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Abstract: Ecological remote sensing is being transformed by three-dimensional (3D), 

multispectral measurements of forest canopies by unmanned aerial vehicles (UAV) and 

computer vision structure from motion (SFM) algorithms. Yet applications of this 

technology have out-paced understanding of the relationship between collection method and 

data quality. Here, UAV-SFM remote sensing was used to produce 3D multispectral point 

clouds of Temperate Deciduous forests at different levels of UAV altitude, image overlap, 

weather, and image processing. Error in canopy height estimates was explained by the 

alignment of the canopy height model to the digital terrain model (R2 = 0.81) due to 

differences in lighting and image overlap. Accounting for this, no significant differences 

were observed in height error at different levels of lighting, altitude, and side overlap. 

Overall, accurate estimates of canopy height compared to field measurements (R2 = 0.86, 

RMSE = 3.6 m) and LIDAR (R2 = 0.99, RMSE = 3.0 m) were obtained under optimal 

conditions of clear lighting and high image overlap (>80%). Variation in point cloud quality 

appeared related to the behavior of SFM ‘image features’. Future research should consider 

the role of image features as the fundamental unit of SFM remote sensing, akin to the pixel 

of optical imaging and the laser pulse of LIDAR. 
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1. Introduction 

Forests cover roughly 30% of global land area and hold 70%–90% of terrestrial aboveground and 

belowground biomass, a key sink of global carbon [1]. Accurate understanding of the spatial extent, 

condition, quality, and dynamics of forests is vital for understanding their role in the biosphere [2]. 

Obtaining such information through field work alone is impossible, but has been made possible within 

the last four decades by remote sensing technologies that map the extent and dynamics of structural, 

spectral, and even taxonomic traits of forests at spatial scales ranging from the single leaf to the entire 

planet [3–9]. Even so, no one remote sensing instrument can simultaneously capture structural and 

spectral traits and dynamics of forests at high spatial resolution due to technical or practical  

constraints [10] or other factors, including frequent cloud cover in the humid tropics [5,11]. 

A solution lies in the rapid advancement of two consumer-grade technologies: unmanned aerial 

vehicles (UAV) and structure from motion image processing algorithms (SFM). Consumer-grade UAVs 

have reached a degree of technical maturity that, when equipped with digital cameras or other sensors, 

enable rapid and on-demand ‘personal remote sensing’ of landscapes at high spatial and temporal 

resolution [12–19]. At the same time, automated computer vision SFM algorithms enable the creation 

of LIDAR-like (Light Detection and Ranging) three-dimensional (3D) point clouds produced from 

images alone with color spectral information from images associated with each point [20]. The 

combination of these two technologies represents a transformative shift in the capabilities of forest 

remote sensing. UAV-SFM remote sensing can capture information on the 3D structural and spectral 

traits of forest canopies at high spatial resolution and frequencies not possible or practical with existing 

forms of airborne or satellite remote sensing [14,21,22].  

Use of SFM and UAVs for remote sensing has increased rapidly thanks to the relative ease with which 

these technologies can be deployed for research applications. Personal remote sensing systems have 

enabled accurate mapping of canopy height and biomass density as well as the discrimination of 

individual tree structural, spectral, and phenological traits [14,21–23]. Similar systems have also been 

used for mapping stream channel geomorphology [24,25], vineyard and orchard plant structure [26–28], 

the topography of bare substrates [29–34], and lichen and moss extent and coverage [16].  

With this rapid advance in UAV-SFM applications comes an increasing complexity in the methods used 

to carry out the research. UAV-SFM research spans a range of applications, algorithms, data collection 

methods (including UAV, manned aircraft, and ground-based strategies), and flight configurations. Across 

the studies cited above, UAV-SFM research was conducted at a range of flight altitudes (30–225 m above 

ground level, AGL) and parameters of photographic overlap (from 40% to >90% forward and side overlap). 

These studies also used different SFM applications (both free, open-source and commercial, closed-source) 

applying different processing and post-processing approaches. While these studies arrive at the similar 

conclusion that accurate 3D reconstructions of landscapes (including vegetation and topography) can be 

produced with SFM remote sensing, the diversity of methods with which the research was carried out 

highlights a significant challenge and research opportunity for this burgeoning remote sensing field. In 

particular, little is known about the relationship between observations of vegetation structural and spectral 

metrics and the conditions under which observations are obtained. Given the myriad potential combinations 

of system, sensor, and flight configurations, it is unclear what the optimal methods might be for accurately 

measuring forest structure using these techniques. 
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Similar challenges arise in the use of LIDAR for remote sensing of forest canopies, where due to 

differences in sensor, aircraft, flight configuration and processing, differences in data collection 

strategies and quality are diverse [35]. Lack of understanding of how such differences influence canopy 

metrics (e.g., canopy height, biomass density) could potentially limit future applications, in particular 

when multiple datasets are combined to assess change. Dandois and Ellis [14] summarized several 

uncertainties about the relationship between UAV-SFM data and data collection conditions. For 

example, it is not clear how changes in UAV flying altitude, photographic overlap, and resolution as 

well as wind, cloud cover, and light will influence the quality of SFM point clouds or even what the 

relevant measures of quality might be for such a system. It is also unclear how such changes in SFM 

point cloud quality will influence vegetation measurements, in particular metrics of canopy structure 

like height and biomass.  

This research aims to address these uncertainties by characterizing how UAV-SFM point cloud 

quality traits and metrics (geometric positioning accuracy, point cloud density and canopy penetration, 

estimates of canopy structure, and point cloud color radiometric quality) vary as a function of different 

observation conditions. The ‘Ecosynth’ UAV-SFM remote sensing tools and approach [14,22] are used 

to characterize forest canopy structure across three Temperate Deciduous forest sites in Maryland USA. 

At a single site, a replicated set of image acquisitions were carried out under crossed treatments of 

lighting, flight altitude, and image overlap. Variation in traits and metrics were compared within and 

across treatment levels and to other factors (wind, post-processing, algorithm, computation). Forest 

canopy metrics derived from Ecosynth products were compared to field based measurements of canopy 

height and also to a contemporaneous high-resolution (≈ 10 points·m−2) discrete-return LIDAR dataset. 

The results of this study should inform best-practices for future UAV-SFM research. 

2. Methods 

2.1. Data Collection 

2.1.1. Study Area and Field Data 

Research was carried out at three 6.25 ha (250 m × 250 m) Temperate Deciduous forest research 

study sites in Maryland USA (Figure 1): two sites (Herbert Run and Knoll) are located on the campus 

of the University of Maryland Baltimore County (UMBC: 39°15′18″N 76°42′32″W) and one at the 

Smithsonian Environmental Research Center in Edgewater Maryland (SERC: 38°53′10″N 76°33′51″W), 

the same study sites of Dandois and Ellis [14]. Sites were divided into 25 m × 25 m plots and per-plot 

height and aboveground biomass density were estimated on a per-plot basis. Per-plot average maximum 

canopy height was estimated based on the average height obtained by laser rangefinder of the five largest 

trees per plot by DBH (diameter at breast height) [14]. Per-plot above ground biomass density  

(AGB; Mg·ha−1) at Herbert Run was estimated by allometric modeling of the DBH of all stems greater 

than 1 cm DBH within each plot [36]. Mean and range of average maximum canopy height across all 

plots at each site was: Herbert Run 20 m, 9–36 m; Knoll 22 m, 4–36 m; SERC 36 m, 27–44 m. Mean 

AGB at Herbert Run was 204 Mg·ha−1 with a standard deviation of 156 Mg·ha−1 across 49 plots. 

