 

colour classes. 

(b) MODIS time series of maps 

presenting potential concentrations 

(mean, min, max) of land-sourced 

pollutants linked to normalised 

frequency values of the six colour 

classes representing the water types 

across river plume 

MODIS River plumes maps 

(extent and water types) for 

the GBR (Product VI) 

+ In situ water quality data 

correlated with colour class 

frequency 

- High spatial and temporal 

coverage 

No costs associated with the 

MODIS imagery 

-Simple and broad scale 

approach to reporting 

contaminant concentrations in 

the GBR marine environment  

- map the range of statistical 

water quality values (average, 

minimum, maximum) 

associated with the colour class 

values 

[30,33,34] 

  



Remote Sens. 2015, 7 12927 

 

Table 2. Cont. 

Product name Description/Key Processes Data Source  Advantages Disadvantages References 

Wet season monitoring–True colour products 

VIII: 

Contaminant 

transport maps for 

the GBR 

Modelling surface transport of 

contaminant loads. Reported as load 

mass per area maps. 

MODIS River plumes maps 

(extent and water types) for 

the GBR (Product VI)  

+ River Load data and in situ 

water quality data 

- High spatial and temporal 

coverage 

- No costs associated with the 

MODIS imagery 

- Improved approach to 

reporting contaminant load 

with contaminant surface mass 

reported per 500 m × 500 m 

pixel for the wet season. 

Data from December 2002 only. 

- High processing 

Dependent on load data—not 

always accessible 

[62] 

IX: Contaminant 

exposure 

assessment in the 

GBR 

Identify ecosystems which may 

experience acute or chronic high 

exposure to contaminants in river 

plumes. Based on correlations between 

wet season water quality maps and 

monitoring information on GBR 

ecosystems. Help evaluating the 

susceptibility of GBR ecosystems to 

land-sourced contaminants. 

Wet season water quality 

maps for the GBR (Product 

VIIb)  

+ Coral and seagrass 

monitoring data 

Can be used in modelling 

ecological response 

-identify ecosystems which 

may experience acute or 

chronic high exposure to 

contaminants in river plumes 

(exposure assessment) 

-help evaluating the 

susceptibility of GBR 

ecosystems to land-sourced 

contaminants/- Data 

visualization tool for 

communicating environmental 

risks to managers 

- Difficult to align ecological 

monitoring info with pixel size 

(spatial resolution) and the 

degree of variability (inter- and 

multi-annual) 

- Timing issues between satellite 

water quality measurements and 

corresponding ecological 

impacts can make it difficult to 

align the water quality pressure 

with the ecosystem response. 

[32,66,67] 

X: Risk maps for 

the GBR 

Compare predicted contaminant 

concentration in flood river plumes to 

published ecological threshold values 

for toxicity and combine this 

information to exposure and 

susceptibility information to estimate the 

probability of environmental harm to 

occur due to exposure to river plume. 

Wet season frequency maps of 

colour class and + wet season 

water quality maps for the 

GBR (Product VIIa and VIIb) 

Coral and seagrass monitoring 

data. 

[33,39,64,65,68,69] 
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Table 2. Cont. 

Product name Description/Key Processes Data Source  Advantages Disadvantages References 

Wet season monitoring–True colour products 

 Summarize information from the release 

of land-sourced contaminants through 

exposure and susceptibility assessment 

to risk characterization. 

  - Challenging because response 

of GBR ecosystems to an 

amount and/or duration of 

exposure to land-sourced 

contaminants (respectively or 

combined) in river plume waters 

are often unknown at a regional 

or ecosystem level  

 

XI: True colour 

and 

hydrodynamic 

modelling outputs 

Link to hydrodynamic models. 

Disperse river loads across surface layer/ 

calibrate tracer values with  

in situ WQ concentrations to estimate 

fate of WQ associated with each river 

Tracer values from 

hydrodynamic model 

correlated with Wet season 

frequency maps of colour 

class (water types) 

- Can delineate river plumes 

associated with each river 

- Allow assessing impacts that 

different land management 

scenarios will have on river 

plume–ecosystem interactions 

- Only 4 years of data 

- Not all rivers included 

- Needs further validation 
[53,70] 

a Australian Government Bureau of Meteorology. 
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3. Discussion 

Numerous studies have shown that nutrient enrichment, turbidity, sedimentation, and pesticides all 

affect the resilience of the GBR ecosystems, degrading coral reefs and seagrass beds at local and 

regional scales [12,51,64,76,89–95]. Contaminants may also interact to have a combined negative 

effect on reef resilience that is greater than the effect of each contaminant in isolation [96]. The 

combination of acute impacts from extreme weather years with the chronic stresses of longer-term 

reduced water quality coupled with climate change factors may tip these systems over the thresholds 

for a complete phase shift [21,97–100]. Monitoring and assessment of water quality changes and 

impacts on coastal ecosystems is more than a requirement for assessment of water quality but also 

provides data into priority issues of resilience in the face of a changing climate. 

