
Remote Sens. 2015, 7, 13945-13974; doi:10.3390/rs71013945 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Semantic Decomposition and Reconstruction of Compound 

Buildings with Symmetric Roofs from LiDAR Data and  

Aerial Imagery 

Hongtao Wang 1,2, Wuming Zhang 1,*, Yiming Chen 1, Mei Chen 1 and Kai Yan 1 

1 State Key Laboratory of Remote Sensing Science, Beijing Key Laboratory of Environmental 

Remote Sensing and Digital City, School of Geography, Beijing Normal University,  

Beijing 100875, China; E-Mails: wht_31@hpu.edu.cn (H.W.); cym_bnu@mail.bnu.edu.cn (Y.C.); 

627cm@tongji.edu.cn (M.C.); kyan@mail.bnu.edu.cn (K.Y.) 
2 School of Surveying and Land Information Engineering, Henan Polytechnic University,  

Jiaozuo 454003, China 

* Author to whom correspondence should be addressed; E-Mail: wumingz@bnu.edu.cn;  

Tel./Fax: +86-10-5880-9246. 

Academic Editors: Norman Kerle and Prasad S. Thenkabail 

Received: 11 August 2015 / Accepted: 19 October 2015 / Published: 23 October 2015 

 

Abstract: 3D building models are important for many applications related to human 

activities in urban environments. However, due to the high complexity of the building 

structures, it is still difficult to automatically reconstruct building models with accurate 

geometric description and semantic information. To simplify this problem, this article 

proposes a novel approach to automatically decompose the compound buildings with 

symmetric roofs into semantic primitives by exploiting local symmetry contained in the 

building structure. In this approach, the proposed decomposition allows the overlapping of 

neighbor primitives and each decomposed primitive can be represented as a parametric 

form, which simplify the complexity of the building reconstruction and facilitate the 

integration of LiDAR data and aerial imagery into a parameters optimization process. The 

proposed method starts by extracting isolated building regions from the LiDAR point 

clouds. Next, point clouds belonging to each compound building are segmented into planar 

patches to construct an attributed graph, and then the local symmetries contained in the 

attributed graph are exploited to automatically decompose the compound buildings into 

different semantic primitives. In the final step, 2D image features are extracted depending 

on the initial 3D primitives generated from LiDAR data, and then the compound building 
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is reconstructed using constraints from LiDAR data and aerial imagery by a nonlinear least 

squares optimization. The proposed method is applied to two datasets with different point 

densities to show that the complexity of building reconstruction can be reduced 

considerably by decomposing the compound buildings into semantic primitives. The 

experimental results also demonstrate that the traditional model driven methods can be 

further extended to the automated reconstruction of compound buildings by using the 

proposed semantic decomposition method. 

Keywords: semantic decomposition; compound building modeling; LiDAR point cloud; 

aerial imagery; attributed graph 

 

1. Introduction 

3D building models are the most prominent features in digital cities and have many applications in 

geographic information systems, urban planning, disaster management, emergency response, virtual 

tourism, and so on. Due to the current rapid development of cities and the requirement for up-to-date 

information, the automatic reconstruction of 3D building models has been an active research field in 

photogrammetry and computer vision, and many approaches have been proposed on this topic based on 

either photogrammetric data or LiDAR data. However, the reliable and automatic generation of detailed 

large-scale building models is still a difficult and time-consuming task. In particular, the automated 

generation of 3D building models with complex structures still remains a challenging issue [1,2]. 