Landcover maps used to separate the analysis of point cloud traits within sites were based on aerial photo 
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interpretation from prior work [14]. Site descriptions and tree data for Herbert Run and Knoll are 

available online [37]. A site description for SERC is available at [38] and online [39]. 

 

Figure 1. Maps showing location of 3 study sites in Maryland, USA, with local area insets 

(a). Maps of each 250 m × 250 m study area for Herbert Run (b), Knoll (c), and SERC (d). 

Overhead view of Ecosynth 3D point cloud for Herbert Run site from 2013-08-26 (e) and 

oblique view of the same point cloud from approximately the point of view of the red arrow 

(f). In all panels, the red squares are 250 m × 250 m in size. Imagery in (a–d) from Google 

Earth, image date 2014-10-23. 

2.1.2. UAV Image Acquisition under a Controlled Experimental Design 

UAV image data were collected following Ecosynth procedures of Dandois and Ellis [14]. Image 

data were collected with a Canon ELPH 520 HS digital camera attached to a hobbyist, commercial 

multirotor UAV consisting of Mikropkopter frames (HiSystems GmbH, [40]) and Arducopter flight 

electronics (3D Robotics, Inc., [41]) in ‘octo’ and ‘hexa’ configurations of 8 and 6 propellers [42] and 

following [14]. The larger ‘octocopter’ configuration was used for flights >4 km in distance, the smaller 

hexacopter was used for all other flights. With either UAV, images were collected at nadir view at 

roughly 2 frames per second at 10 megapixels (MP) resolution and ‘Infinity’ focus (≈4 mm focal length, 

no optical zoom) using fixed white balance and exposure settings calibrated to an 18% gray card with 

an unobstructed view of the sky. UAVs were programmed to fly at 6 m s−1 and all flights were carried 

out below 120 m (394 feet) above the surface using automated waypoint control, take-off, and  
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landing modes. Image ground sampling distance (GSD) at 80 m above the canopy surface was  

approximately 3.4 cm.  

Image datasets were collected following a crossed factorial experimental design based on 

combinations of light, altitude above the canopy, and photographic side overlap. Two levels of lighting, 

uniformly clear and uniformly cloudy (diffuse) were controlled for by choice of day for flights. Four 

levels of flight altitude above the canopy (20 m, 40 m, 60 m, 80 m) and four levels of photographic side 

overlap (20%, 40%, 60%, 80%) were controlled for by pre-programming of automated UAV waypoint 

flight paths based on a designated flight altitude above the launch location and by the spacing between 

parallel flight tracks, respectively. Based on the camera settings used in this study GSD was 0.8 cm,  

1.7 cm, 2.5 cm, and 3.4 cm at flight altitudes of 20 m, 40 m, 60 m, and 80 m, respectively. A full table of 

all flight parameters can be found in Table S1. Five replicates were planned for each treatment which 

were flown from 2013-06-21 to 2013-10-21 between 09:00–16:00 each day. All treatments for lighting, 

altitude, and overlap with five replicates were flown at Herbert Run (n = 82) and one treatment each at 

fixed settings (clear lighting, 80 m altitude, 80% side overlap) were flown at the Knoll and SERC sites. 

Average wind speeds during flights at Herbert Run, as computed from a nearby eddy covariance station 

at 90 m above mean sea level [43], ranged from 0.6–5.9 m s−1 and were converted to values of Beaufort 

wind force scale (1–4) for  categorical comparison across datasets [44].  

A single set of five image replicates collected under the same conditions (clear lighting, 80 m altitude, 

80% side overlap, collected 2013-08-26, mean 1219 images per replicate) at Herbert Run were also 

processed under different variations of image processing and computation to evaluate the effects of these 

variables on point cloud traits and metrics. Image resolution of these replicates was down-sampled from 

the original 10 MP (3.4 cm GSD) to lower resolutions (7.5 MP, 5 MP, 2.5 MP, 1 MP, 0.3 MP; n = 25) 

and correspondingly increased GSD (3.9 cm, 4.7 cm, 6.7 cm, 10.6 cm, 19.3 m, respectively). The same 

replicates, at original 10 MP resolution, were also incrementally sampled from every single image to 

every 10th image, corresponding to decreasing levels of forward overlap: 96%, 92%, 88%, 84%, 80%, 

76%, 72%, 68%, 64%, and 60%, n = 50.  

2.1.3. Airborne LIDAR 

Discrete-return LIDAR data were acquired over all three sites on 2013-10-25 by the contractor 

Watershed Sciences, Inc. LIDAR was collected with a nominal point density of 10.1 points·m−2  

(0.028 m and 0.017 m horizontal and vertical accuracy, contractor reported). While some seasonal 

change was already underway at the time of acquisition, the data represents the only comparable  

leaf-on LIDAR for the UMBC campus that can be used for analysis of Ecosynth point cloud canopy 

quality measures. The contractor-provided 1 m × 1 m gridded bare earth filtered product was used as a 

digital terrain model (DTM) for extracting heights from point clouds. The points corresponding only to 

the LIDAR first return were extracted for each 6.25 ha study site to serve as a ‘gold-standard’ measure 

of the overall surface structure [45]. 

2.2. Data Processing 

After manually removing photos of take-off and landing, all UAV image replicates were processed 

into 3D-RGB point cloud datasets using the commercial Agisoft Photoscan SFM software package  
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(64-bit, v0.91, build 1703; settings: ‘Align Photos’, ‘high’ accuracy, ‘generic’ pair pre-selection, 

maximum 40,000 point features per image) following Dandois and Ellis [14]. A single set of photos 

from one flight (clear lighting, 80 m altitude, 80% side overlap, collected 2013-08-26) was also 

processed in a previous version of Photoscan (v0.84) from prior research [14], the latest version available 

at the time of writing (v1.0.4), and in an enhanced version of the popular free and open source Bundler 

SFM algorithm [20]. Dubbed Ecosynther (v1.0, [46]) this algorithm was built on the Bundler source 

code (v0.4) and includes several other algorithms intended to speed up performance of SFM 

reconstruction and produce a dense 3D point cloud model by making use of graphical processing unit 

(GPU) computation [47–49]. Similar processing pipelines that combine the Bundler source code with 

dense point cloud reconstruction techniques [47] have been used in other SFM remote sensing 

applications, including for 3D reconstruction of vineyards [26] and bare substrates [16,24,30–32,34]. 

Ecosynther outputs both a ‘sparse’ and a ‘dense’ version of the SFM point cloud and the quality traits 

and metrics of both were evaluated. 

Briefly, Photoscan, Bundler, Ecosynther and SFM algorithms in general produce 3D point clouds by 

first identifying ‘image features’ in each image, matching image features across multiple images to 

produce correspondences, and then iteratively using those correspondences in a photogrammetric sparse 

bundle adjustment to simultaneously solve for the 3D location of images in space and the 3D geometry 

of the objects observed within those images [20,50]. At this stage the 3D points in the point cloud 

correspond to a location identified and matched as an image feature across multiple images from 

different views along with color spectral information assigned to each point from the images. Image 

features play a fundamental role in many applications including image matching, motion tracking, and 

even image and object identification and classification [50–52]. Popular open-source SFM packages like 

Bundler [20] make use of image feature algorithms like SIFT (Scale Invariant Feature Transform) [53], and 

the image feature descriptor in Photoscan is said to be ‘SIFT-like’ [14]. 