The MMP wet season monitoring program is designed to map and model the spatial and temporal 

extent of the water quality conditions measured by in situ sampling and satellite imagery, particularly 

through the use of ocean colour products. Specifically, the program is useful for: 

1. Identifying human induced and natural changes in water quality parameters in the GBR 

waters by monitoring river plumes water. 

2. Developing of maps and models of the river plumes to summarise land-sourced 

contaminants transport and light levels within the GBR lagoon. 

3. Evaluating the susceptibility of GBR key ecosystems to the river plume/contaminants exposure. 

The third point, related to the evaluation of the susceptibility of GBR ecosystems, is an important 

outcome to support management actions by providing spatial risk models for managers to mitigate the 

risk of degraded water quality. 

This paper has described qualitative outcomes derived from remotely-sensed data, which could 

potentially provide the spatial and temporal information required to achieve consistency of reporting 

across the GBR. Plumes in the GBR are now mapped remotely by the use of ocean colour [31,48,101] 

and by the use of remote-sensed CDOM measurements, acting as a proxy for salinity and freshwater 

extent [29,51] and more recently by the use of tracer values extracted from hydrodynamic  

models [53,70,102]. This review reported on outcomes associated with the wet season true colour 

products produced to support the MMP water quality program; however, the advances in regional 

paramaterisation of the Level 2 products has also been an important step in the provision of a baseline 

of annual water quality measurements. Annual reporting of TSS, chlorophyll-a, and Kd (PAR) are now 

an integral part of the Paddock to Reef Report Framework for the GBR and provide an annual 

measurement of GBR water quality status. However, retrieval of Level-2 products in coastal waters, 

where suspended sediment and CDOM co-occur with phytoplankton, is inherently complicated by the 

optical complexities of these waters, and reliance on Level-2 data only can lead to uncertainty in the 

water quality reporting outcomes for coastal waters [77]. These uncertainties have prompted 

continuing improvements in validation of the regional algorithms for GBR waters, and also testing of 

alternative methods based on true colour imagery of the ocean, related to water quality gradients across 

river plume waters. 

Ultimately the true colour products will allow an estimate of risk associated with water quality that 

would not be possible under a traditional, field based, water quality program. The true colour products 
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reported here have been successful in describing the characteristics of seasonal water quality linked to 

river plumes [9]. These outputs can be linked to shifts in the ecosystem, related to seagrass and coral 

reefs in the GBR [39]. However, this is just a first step in what needs to be a holistic system of 

monitoring and assessment. The links between RS data and products leading to better assessment of 

water quality and ecological outcomes are outlined in Figure 8. The process requires a move from 

traditional water quality sampling to reliable RS products reported and validated with in situ data. This 

process also requires the measures of uncertainty to be well established and reported for accurate 

correlations of the remotely-sensed water quality metrics with ecosystem response. There are still 

some limitations to the accessibility of long-term data for both water quality and ecosystem data; 

however both the Long Term Monitoring Program [74,75], and the maturing MMP program [21,103] 

are proving successful in the provision of data to report on long-term ecosystem changes. 

Developments of assessment protocols should be within an adaptive management approach, which 

ensures that the reporting structures are refined and improved through this ongoing long term 

monitoring and assessment [99]. Thresholds may be defined as absolute measures of concentrations or 

colour class frequency which should never be exceeded (expressed as a magnitude) or expressed as 

percent exceedance (temporal frequency and magnitude). As we progress, adapt, and improve our 

metrics with continual validation and reduced uncertainty, it will be possible to incorporate these products 

into management and policy as useful tools to monitor short- and long-term water quality impacts. 