Two fundamentally different methods have been used for automated 3D building reconstruction: 

data-driven methods and model-driven methods. For data-driven methods, a common assumption is 

that buildings have a polyhedral form, i.e., buildings only have planar roofs. Therefore, these methods 

usually start with the extraction of planar patches from LiDAR point clouds using segmentation 

algorithms, such as region growing [3], random sample consensus [4], 3D Hough transform [5], and 

clustering methods [6,7]. Based on this segmentation, polyhedral building models are then generated 

from these planar patches by intersection and step edge generation, and then some regularization rules 

are often used to improve the shape of the reconstructed building model [7–9]. The main advantage of 

the data-driven approach is that it can reconstruct polyhedral buildings with complex shapes. While the 

main drawback of these methods is their sensitivity to the incompleteness of data arising from 

occlusion, shadow and/or missing information in the input data. That is, if there are missing features in 

the data, the modeling process may be hampered and the corresponding object structure may be 

visually deformed. In this case, aerial imagery can serve as a complementary data source to accurately 

generate building models due to its high resolution. Thus, a variety of methods using both LiDAR data 

and optical imagery for building reconstruction have been proposed in the last ten years [10–19]. 

Among these methods, line segments, and planar patches are mainly used as the basic primitives and 

the topological relationships are exploited to generate approximate building models, which are then 

refined using optical images. In this process, most of the aforementioned methods need to search line 

cues on multi-view aerial images, and then these 2D line segments are matched to derive the accurate 

3D building structure. Although image-based edge detection algorithms perform well, matching 
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ambiguities in multiple images are the main obstacle. Another limitation of the data driven methods is 

that the models generated from line segments and planar patches are only geometric models, and the 

semantic information about the buildings’ structures is always missed.  

To obtain visual impressions and topologically-correct building models with semantic information, 

geometric constraints, such as parallel and perpendicular lines should be encoded in the building 

reconstruction [20,21]. Such regularization can be met easily if model driven methods are utilized. The 

model-driven strategy starts with a hypothetical building model, which is then verified by the 

consistency of the model with the LiDAR point clouds [22–26] or aerial imagery [27,28]. Recently, the  

Reversible Jump Markov Chain Monte Carlo (RJMCMC) method has been used to generate the 

building models [29,30], which performs well in the reconstruction of 3D building models. However, 

its main limitation is its computational intensity. The advantage of model-driven methods is that they 

can create compact, watertight, geometric building models with semantic labeling, but their main 

limitation is that they can only generate certain types of predefined building models in the library, so 

many existing model-driven methods usually focus on relatively simple buildings [23,27,31]. 

To reconstruct complex building models by using model-driven method, Constructive Solid 

Geometry (CSG)-based methods have been proposed by some researchers [5,21,24,26,28,32,33]. 

Within these approaches, a complex building model is often regarded as a combination of simple roof 

shapes, and these simple primitives are grouped into complete building models by means of Boolean 

set operators (union, intersection, and subtraction). Thus, complex buildings can be reconstructed by 

aggregating the basic building primitives in the library. CSG primitives have semantic information 

about the model’s type and can be represented by a few shape parameters and pose parameters, which 

are suitable for the building reconstruction. However, automatic decomposition of complex buildings 

into CSG primitives is difficult, so the CSG modeling methods are usually adopted in a semi-automatic 

way [27,34,35]. The complexity of this decomposition task has led many studies to use external 

information, mostly in the form of ground plans or building footprints [5,24,25,28,32,36,37]. Among 

these methods, 2D maps are used to decompose the compound buildings into non-overlapping building 

regions, and then the parameters of the parametric model in each building polygon are determined 

using LiDAR data or aerial imagery. The use of building footprints can simplify the reconstruction of 

the complex buildings, but it is not always available and often outdated. For the automatic reconstruction 

of complex buildings without ground plans, some researchers have constructed roof topology graph (a 

graph indicates the topology relationship between the rooftop planar patches) to interpret the building 

structures and automatically decompose complex buildings into basic primitives from LiDAR point 

clouds [12,22,38–40]. By using roof topology graphs, the problem of finding basic shapes in point clouds 

can be reduced to a sub-graph matching problem, and then the complex scene can be decomposed into 

some predefined primitives and reconstructed by assembling these basic primitives. However, the 

decomposition results of these methods are not semantic building primitives, but the combination of 

planar patches or a set of polygons, which is difficult for architects to interpret and edit. In this paper, the 

semantic building primitives are defined as object-based parametric building models that hold both 

geometric and semantic information, which can be easily modified and reproduced. 