Point cloud reconstructions were run on multiple computers (with different configurations of OS, 

RAM, and CPU resources) to facilitate the large amount of computation required to process all replicates 

(>4500 compute hours; 157 datasets) and so one set of replicates (collected 2013-08-26,  

n = 5, mean 1219 images per replicate) were also run on each computer to evaluate what, if any, effect 

that variable would have on point cloud traits and metrics. Point clouds were then processed following 

Ecosynth data processing procedures, which included filtering to remove stray noise points and 

georeferencing into the WGS84 UTM Zone 18N projected coordinate system by optimized ‘spline’ 

fitting of the SFM camera point ‘path’ to the UAV GPS telemetry path [14,54]. Two measurements of 

UAV elevation data were provided by the flight controller: relative elevation in meters above the launch 

location from built-in barometric pressure sensor and absolute elevation in meters above sea level based 

on a combination of pressure sensor and GPS altitude (3D Robotics, Inc., [41]). By measuring the 

vertical height of the UAV using a handheld laser rangefinder (TruPulse 360B) while it was flown 

vertically at fixed heights (e.g., 10 m, 20 m, ...100 m), we found that the relative height value had less 

error than the absolute height value (RMSE 6.6 m & 10.7 m, respectively; Figure S1), similar to prior 

studies [16]. The relative height values plus the altitude in meters above sea level of the launch location 

were then used to estimate UAV altitude during flight. UAV horizontal location data was still obtained 

from the UAV GPS and subsequent references to the UAV horizontal GPS data plus pressure sensor 

vertical data are referred to as the UAV GPS data for simplicity. All post-processed UAV-SFM point 
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clouds are referred to as the ‘Ecosynth’ point clouds, referring to the overall processing pipeline applied 

to them. 

2.3. Data Analysis 

Ecosynth data quality was measured based on three main categories of empirical traits and applied 

forest canopy metrics that were extracted from georeferenced point clouds: positioning accuracy, canopy 

sampling, and canopy structure. Analysis of the effects of acquisition parameters on point cloud quality 

traits and metrics was only carried out on point clouds collected over Herbert Run with 82 replicates for 

testing lighting, altitude, wind, and side overlap, 50 replicates for testing forward overlap, and 25 

replicates for testing resolution. Aspects of point cloud radiometric quality were also evaluated to assess 

the degree to which they play a role in point cloud quality traits and metrics.  

2.3.1. Measurements of Position Accuracy 

Point cloud positioning accuracy was quantified based on relative and absolute reference. Relative 

positioning accuracy was measured as meters root mean square error (RMSE) of the horizontal and 

vertical distance between each SFM camera point and the closest segment of two GPS points along the 

UAV GPS track (‘Path Error’: Path-XY, Path-Z), providing an estimate of the ‘goodness-of-fit’ of the 

3D reconstruction and georeferencing. Absolute positioning accuracy was quantified by measuring the 

amount of horizontal and vertical displacement in meters RMSE required to rigidly align the Ecosynth 

point cloud to the LIDAR first return point cloud using a Python implementation (Python v2.7.5; VTK 

v6.1.0) of the Iterative Closest Point algorithm (ICP; ICP-XY, ICP-Z) [55] and following  

Habib et al. [45]. ICP fitting to LIDAR was only used to measure absolute positioning accuracy of point 

clouds and no other metrics were computed based on these ‘fitted’ point clouds. Absolute positioning 

accuracy of each point cloud, without ICP correction, was also measured as the difference between the 

average elevation of all points within a 3 m × 3 m area around the UAV launch location (i.e., a flat and 

open space) and the average elevation over the same area from the LIDAR DTM, this measure is referred 

to as the ‘Launch Location Elevation Difference’ (LLED). The absolute value of the launch location 

elevation difference (mean absolute deviation, LLED-MAD) was also computed to provide a metric 

comparable to the ICP-Z RMSE value. To summarize, the metrics of positing accuracy are: Path-XY, 

Path-Z, ICP-XY, ICP-Z, and LLED-MAD. Errors in height estimates were highly correlated with 

vertical co-registration of the point clouds to the LIDAR DTM and so point clouds were vertically 

registered to the LIDAR DTM based on the LLED offset value (see Section 3.2 in Results). Other studies 

have georeferenced SFM datasets through the use of ground control points (GCPs) that are visible in 

images and for which the real world coordinates are measured with high accuracy instruments like 

differential GPS, RTK-GPS (real-time kinematic GPS), and total station surveying equipment with sub-

meter accuracy [16,21,22,25,27,30,33]. GCPs were not used in the current study because a technique 

was sought for rapid assessment of positioning accuracy [45] across a large number of datasets.  
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2.3.2. Measurements of Canopy Structure 

Gridded canopy height models (CHMs) at 1 m × 1 m pixel resolution were produced for all Ecosynth 

point cloud datasets and for the first-return of LIDAR points based on the highest point elevation within 

each grid cell after subtraction of LIDAR DTM values from each point cloud elevation [14]. Within each 

25 m × 25 m field plot, the top-of-canopy height (TCH) [56] was calculated from CHMs based on the 

average of all pixel values within the plot. Measures of data quality from canopy height are defined  

as the RMSE between Ecosynth, field, and LIDAR measurements at the scale of 25 m × 25 m  

(0.0625 hectare) field plots (‘Ecosynth TCH to field RMSE’ and ‘Ecosynth to LIDAR TCH RMSE’). 

Aboveground biomass density (AGB, Mg·ha−1) was modeled for each field plot at Herbert Run using 

Ecosynth TCH estimates following Dandois and Ellis [14].  

2.3.3. Measures of Canopy Sampling 

Two measures of data quality were defined that characterize the way in which the canopy is sampled 

or ‘seen’ by Ecosynth SFM point clouds: point cloud density (PD, points·m−2) and canopy penetration 

(CP, the coefficient of variation (CV) of point cloud heights), both of which are calculated first within a 

raster grid of 1 m × 1 m cells and then averaged across forested areas only.  

2.3.4. Radiometric Quality of Ecosynth Point Clouds  

The radiometric quality of Ecosynth point clouds was measured as the standard deviation of the color 

of points inside 1 m × 1 m bins averaged by landcover, providing an estimate of the amount of noise in 

Ecosynth point colors within a fixed area [57]. Radiometric quality was evaluated on red, green, and blue 

(RGB) values and grayscale intensity (Gray = 0.299 × R + 0.587 × G + 0.114 × B) [58] of point color.  