In addition to direct application within the P2R Program framework for monitoring and reporting, 

the products described in this paper have also been used for a range of management applications. The 

frequency of ocean colour products has been linked to gradients in water quality [28,30], measures of 

photic depth linked to river flow and water quality [59,61], and CDOM utilised as a proxy for 

freshwater as a layer in a GBR vulnerability assessment [89]. The CDOM analysis has also been used 

as part of a GBR wide vulnerability assessment [104]. Relationships between remotely-sensed photic 

depth data and river flow [73] have been used to develop end of catchment load reduction targets for 

TSS that are estimated to be necessary to maintain coral reef health in the GBR [103]. Level 2 

products, specifically chlorophyll algorithm, have been used for the monitoring of algal  

blooms [105,106] over long-term time frames and in response to high flow events. The annual TSS 

monitoring products and pollutant surface load maps provided several input layers to the assessment of 

the relative risk of degraded water quality on coral reef and seagrass ecosystems, being used for 

prioritisation of investment at the GBR wide scale [64] and more recently within NRM  

regions, [107,108] and as an interpretive tool for understanding changes in ecosystem health [39]. 

There are also opportunities for further development and application of these integrated remote sensing 

techniques in the future. For example, one of the main issues facing the GBR coral reefs is the proliferation 

and movement of large numbers of the coral-eating Crown of Thorns starfish (COTS) [86,108–110]. It has 

been postulated that only in periods of nutrient enrichment (river flow) are phytoplankton likely to 

have sufficient biomass and the correct cell type and size to support COTS larvae to a successful 

settlement status [66,86,110]. Agricultural development of the GBR catchment has increased delivery 

of nutrients to the GBR by several times since European settlement, and this delivery has occurred in 

pulses during wet season runoff events [11], resulting in large phytoplankton blooms [38]. Recent 

work has identified this increase in frequency and concentration of nutrient pulses, and hence, increased 

occurrence of large phytoplankton blooms, as main causative factors which allowed the primary COTS 
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outbreaks to occur [66,86]. Natural levels of chlorophyll-a on the GBR were determined from remote- 

sensed reference chlorophyll-a data extracted from eReefs over the period that COTS larvae would be 

expected in the plankton (five months: November–March). This remote-sensed data provided 

background information on chlorophyll concentrations associated with hotspots of COTS  

outbreaks [110]. Development of metrics which can explore the long-term changes in water quality, 

such as the true colour products described here, which can provide quantitative evidence in the causal 

relationship between COTS outbreaks and water quality, would be a valuable monitoring tool. It is also 

important to ensure the adaptive strategy incorporates a moving baseline for thresholds, as other 

processes, such as climate change, will mean that any ecological relationship will not be static and will 

require ongoing validation and testing. 

 

Figure 8. Adaptive strategy for the inclusion and use of RS products in the mapping and 

monitoring of GBR water quality and ecosystems. 

Research undertaken under the MMP water quality program has already initiated work with the 

modelling outputs of the GBR hydrodynamic model, but there are several other initiatives and outputs 

that are occurring in similar time-frames which offer potential opportunities to continue to extend our 

spatial and temporal understanding of water quality gradients in the GBR [53,70,88]. Modelling allows 

us to model what the reality would be under different scenarios and can provide integrated assessments 

that assess how different land management scenarios can influence the river plume condition and the 

GBR ecosystems. Utilising hydrodynamic and biogeochemical models in combination with ocean 

colour has been a key research area for international space agencies and ecosystem managers and can 

provide an important source of data for GBR managers [53,98,104]. 
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4. Conclusions 

Remote-sensed data can provide a useful and productive monitoring tool; however, the  

remote-sensed products need to be used with caution, dependent on the locations and optical 

conditions of the underlying water, due to uncertainties associated with Case 2 waters. Quantifying 

uncertainties inherent to the RS data for Level 1, 2 and 3 products, as well as with the in situ water 

quality and ecosystem health monitoring datasets, is crucial in determining how accurate the 

regionally-designed water quality products are, and in identifying the best data sets and information  

(or combination of information) sources to be used for the management of specific regions or seasons 

of the GBR. A fully functional monitoring program will need to adapt and integrate novel reporting 

methods to ensure consistency of reporting across large systems such as the GBR. The integration of 

data, from in situ to remote-sensed data and to validated hydrodynamic and biogeochemical models 

provides a challenging but comprehensive method to monitor, measure, and report on water quality in 

the GBR. 
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