In reality, complex buildings are often represented as compound buildings, which are the 

combination of basic primitives. By decomposing the compound buildings into several semantic 

primitives, the difficulty of building reconstruction can be considerably reduced. To this aim, a 
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semantic decomposition method is proposed in this paper by exploiting knowledge about local 

symmetries that are implicitly contained in the building structures. As a result, the compound buildings 

can be decomposed into some parametric primitives (e.g., gabled roof, half-hipped roof, and hipped 

roof). Then, each parametric primitive is reconstructed by a primitive-based building modeling method 

proposed by Zhang et al. [41], which was developed to generate basic building primitives using 

constraints from LiDAR data and aerial imagery. In contrast to the aforementioned reconstruction 

methods using roof topology graph, the main contribution of this paper can be summarized as follows: 

(1) automatic decomposition of compound buildings into semantic primitives by using an attributed 

graph. Different from the aforementioned decomposition methods using roof topology graph, the 

outputs of the proposed decomposition are semantic primitives which can be represented as fixed 

parametric forms. Benefiting from this decomposition, the model driven methods can be further 

extended to the automated reconstruction of the compound buildings; (2) Flexible reconstruction by 

allowing the overlapping of neighbor primitives. In the process of compound building’s decomposition 

and model recognition, the proposed method allows the overlapping of neighbor primitives, which can 

considerably simplify the complexity of the building reconstruction because the intersection of 

neighbor primitives do not need to be defined and only a small set of basic building primitives are 

contained in the predefined library. 

The remainder of this paper is organized as follows. The overview of the proposed method and a 

detailed description of the proposed semantic decomposition and reconstruction method are given in 

Section 2. In Section 3, the data sets used in this research are described, and then some experimental 

results are presented. Some discussions of the proposed method are provided in Section 4. Finally, 

Section 5 gives this paper’s conclusions. 

2. Methodology 

2.1. Overview of the Proposed Method 

The proposed approach relies on the assumption that most compound buildings can be constructed as 

a combination of parametric primitives, which have semantic information about the buildings’ structures 

(e.g., gabled roof, half-hipped roof, hipped roof, etc.). Based on this knowledge, an automatic 

decomposition algorithm is proposed to decompose the compound buildings into basic primitives, and 

then each primitive is reconstructed using constraints from LiDAR data and aerial imagery. 

Figure 1 shows the flowchart of the proposed decomposition and reconstruction method, which 

consists of three main steps. First, isolated building regions are detected and extracted from LiDAR 

data during data preprocessing. In the second step, point cloud belonging to a compound building roof 

is segmented into planar patches, and then an attributed graph is constructed among these segmented 

planar patches. By exploiting knowledge about the local symmetries contained in the attributed graph, 

the compound buildings are automatically decomposed into semantic building parts. After that, models 

in each decomposition cell are recognized and estimated. In the final step, 2D corners are efficiently 

extracted from the aerial imagery depending on the initial models generated from above step, and then 

each primitive is reconstructed using constraints from LiDAR data and aerial imagery by a nonlinear 

least squares optimization. 
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Figure 1. Flowchart of the proposed compound building decomposition and  

reconstruction method. 

2.2. Data Preprocessing 

In this paper, the LiDAR point cloud and multispectral aerial imagery are jointly used in the process 

of data preprocessing and building reconstruction. During data preprocessing, regions of building 

blocks are first detected from LiDAR point clouds. It consists of three main steps. First, terrain points 

are separated from non-terrain points using a filter method proposed by Axelsson [42], and then  

high-rise points (mostly including building and vegetation points) can be identified from non-terrain 

points using a specified height threshold above the ground. In this paper, the height threshold is set to  

2 m because buildings in the test area are 2 m higher above the ground. Next, every 3D high-rise point 

is projected back on the multispectral imagery to derive the corresponding Normalized Difference 

Vegetation Index (NDVI) value, and then most of the tree points can be removed from high-rise points 

by using an NDVI threshold (0.1 in this paper), which is determined by histogram analysis. Finally, the 

Euclidean clustering method introduced by Rusu [43] is applied to segment the remaining points into 

individual clusters, and then the clusters with small area are removed as tree clusters. Note that the area 

threshold is determined by the point density of the LiDAR point cloud. If the point density of the 

LiDAR point cloud is 4 points/m2 (the point density of one data set used in the experiment), clusters 

with 20 points indicate an area of approximate 5 m2. In this case, 20 points are chosen as the threshold 
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to remove tree clusters smaller than 5 m2. After the aforementioned process, building points will be 

detected and segmented into clusters that represent the individual buildings, and then building models 

can be subsequently reconstructed from each collection.  