3. Results 

3.1. Point Cloud Positioning Quality 

The response of Ecosynth quality traits and metrics across all replicates at different levels of lighting, 

altitude, and overlap are summarized in Table 1. Relative vertical positioning error (Path-Z) was 

unaffected by changes in lighting, altitude, and side photographic overlap, but showed a small increase 

with decreasing forward overlap (R2 = 0.88, RMSE 0.36–0.41 m). Relative horizontal positioning error 

(Path-XY), was unaffected by changes in lighting but increased with decreasing forward overlap  

(R2 = 0.65) and increasing flight altitude (R2 = 0.98). The latter may be explained by the fact that UAV 

track width increased with increasing flight altitude and so Path-XY error may not accurately reflect 

actual camera positioning error relative to the intended flight path at narrow track widths. Measures of 

absolute positioning accuracy (ICP-XY and ICP-Z error, LLED-MAD) were unaffected by changes in 

flight altitude or photographic side overlap, but showed nearly half the error on clear days compared to 

cloudy days (1.9 m vs. 2.3 m, 2.0 m vs. 3.8 m, 2.2 m vs. 3.8, respectively). ICP-Z and LLED-MAD error 

also increased with decreasing forward overlap, however the difference was small (R2 = 0.41 & 0.47; 

1.9–2.2 m & 2.1–2.5 m RMSE, respectively).
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Table 1. Ecosynth quality traits and metrics across treatments of lighting, altitude above the 

canopy, and image side and forward overlap at Herbert Run (n = 82). Values are mean and 

standard deviation for all replicates within each level. Significant differences in mean values 

are indicated with p-value for lighting or correlation for altitude and overlap. ‘NS’ indicates 

no significant trend at the α = 0.05 level. All results are for Ecosynth point clouds produced 

in Photoscan v0.91. 

 Lighting Condition Altitude above Canopy (meters) 

 CLEAR CLOUDY p < 20 40 60 80 R2 

N 43 39  9 15 17 41  

Path-XY Error 

RMSE m 

1.2 

(0.6) 

1.4 

(1.3) 
NS 

0.61 

(0.25) 

1.0 

(0.5) 

1.2 

(0.7) 

1.6 

(1.2) 
0.98 

Path-Z Error 

RMSE m 

0.44 

(0.13) 

0.44 

(0.12) 
NS 

0.4 

(0.1) 

0.5 

(0.1) 

0.4 

(0.1) 

0.5 

(0.1) 
NS 

ICP-XY Error 

RMSE m 

1.8 

(0.8) 

2.3 

(1.2) 
0.05 

2.2 

(1.1) 

1.8 

(0.7) 

2.2 

(1.2) 

2.0 

(1.2) 
NS 

ICP-Z Error 

RMSE m 

2.0 

(1.0) 

3.8 

(1.7) 
0.00001 

3.4 

(0.9) 

2.7 

(1.2) 

2.4 

(1.5) 

3.0 

(1.9) 
NS 

LLED  

MAD (m) 

2.2 

(1.3) 

3.8 

(1.9) 
0.00001 

3.2 

(0.9) 

3.4 

(1.2) 

2.4 

(1.6) 

3.0 

(2.1) 
NS 

Ecosynth TCH to  

Field RMSE (m) 

4.2 

(0.6) 

4.3 

(0.6) 
NS 

5.3 

(0.6) 

4.2 

(0.3) 

4.2 

(0.3) 

4.0 

(0.4) 
NS 

Ecosynth to LIDAR  

TCH RMSE (m) 

2.5 

(0.6) 

2.5 

(0.7) 
NS 

2.2 

(0.4) 

2.5 

(0.7) 

2.3 

(0.6) 

2.6 

(0.7) 
NS 

Point Density 

Points m−2 

33 

(14) 

43 

(27) 
0.05 

80 

(24) 

53 

(13) 

38 

(7) 

23 

(9) 
0.97 

Canopy Penetration 

% CV 

18 

(3) 

16 

(2) 
0.01 

17 

(2) 

16  

(2) 

17  

(2) 

17  

(2) 
NS 

Average Computation  

Time hours 

44 

(38) 

49 

(46) 
NS 

104 

(14) 

70 

(59) 

53 

(33) 

23 

(16) 
NS 

 Image Side Overlap (%) Image forward Overlap (%) a 

 20 40 60 80 R2 96 60 R2 

N 10 10 29 33  5 5  

Path-XY Error 

RMSE m 

1.9 

(1.3) 

2.2 

(1.7) 

1.2 

(0.6) 

0.9 

(0.4) 
NS 

1.3 

(0.2) 

1.7 

(0.2) 
0.65 

Path-Z Error 

RMSE m 

0.5 

(0.1) 

0.4 

(0.1) 

0.5 

(0.1) 

0.4 

(0.1) 
NS 

0.36 

(0.1) 

0.41 

(0.1) 
0.88 

ICP-XY Error 

RMSE m 

2.1 

(1.3) 

2.8 

(1.5) 

1.7 

(0.8) 

2.1 

(1.0) 
NS 

1.7 

(0.3) 

1.9 

(0.3) 
NS 

ICP-Z Error 

RMSE m 

2.3 

(1.5) 

3.3 

(2.0) 

2.6 

(1.2) 

3.1 

(1.8) 
NS 

1.9 

(0.8) 

2.2 

(1.1) 
0.41 

LLED  

MAD (m) 

2.0 

(1.5) 

3.4 

(2.0) 

3.0 

(1.4) 

3.2 

(2.0) 
NS 

2.1 

(1.2) 

2.5 

(1.5) 
0.47 

Ecosynth TCH to  

Field RMSE (m) 

4.1 

(0.2) 

4.5 

(0.5) 

4.1 

(0.3) 

4.4 

(0.8) 
NS 

3.6 

(0.1) 

7.0 

(0.3) 
1.0 

Ecosynth to LIDAR  

TCH RMSE (m) 

2.6 

(0.7) 

2.2 

(0.6) 

2.5 

(0.6) 

2.6 

(0.7) 
NS 

3.4 

(0.6) 

2.7 

(0.1) 
NS 

Point Density 

Points m−2 

14  

(0.5) 

18 

(0.7) 

34 

(10) 

54 

(23) 
0.93 

36 

(1) 

0.8 

(0.1) 
0.67 

Canopy Penetration 

% CV 

15 

(3) 

17 

(3) 

17 

(3) 

18 

(2) 
0.93 

18 

(0.02) 

0.02 

(0.01) 
0.91 

Average Computation  

Time hours 

8 

(0.7) 

10 

(0.5) 

26 

(3) 

87 

(38) 
0.93 

45 

(1.5) 

0.5 

(0.01) 
0.91 

a Image forward overlap was tested at decreasing increments of ≈ 4% (see Section 2.1.2), but only the largest 

and smallest levels are shown here to highlight the observed pattern. 
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3.2. Canopy Structure and Canopy Sampling 

Across all replicates at Herbert Run (n = 82) Ecosynth TCH error (RMSE) relative to field 

measurements was highly correlated with the vertical positioning of the Ecosynth point cloud relative the 

LIDAR dataset used for the DTM (LLED, R2 = 0.81, Figure 2; ICP-Z error, R2 = 0.69, Figure S2). The 

absolute value of LLED (LLED-MAD) was highly correlated with ICP-Z (R2 = 0.85, Figure S2), 

suggesting that these two values may serve as comparable diagnostics for characterizing point cloud 

quality, with LLED being relatively easy to compute across a range of applications and sites: e.g., when a 

LIDAR DTM is unavailable and heights are calculated from other DTM sources including from GPS [59] 

or satellite topography [60]. Given this, all point clouds were corrected for this offset by adding the value 

of LLED to each point cloud point elevation value prior to any further analysis. After this correction, there 

were no significant differences in the error between Ecosynth TCH and field or LIDAR measurements at 

different levels of cloud cover, altitude and side photographic overlap (Table 1). Across all replicates at 

different levels of lighting, altitude and side overlap Ecosynth TCH showed an average of 4.3 m RMSE 

relative to field measurements and 2.5 m RMSE relative to LIDAR TCH. 