2.3. Semantic Decomposition of the Compound Building and the Primitive Recognition 

By making careful observations from aerial imagery, it can be seen that most compound buildings 

have multiple ridge lines and each ridge line potentially indicates an individual part of a real building 

roof. For each ridge line, it is usually constituted by two symmetric planar patches. It is a local symmetry 

characteristic implicitly contained in the building structure. By exploiting this knowledge about local 

symmetry, we present an automatic decomposition algorithm to decompose the compound buildings into 

semantic primitives. Figure 2 illustrates the main framework of this decomposition algorithm, in which a 

compound building can be decomposed into five primitives using the proposed method. 
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Figure 2. Illustration of the proposed semantic decomposition method. (a) A compound 

building and its segmented planar patches (numbered in green circle); (b) attributed graph 

of the segmented planar patches; and (c) results of the proposed semantic decomposition. 

2.3.1. Construction of the Attributed Graph 

The process of automatic decomposition starts with the extraction of planar patches from each 

building cluster, which was derived from data preprocessing. In this paper, the planar patches are 

extracted using an adaptive RAndom SAmple Consensus (RANSAC) segmentation algorithm 

proposed by Chen et al. [44], which is suitable for the segmentation of complex rooftops and less 

sensitive to the uniformity of point clouds. In this algorithm, a local sampling strategy is adopted to 

select three points from the point cloud for the estimation of a 3D plane model, and then the points 

within a threshold distance from the estimated model are counted. The process of estimating plane and 

counting points is repeated for a fixed number of iterations, and then the plane with maximum number 

of points closer to it is selected as the best candidate. The points that are within the threshold distance 

to the best candidate are termed as inliers. These points are removed from the complete point dataset, 

and then RANSAC is again applied on the remaining points to extract remaining dominant planes. This 

process is repeated until no further planes could be estimated from the remaining points or the 

remaining points are less than a threshold number. Applying RANSAC iteratively to the point clouds 

of compound building results in a set of planar patches. Figure 3a shows the segmented planar patches 

of a compound building, in which each number indicates a segmented planar patch. 
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Figure 3. The construction of a compound building’s attributed graph. (a) The segmented 

planar patches of a compound building; (b) adjacency graph of the segmented planar 

patches; (c) edge labeling according to the normal vector of two adjacent planar patches; 

(d) extraction of anti-symmetry planar patches; (e) grouping of remaining planar patches; 

and (f) attributed graph of a compound building. 

To decompose the compound buildings into semantic primitives, an adjacency graph is first 

constructed using the segmented planar segments to encode the building topology. In this graph, each 

vertex represents a planar patch in the building structure, and an edge between two vertices indicates 

that the two planar patches are spatially connected. In this study, the adjacency relationships of all 

pairs of roof planar patches are reconstructed using the boundary points of each planar patch to reduce 

the complexity of calculation. More specifically, the boundary points of each planar segment are first 

detected using the alpha shape algorithm [45], and then the distances between two boundary point sets 

of the planar patches are calculated. The vertices representing two planar patches are connected if two 

constraints are satisfied: (1) the distance between the boundary point sets of the two planar patches is 

less than a predefined threshold; and (2) there are sufficient number of corresponding point pairs that 

satisfy the first constraint. Applying these two criteria, the adjacency relationships of all the pairs of 

segmented roof planar patches can be determined and used to decompose the compound buildings. 

Figure 3b shows the adjacency graph of the segmented planar patches shown in Figure 3a. 