 

Figure 2. Relationship between the error in Ecosynth top-of-canopy height (TCH) estimates 

of field canopy height and the displacement of the Ecosynth point cloud relative to the digital 

terrain model (DTM) used for extracting heights, as measured by the value Launch Location 

Elevation Difference (LLED) in meters (n = 82). 

Error in Ecosynth TCH relative to field measurements doubled with decreased forward photographic 

overlap (R2 = 1.0, 3.6 m to 7.0 m, Table 1). This effect appeared to be explained by rapidly decreasing 

point cloud density (PD) as a function of forward overlap. RMSE of Ecosynth TCH was  

negatively correlated with the logarithm of PD for both field and LIDAR estimates (R2 = 0.99 & 0.76, 

respectively; Figure 3). While all replicates were processed in v0.91 of Photoscan, at the time of writing 

a new version of Photoscan was available (v1.0.4) offering a new option for applying a dense point cloud 

post-processing to the point cloud after the initial photo alignment and sparse bundle adjustment. This 

stage produces a dense point cloud based on dense matching algorithms similar to those commonly 

employed in other open-source SFM image processing pipelines [16,24,26,30–32,34,47]. Dense 
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processing on point clouds with reduced overlap significantly increased PD (≈80–140 points·m−2) and 

removed TCH error associated with changing forward overlap relative to field and LIDAR 

measurements (Figure 3).  

Point cloud density in forested areas was highest under conditions of the highest amount of 

photographic forward and side overlap (mean 54 points·m−2 with 80% side overlap) or the lowest flight 

altitude (mean 80 points·m−2 at 20 m above the canopy, Table 1). By comparison, average LIDAR first 

return PD in forested areas was 10.8 points·m−2. While average PD was 30% higher on cloudy days 

versus clear days (43 vs. 33 points·m−2), this difference appears to be driven by two datasets collected at 

low altitude (20 m above the canopy) where average forest PD was roughly 100 points·m−2. Median PD 

values were not significantly different on cloudy versus clear days (36 vs. 32 points m−2; Mann-Whitney 

U = 960, p > 0.25).  

 

Figure 3. Point cloud density (PD) and Ecosynth TCH error relative to field and LIDAR 

TCH for a single replicate sampled from every image to every 10th image, decreasing 

forward photographic overlap. Top axis is forward overlap: 60%, 64%, 68%, 72%, 76%, 

80%, 84%, 88%, 92%, and 96%. Left plots show error without dense post-processing, plots 

at right show error of the same point clouds with dense post-processing. 

Average canopy penetration (CP) was significantly lower on cloudy days (18% vs. 16%, p < 0.01, 

Table 1), meaning that Ecosynth point clouds ‘see’ up to 1 m deeper into the canopy on clear days. CP 

increased with increasing side overlap (15% to 18%, R2 = 0.93) and decreased with decreasing forward 

overlap (18% to 2%, R2 = 0.91), but was unaffected by changes in flight altitude. Average CP across all 

Ecosynth replicates was 17%, by comparison average forest area CP for the LIDAR first return point 

cloud was 29%. This difference was significantly different than zero (one-sampled t-test:  

t = 40.85, p < 0.05) and equates to LIDAR observing roughly 2.5–3.5 m deeper into the canopy than 

Ecosynth at canopy heights of 20–30 m. Across all replicates (n = 82) there was no significant 

relationship between PD and CP (R2 = 2 × 10−5, p = 0.9697). However for the set of replicates where 

forward overlap was incrementally reduced, there was a strong relationship between CP and the 

logarithm of PD (R2 = 0.97), suggesting a strong underlying control on point cloud quality based on 

forward overlap. Differences in the effect of forward overlap on PD and CP are visualized in Figure 4 



Remote Sens. 2015, 7 13906 

 

 

for a 100 m × 5 m swath of forest at Herbert Run viewed in cross-section for high overlap (96%, 4a) and 

low overlap (60%, 4b) point clouds relative to the LIDAR first return point cloud over the same area.  

 

Figure 4. Cross-sections of a 100 m × 5 m swath of forest at the Herbert Run site showing 

Ecosynth point clouds produced from high forward overlap images (96%, (a)) and low 

forward overlap images (60%, (b)), relative to the LIDAR first return point cloud over the 

same area. 

3.3. Influence of Wind of Point Cloud Quality 

The only statistically significant trend between wind speed (Beaufort wind force scale) and point 

cloud metrics at the α = 0.5 level was with Path-Z error (R2 = 0.99, p = 0.006) however the magnitude 

of the difference was minimal (RMSE 0.4–0.5 m; Table S2).  

3.4. Radiometric Quality of Ecosynth Point Clouds 

Average radiometric variation ranged from 2.0%–5.9% and was correlated with the mean  

rugosity [61] or meters standard deviation of surface height within landcovers (R2 = 0.74, Figure S3). 

Color-spectral variation and rugosity was lowest in relatively homogenous turf areas (2.0%–3.1%) and 

highest in forest areas (3.3%–5.9%). Color variation also measures contrast and forest areas were 

observed with lower contrast on cloudy days compared to clear days (p < 0.0001, Figure 5).  
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Figure 5. Average variation or contrast of point cloud point color values per channel within 

forest areas under clear and cloudy lighting conditions. All per channel differences in 

average variation under different lighting were significantly different based on analysis of 

variance (p < 0.0001).  

3.5. Optimal Conditions for Ecosynth UAV-SFM Remote Sensing of Forest Structure 

Given these results, optimal UAV-SFM remote sensing scanning conditions were identified as those 

days where data was collected under clear skies and with maximum photographic overlap (>60% side 

photographic overlap). An altitude of 80 m was chosen because it provides the greatest overall area for 

data collection based on increased camera field of view (Table S1). Under these optimal scanning 

conditions (clear skies, 80 m altitude above the canopy, 80% side photographic overlap, n = 7 Table S1), 

Ecosynth TCH estimated field measured canopy height with 3.6 m RMSE at Herbert Run and SERC 

(Table 2, Figure 6a). At all sites, Ecosynth TCH estimates had relatively low error compared to LIDAR 

TCH (1.6–3.0 m RMSE) and generally high correlation values (R2 = 0.89–0.99; Table 2, Figure 6b). The 

correlation between Ecosynth TCH and field heights was low at SERC due to low variation in field 

heights [14]. Error in tree height estimates was high at Knoll sites for both Ecosynth and LIDAR (7.9 m 

and 6.4 m, respectively). Estimates of aboveground biomass (AGB) derived from TCH height estimates 

via allometric modeling at Herbert Run were similarly highly correlated with field estimates of AGB 

(R2 = 0.80) but with relatively high error (68 Mg ha−1, or roughly 33% of site mean AGB; Figure 6c). 

LIDAR TCH was similarly well correlated with field measured average canopy height (R2 = 0.88) and 

with higher error than Ecosynth TCH (RMSE = 5.5 m; Figure S4). Across all 82 replicates at Herbert 

Run there was a weak but significant relationship between solar angle and Ecosynth TCH error  

(R2 = 0.26, p < 0.00003, Figure S5), whether flights were carried out on clear or cloudy days.  

Table 2. Ecosynth point cloud quality traits and metrics at Herbert Run, Knoll and SERC under 

optimal parameters: clear skies, 80 m altitude, 80% side overlap processed with Photoscan v0.91. 

 Average Ecosynth Quality Traits and Metrics  

Point Cloud Traits and Metrics Herbert Run Knoll SERC 

N 7 1 1 

Path-XY Error RMSE (m) 1.1 0.7 1.0 

Path-Z Error RMSE (m) 0.5 0.6 0.4 

ICP-XY Error RMSE (m) 1.7 0.5 1.8 

ICP-Z Error RMSE (m) 1.6 4.0 1.8 

Launch Location Elevation Difference (m) 1.2 3.1 2.1 
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Table 2. Cont. 

 Average Ecosynth Quality Traits and Metrics  

Point Cloud Traits and Metrics Herbert Run Knoll SERC 

N 7 1 1 

Ecosynth TCH to Field Height RMSE (m) 3.6 5.2 3.6 

Ecosynth TCH to LIDAR TCH RMSE (m) 3.0 1.6 3.2 

Ecosynth TCH to Field Height R2 0.86 0.79 0.19 

Ecosynth TCH to LIDAR TCH R2 0.99 0.99 0.89 

Average Forest Point Density (points m−2) 35 33 39 

Average Forest Canopy Penetration (% CV) 20 24 11 

Computation Time (hours) 45 50 15 

 

Figure 6. Linear models of Ecosynth average TCH across optimal replicates (n = 7) to field 

(a) and LIDAR TCH (b), average Ecosynth TCH estimated above ground biomass density 

(AGB Mg·ha−1) relative to field estimated AGB (c). Solid line is one to one line, error bars 

are standard deviation, dotted lines are linear model. 

3.6. Influence of Computation on Ecosynth Point Cloud Quality 

Across all replicates, computation time was highly correlated with roughly the square of the number 

of images (R2 = 0.96, Figure S6), requiring between 0.5–164 hours of computation. Computation time 

was improved with better computation resources (faster CPU and more RAM) but otherwise point clouds 

produced from the same photos on different computers had identical quality traits and metrics  

(Table S3). Point cloud quality traits and metrics were also similar when image GSD was increased from 

3.4 cm to 4.7 cm (10 to 5 MP), however at GSD greater than 5 cm (≤2.5 MP) reconstructions failed, as 

represented by very large error values sometimes exceeding 100 m RMSE (Table S4).  

Point cloud quality traits and metrics were relatively constant across different versions of Photoscan 

with noticeable differences primarily in point cloud density and in computation time, potentially 

reflecting changes in the algorithm designed to enhance performance (Table 3). Applying dense  

post-processing however did change point cloud quality traits and metrics relative to the point cloud 

produced from the same photos without such processing. With dense post-processing, Ecosynth TCH 

error relative to field measurements increased by 0.5 m while error relative to LIDAR TCH decreased 

by 0.9 m and, while PD was 4 times greater, as expected, CP actually decreased by roughly 40%  

(Table 3). Both the sparse and dense point clouds produced in the free and open source Ecosynther SFM 

algorithm had similar point cloud quality traits and metrics as those from Photoscan (v 1.0.4 sparse vs. 
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dense; Table 3). Measures of point cloud positioning were comparable between Ecosynther and 

Photoscan, as were measures of error in TCH estimates relative to field measurements and LIDAR TCH. 

Point cloud density of Ecosynther dense point clouds was 8 times greater than Ecosynther sparse point 

clouds (7 to 59 points·m−2) and roughly 40% that of Photoscan dense point clouds. Forest canopy 

penetration of Ecosynther point clouds was lower than that typically observed for Photoscan point clouds 

(≈18%) and was improved by dense processing (9% to 13%), however this was the opposite effect 

observed with dense processing on Photoscan point clouds. As was the case with Photoscan, dense 

processing on Ecosynther point clouds resulted in increased error in TCH estimates relative to field 

measurements (3.8 m to 5.3 m RMSE) and decreased error relative to LIDAR TCH (2.9 m to  

2.0 m). In total, producing a dense SFM point cloud required 56 hours of computation for Photoscan 

(v1.0.4) and 66 hours for Ecosynther, however Ecosynther was run on a computer with fewer system 

resources (CPU, RAM) which is generally expected to reduce computation speed (Table S3). 

Table 3. Comparison of Ecosynth point cloud quality traits and metrics for a single replicate 

processed under different structure from motion (SFM) algorithms. 

SFM Algorithm 
Photoscan 

v0.84 a 

Photoscan 

v0.91 a 

Photoscan 

v1.04 a 

Sparse 

Photoscan 

v1.04 a 

Dense 

Ecosynther 

v1.0 b Sparse 

Ecosynther 

v1.0 b Dense 

Path-XY Error RMSE (m) 1.1 1.1 1.1 1.1 1.1 1.1 

Path-Z Error RMSE (m) 0.3 0.3 0.3 0.3 0.7 0.7 

ICP-XY Error RMSE (m) 1.6 1.6 1.6 1.6 1.9 1.9 

ICP-Z Error RMSE (m) 1.0 0.9 0.9 0.9 0.8 0.8 

Launch Location  

Elevation Difference (m) 
0.9 0.9 0.9 0.9 0.6 0.6 

Ecosynth TCH to  

Field Height RMSE (m) 
3.8 3.9 3.9 4.6 3.8 5.3 

Ecosynth TCH to  

LIDAR TCH RMSE (m) 
3.4 3.0 2.9 2.0 2.9 2.0 

Forest Point  

Cloud Density (points m−2) 
88 36 34 138 7 59 

Forest Canopy  

Penetration (% CV) 
18 18 18 11 9 13 

Computation Time  

(hours) 
30 45 16 +40 c 61 +5c 

a All versions of Photoscan run with computer “D” in Table S3 with same settings; b Ecosynther v1.0 run on 

Amazon EC2 g2.2xlarge instance, computer “B” in Table S3; c Dense computation time is in addition to time 

for ‘sparse’ processing for the same algorithm. 

4. Discussion 

By looking at variation in Ecosynth point cloud quality traits and metrics across a large number of 

flights carried out under different conditions (n = 82), this research is able to suggest optimal parameters 

for collecting UAV-SFM remote sensing measurements of forest structure. Ecosynth TCH estimates 

relative to field and LIDAR were highly influenced by errors in point cloud positioning and in point 

cloud density, both of which were improved by flying on clear days and with high photographic overlap. 
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Optimal conditions of clear skies, 80% side photographic overlap, and 80 m altitude above the canopy 

resulted in estimates of canopy height that were highly correlated with both field and LIDAR estimates 

of canopy height (R2 = 0.86 and 0.99, respectively). While it is important to note that the optimal levels 

arrived at in this study are constrained in part by the type of equipment used (e.g., a higher resolution 

camera will produce point clouds with greater PD), the examination of the relationship between error 

and different flight configurations provides useful insights into the functioning of UAV-SFM remote 

sensing and suggests useful areas for future applications and research. 

4.1. The Importance of Accurate DTM Alignment 

Accurate co-registration of canopy surface models and DTMs from different data sources represents 

a major challenge to accurately estimating canopy structure [35,60,62,63] and remains a significant 

challenge for using Ecosynth UAV-SFM remote sensing to estimate canopy height [14,22]. The metric 

Launch Location Elevation Difference (LLED) was used to measure co-registration accuracy and was 

found to be highly correlated with overall error in canopy height measurements (R2 = 0.81, Figure 2). 

Such a measure is easily computed relative to any DTM that would be used for estimating canopy heights 

from Ecosynth point clouds, including old LIDAR DTMs that no longer accurately portray canopy 

height [14,22], satellite remote sensing based DTMs [60], or even sub-meter precision GPS when no 

LIDAR is present, a situation not uncommon in many parts of the world [59]. Even so, users still need 

to be aware of potential errors introduced in height measurements based on the quality of  

the DTM [64].  