However, representation solely based on adjacency graphs is not sufficient to discriminate different 

semantic primitives. To make the decomposition more reliable, another topological relationship is 

embedded into the adjacency graph, which is the normal direction of each planar segment. 

Specifically, the topological relationship between two adjacent planar patches can be described by 

considering the proximity and normal vector of two planar patches. In this paper, the equation of a 3D 

plane is defined as AX + BY + CZ + D = 0. In this case, the normal vector of a 3D plane is the plane 

parameters (A, B, C), which can be estimated by a number of 3D points located on the same planar 
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patches. Then, the angle (θ) between the horizontal components of two normal vectors ((A1, B1) and 

(A2, B2)) can be calculated to determine the edge labeling of two vertices (planar patches). If the value 

of the calculated angle is in the range of 80° to 100°, the horizontal components of these two normal 

vectors are orthogonal, and the edge between the corresponding vertices (planar patches) is labeled as 

“1”; if the value of the calculated angle is in the range of 170° to 180°, the horizontal components of 

these two normal vectors are opposite, and the edge between the corresponding vertices (planar 

patches) is labeled as “2”. The edge labeling results of the adjacency graph are shown in Figure 3c.  

In addition, the attribute of each vertex is also embedded into the adjacency graph to facilitate the 

semantic decomposition. In this paper, the attribute of each vertex is labeled as “T” or “F”. Vertices 

labeled as “T” mean that they belong to the attached part of the main building. Otherwise, they are 

labeled as “F”. The labeling of each vertex in the adjacency graph consists of three main steps: 

(1) At first, the attribute of each vertex is initialized as “F”, and the corresponding vertex is 

colored in green, as can be seen from the Figure 3b–e. 

(2) Grouping the segmented planar patches into different decomposition parts. In this process, 

pairs of planar patches that have an edge labeled as “2” are first extracted from the graph generated 

from above process (Figure 3c). These pairs of planar patches are called anti-symmetry planar  

patches [12], and they are used to form the initial decomposition parts. This procedure is repeated until 

all anti-symmetry planar patches are already grouped into the corresponding decomposition parts. As 

can be seen from Figure 3d, the anti-symmetry planar patches contained in red circles form the 

different initial decomposition parts. However, there still remain some planar patches that are not 

contained in any of the initial decomposition parts, such as planar patch one and planar patch 10 shown 

in Figure 3d. For these planar patches, if they are adjacent to both anti-symmetry planar patches in the 

initial decomposition parts, they are grouped into the corresponding decomposition parts. As can be 

seen from Figure 3e, planar patch one is grouped into the decomposition part containing anti-symmetry 

planar patch two and three, and planar patch 10 is grouped into the decomposition part containing  

anti-symmetry planar patch eight and nine. Note that the number of planar patches contained in each 

decomposition part may be different, which is a key cue for the following model recognition in each 

decomposition part. 

(3) Labeling the vertices that are the anti-symmetry planar patches of the attached part of the 

main building as “T”. After aforementioned process, all of the segmented planar patches have been 

grouped into the corresponding decomposition part. Then, for each pair of anti-symmetry planar 

patches, if there are planar patches that are adjacent to both of them but not contained in the 

corresponding decomposition part, the attributes of these anti-symmetry planar patches (the 

corresponding vertices) are modified as “T”. As can be seen from Figure 3f, for anti-symmetry planar 

patch two and three, existing planar patch four that is adjacent to both of them but not contained in the 

decomposition part containing anti-symmetry planar patch two and three. Therefore, the 

decomposition part containing anti-symmetry planar patch two and three is an attached part of the 

main building and the attributes of vertex two and three are modified as “T”. The aim of classifying the 

vertices into “F” and “T” is to identify the attached part of the main building in the sub-graph, which 

will be described in the following section. 

The final graph generated from above process can be seen in Figure 3f. In Figure 3f, the red vertices 

indicate that the attributes of these vertices are labeled as “T”, and the green vertices indicate that the 
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attribute of these vertices are labeled as “F”. Such graph is called an attributed graph, which can be 

used to find the plausible decomposition of compound buildings. 