4.2. The Importance of Image Overlap 

Similar to prior research in the use of LIDAR for measuring forests [35,65,66] this study found a 

strong relationship between canopy height metrics, 3D point cloud density (PD), and canopy penetration 

(CP). Both PD and CP were strongly related to forward photographic overlap (Figure 3, Figure 4). The 

relationship between photographic overlap and CP is related to the number of possible views and  

view-angles on a given point in space. Prior studies that used high-overlap, multiple-view stereo 

photogrammetric cameras for mapping canopy structure reveal similar results, with a high overlap (90%) 

‘multi-view’ photogrammetric model penetrating to the forest floor in canopy gaps while the  

traditional-overlap (60%) stereo photogrammetric model penetrated roughly half the depth into gaps [67,68].  

PD may be affected by forward photographic overlap as a function of the view-angle on the same 

point in space as viewed from multiple images. Prior research found that point matching stability begins 

to decrease rapidly after view-angle exceeds 20° [53]. A decreased number of feature matches could 

then lead to the observed decrease in PD, resulting in reduced sampling of the canopy and potentially 

increased error in canopy height estimates relative to field measurements [35]. Based on the camera and 

UAV settings used here, view-angles exceeded 20° at a flight altitude of 80 m above the canopy when 

forward overlap was less than 72%. Even so, dense post-processing of point clouds increased PD, 

resulting in relatively constant height error regardless of forward overlap (Figure 3). These results 

suggest that the dense post-processing step can be used to reduce error in height estimates associated 

with low point cloud density and low forward photographic overlap.  



Remote Sens. 2015, 7 13911 

 

 

Not surprisingly, point cloud density was also strongly related to flight altitude, which directly reflects 

the decrease in GSD (finer resolution) with decreasing altitude (R2 = 0.97, Table 1; Table S1). Similar 

gains in GSD and therefore PD might be achieved simply by flying at the same altitude with a higher 

resolution camera. Even so, care should be taken in flight planning to maximize forward overlap based 

on UAV speed, camera speed and field of view, and flight altitude. A camera with a higher resolution 

but narrower field of view would result in an increase in GSD and decrease in overlap for the same 

altitude and track spacing settings. Depending on the software and post-processing settings, PD could 

vary by as much as 4–8 times for the same dataset with sometimes half or double the amount of CP, 

which resulted in large differences in canopy height estimates (Table 3). As of 2015-08-26 the latest 

version of Photoscan was 1.1.6, which may also produce point clouds with different levels of point cloud 

quality. While this work did not focus on the potential range of settings that might be available in SFM 

software packages, future research should carefully consider how these parameters (e.g., quality settings 

and thresholds, number of photos to include, etc.) will impact canopy height estimates.  

4.3. The Importance of Lighting, Contrast, and Radiometric Quality 

Ecosynth point cloud radiometric color quality was evaluated based on the standard deviation of point 

colors within 1 m bins, which can also be interpreted as a measure of color contrast [69] and image 

contrast was reduced on cloudy days due to the lack of direct sun light (Figure 5). Reduced image 

contrast can have a strong influence on the stability of image features [53], resulting in increasing error 

in point cloud point position, as was observed in this study. Even so, after accounting for this error via 

LLED correction, estimates of canopy height were not significantly different on cloudy versus clear 

days. This suggests that UAV-SFM remote sensing is a viable option for mapping canopy structure even 

under cloudy conditions when it is otherwise not possible using satellite or airborne remote  

sensing [5,11]. While direct lighting increases contrast, it will also lead to an increase in the amount of 

shadows, as will flying on sunny days in the morning and afternoon with low solar angles. We found a 

weak but significant relationship between Ecosynth TCH error and solar angle (R2 = 0.26, Figure S5) 

whether on clear or cloudy days. Low solar angles on sunny days will produce larger shadows, 

potentially leading to an under-sampling of the canopy surface. However, the same solar angles on 

cloudy days should produce minimal shadows, but also less light overall, potentially leading to reduced 

contrast, and increased error (Table 1, Figure 5). That error was somewhat higher at low solar angles on 

both clear and cloudy days suggests that there are potentially multiple mechanisms linking light, SFM 

behavior, and point cloud quality that warrant further investigation. For example, it is unknown how 

image features and feature matching will respond to differences in shadow, solar angle, and light 

intensity. In addition, techniques such as high-dynamic-range (HDR) or ‘bracketed’ digital imaging 

should be explored for increasing image dynamic range and reducing the appearance of shadows [69].  

4.4. The Importance of Wind Speed 

This study showed no strong effect of wind speed on point cloud quality traits and metrics. At average 

wind speeds up to 7.9 m·s−1 the UAV was able to carry out missions without running out of battery 

power. However, high wind speeds should be avoided as they will cause the UAV to use more power 

during flight and generally reduce UAV stability. Increased wind speed may also increase error in 3D 
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point cloud quality by introducing error into the SFM-bundle adjustment step that assumes that the only 

thing moving is the camera and not the image features (leaves fluttering or branches swaying). Increased 

wind speed, and movement of branches, may also lead to decreased point cloud density due to features 

matches being rejected for lack of consistency. Similarly, increased wind might lead to an 

underestimation in the TCH estimate error due to the fact that small outer branches at the top of the 

canopy are more exposed to the wind, potentially increasing the likelihood of feature rejection. However, 

further work is needed to test these hypotheses. The multirotor UAVs used here are generally more stable 

under varying wind conditions compared to fixed-wing UAV and these results may not be applicable 

when the latter platform is used for SFM forest remote sensing.  

4.5. Factors Influencing Tree Height Estimates 

Ecosynth TCH underestimated field measured average maximum canopy height by 3.6 m RMSE, as 

did LIDAR by 5.5 m RMSE. However, Ecosynth and LIDAR TCH estimates of height were highly 

correlated (R2 = 0.99), with Ecosynth consistently overestimating LIDAR TCH by roughly 3 m. These 

results may be explained in part by error in field measurements and also the way in which height metrics 

are obtained from CHMs. Field based estimates of tree height have been found to have significant error 

(1 m to >6 m) owing to the challenges in observing the top of trees from the ground below [70–72]. The 

measure top-of-canopy height (TCH), represents the average height over the entire outer surface of the 

canopy as observed by the remote sensing instrument [56], whether Ecosynth or LIDAR. It is not 

surprising then that TCH underestimated field estimated height in this study since field measures are 

from the tallest observed point for the largest trees in a plot and most of the canopy surface observed by 

LIDAR or Ecosynth is below these tallest points, whether for a single crown or multiple crowns. Indeed, 

as more of the outer canopy surface was sampled in dense point clouds produced by Photoscan and 

Ecosynther, Ecosynth TCH error increased relative to field observations and decreased relative to 

LIDAR TCH, further emphasizing potential discrepancies between characterizing canopy height as the 

average of a surface versus the average of several fixed points. Differences in canopy height error may 

be explained by differences in canopy penetration, a finding similar to that observed by  

others [21,67,68]. Here, LIDAR point clouds penetrated roughly 2.5–3.5 m further into the canopy than 

those from Ecosynth, which is comparable to the 3.0 m RMSE over-prediction of TCH by Ecosynth 

relative to LIDAR and the difference in RMSE relative to field measurements (3.6 m and 5.5 m, 

respectively). Differences in TCH may also be explained by co-registration errors. Vertical  

co-registration error was accounted for by applying the offset LLED value in point clouds prior to 

computing TCH (Section 3.2) but corrections to horizontal co-registration were not addressed. Average 

absolute horizontal accuracy of point clouds was roughly 2 m RMSE. Prior research using simulated 

LIDAR data found that increasing horizontal co-registration error did increase error in LIDAR height 

estimates, but the magnitude of this difference was small (<1 m height error at 5 m planimetric error) [73]. 

The use of GCPs would improve registration overall, as would the use of higher accuracy  

UAV-GPS, for example a new system of relatively inexpensive (US$1000) and lightweight (32 g) Piksi 

RTK-GPS modules [74].  
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4.6. Future Research: The Path forward for UAV-SFM Remote Sensing 

4.6.1. Optimizing Data Collection with Computation Time 

While this research was able to arrive at an optimal data collection configuration, it remains unclear if 

other levels of overlap and altitude, combined with different levels of post-processing and image 

preparation would result in improved optimal forest canopy metrics or data collections. For example, this 

research shows that high photographic overlap is desirable for reducing error in canopy structure 

measurements, yet high overlap requires more images, resulting in rapidly increasing computation time, 

O(N2). It is unclear then if there exists a combination of reduced image resolution and forward overlap, 

plus different levels of SFM computation that could produce point clouds of similar or better quality but 

with reduced computation requirements. Flight configurations that minimize the number of images while 

still providing a large amount of photographic overlap will provide an optimal trade-off between point 

cloud quality and computation time. In addition, computation time can be reduced by supplying SFM with 

more information prior to photo alignment: for example using the ‘reference’ mode for ‘Align Photos’ in 

Photoscan along with estimates of camera location from UAV GPS will produce results more quickly than 

‘generic’ mode operating without such data. The latter ‘generic’ mode was used here to facilitate scripted 

automation of point cloud post-processing following Ecosynth georeferencing techniques [14]. 

4.6.2. The Role of the Camera Sensor; Multi and Hyperspectral Structure from Motion 

Further research should also examine the role that the camera sensor plays in UAV-SFM 

reconstructions of forest canopies. Here, the same camera with the same calibration settings was used 

for all data collection, but it is unclear if different camera settings or even image post-processing could 

improve or change results. Varying camera exposure settings or even capturing multiple exposure 

settings over the same area [69] may produce images with improved contrast, leading to potentially 

improved image matching. In addition, radiometric corrections like histogram equalization [75] or image 

block homogenization [76] may be useful to reduce the influence of variable scene lighting when it is 

not possible to collect images under constant lighting over the duration of entire flight [14]. It is also 

possible to carry out near-infrared remote sensing with UAVs using modified off-the-shelf digital 

cameras [19,21,23] or custom light-weight multi-spectral cameras [16,77,78] and future work should 

consider the potential of using such sensors for SFM mapping of canopy NDVI (Normalized Difference 

Vegetation Index) at high spatial resolution and in 3D, providing links between canopy structure, optical 

properties, and biophysical parameters. Future research should also consider the influence of different 

spectral bands on reconstructions of canopy structure from SFM, for example this and prior studies used 

RGB imagery for modeling canopy height [14,22], while other studies achieved comparable results using 

RG-NIR imagery [21,23], and it is not clear what, if any, effect the NIR information has on estimates of 

canopy structure compared to RGB alone.  

4.6.3. Computer Vision Image Features: The New Pixel 

Future research should more closely examine the role of image features in SFM remote sensing, an 

element of the ‘sensor system’ which may be as fundamental as the image pixel in optical image remote 



Remote Sens. 2015, 7 13914 

 

 

sensing or the laser spot in LIDAR remote sensing. The behavior of image features and feature matching 

may help to shed light on the relationship between image contrast and measures of canopy structure 

observed here, among other advances. Image features play a fundamental role in SFM reconstruction 

and many areas of computer vision and remote sensing. Briefly, image features represent a numerical 

descriptor of an entire image or part of an image that can be used to identify or track that same area in 

other images or identify how similar that area is to a reference library of other features which might 

include semantic or classification data about feature content. The reader is referred to several core texts 

about features for more information [50–53]. Recent studies have also shown the value of image features 

for remote sensing and ecological applications. Beijborn et al. [79] used image features to automatically 

classify coral communities. Image features have been used for automatic detection and classification of 

leaves and flowers [80,81]. Recent research has also extended the use of image features and classification 

for ‘geographic image retrieval’ from high resolution remote sensing images [58]. Such questions could 

not be explored because the closed source nature of Photoscan prohibits access to the image features. 

However, free and open source algorithms like Ecosynther, which had comparable point cloud traits and 

metrics, would allow access to image features. Ultimately, access to computer vision image features in 

a UAV-SFM remote sensing point cloud offers the potential for a rich new area of data collection and 

information extraction: point cloud classification based on image features and image content. Merging 

research on image features with UAV-SFM point clouds could lead to a transformative new remote 

sensing fusion of 3D, color/spectral, and semantic information. This new data fusion may provide a 

comprehensive perspective on landscape and forest structure, composition, and quality not practical or 

possible with any other form of remote sensing. 

5. Conclusions 

The measurement of vegetation structural and spectral traits by automated SFM algorithms and 

consumer UAVs is a rapidly growing part of the field of remote sensing. UAV-SFM remote sensing will 

fill an increasingly important role in earth observation, providing a scale of measurement that bridges 

ground observations with those from aircraft and satellite systems [13]. In this study, a comprehensive 

examination of the effects of varying the conditions of UAV-SFM remote sensing on 3D point cloud 

traits and canopy metrics revealed important insights into the range of data quality possible using these 

techniques. While it is to be expected that the values obtained in this study may vary as a function of the 

hardware used (e.g., greater point cloud density with higher resolution sensors), many of the results are 

generalizable. Maximizing photographic overlap, especially forward overlap is crucial for minimizing 

canopy height error and overall sampling of the forest canopy. Yet high overlap results in more photos 

and increased computation time, irrespective of computation equipment, highlighting important  

trade-offs between data quality and the ability to rapidly produce high quality results. There are also 

many facets that were not explored in the current work: how does using different camera sensors or 

spectral bands (e.g., NIR) influence data quality? How does the type of platform (fixed-wing vs. 

multirotor) or forest type (Temperate Deciduous, Evergreen Needleleaf, Tropical) influence the ability 

of UAV-SFM remote sensing to accurately characterize canopy metrics? Indeed, there may be as many 

combinations of unique data collection settings as research questions. To that end, this research provides 

a framework for describing UAV-SFM datasets across studies and sites based on several fundamental 
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point cloud quality traits and metrics. This work also shed light on the important role that image features 

play in SFM reconstruction, the underlying mechanisms for which should be given more careful 

consideration in future work, for example in the influence between image feature matching and flight 

parameters and also in image contrast. Indeed, it is with image features that UAV-SFM remote sensing 

can provide an entire new avenue for remote sensing of forest properties. Beyond just replicating existing 

remote sensing tasks (e.g., measuring canopy height) access to image features of canopies opens the 

door for automated mapping and identification of canopy objects like leaves, fruits, and flowers through 

the use of image features. If UAVs provide field scientists with a birds-eye view of the landscape, 

computer vision will provide the ‘ecologists-eye’ view of the elements within that landscape. 
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