2.3.2. Sub-graph Extraction from the Attributed Graph 

The process of sub-graph extraction starts by searching pairs of planar patches that have an edge 

labeled as “2” (anti-symmetry planar patches) in the attributed graph, which are contained in different 

decomposition parts. Then, the planar patches that are adjacent to any of these anti-symmetry planar 

patches in each decomposition part are all extracted to form the initial sub-graphs. In this case, the 

initial sub-graphs may contain some vertices belonging to the attached part of the main building, which 

affects the generation of the final sub-graph of each decomposition part. Figure 4a shows five initial 

sub-graphs extracted from the attributed graph shown in Figure 3f. As can be seen from it, for the  

anti-symmetry planar patches four and five in the decomposition part II, the planar patches that are 

adjacent to any of them are planar patches two, three, six, seven, eight, and nine. Among these planar 

patches, planar patch two and three belong to the attached part of the main building, and they are 

redundant for the decomposition part II in the following model recognition and initial model’s 

generation. Therefore, these vertices (labeled as “T” in the attributed graph) will be discarded from the 

decomposition part II to construct the final sub-graph, which can be seen from Figure 4b. Figure 4c 

shows the final sub-graph of each decomposition part. 
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Figure 4. Sub-graph extraction from the attributed graph. (a) The initial sub-graphs of 

different decomposition part; (b) discarding the vertices labeled as “T” from the initial  

sub-graphs; and (c) final sub-graphs of different decomposition parts. Note that the edge 

colored in red indicates a ridge line contained in the compound building, the red vertices 

indicate that the attributes of these vertices are labeled as “T”, and the dotted line in the 

sub-graphs indicates that the two vertices are adjacent planar patches but one of them is not 

contained in the corresponding decomposition part. 
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Note that if the vertices labeled as “T” are the anti-symmetry planar patches in the corresponding 

decomposition part, they will not be discarded from the initial sub-graph. As can be seen from Figure 4a, 

planar patch two and three are the anti-symmetry planar patches of the decomposition part I, but not 

the anti-symmetry planar patches of the decomposition part II (planar patch four and five are the  

anti-symmetry planar patches of the decomposition part II). Therefore, though the vertex two and three 

are labeled as “T”, they are reserved in the sub-graph I but discarded from the sub-graph II. 

2.3.3. Primitive’s Definition and Recognition 

After the decomposition of the attributed graph, sub-graphs of different decomposition parts can be 

derived and used to recognize the primitive’s type. To do that, it is necessary to set up a library of 

basic building primitives firstly. In this paper, three types of basic primitives are defined for the 

reconstruction of compound building models with symmetric roofs, and these basic primitives are 

categorized into three classes with respect to the number of planar patches contained in each 

decomposition part, which can be seen in Figure 5.  
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Figure 5. Three classes of primitives defined according to the number of planar patches 

contained in the decomposition part and the corresponding sub-graphs. (a) Gabled roof 

primitive; (b) half hipped roof primitive with convex shape; (c) half hipped roof primitive 

with concave shape; (d) hipped roof primitive with convex shape; (e) hipped roof primitive 

with concave shape; (f) half hipped roof primitive; (g) hipped roof primitive with convex 

shape; (h) hipped roof primitive with concave shape; and (i) hipped roof primitive. Note 

that the yellow vertices (connected with the dotted lines in the sub-graphs) indicate that 

they are adjacent to the anti-symmetry planar patches but not contained in the 

corresponding decomposition part. 
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From Figure 5, it can be seen that the primitives in the predefined library are classified into nine 

types according to the number of planar patches contained in the corresponding decomposition part, 

and these primitives have different forms of sub-graphs. In this paper, the number of planar patches 

contained in each decomposition part and the corresponding sub-graph are jointly used to recognize 

the primitive’s type, which can be seen in Figure 6. 

1

2 3

4

6

7

10

5 8

9

12

2

11
2

22

2

1 1

1 1

1

1

1

1

1

1

1

1

1

2 3

4 5 6 7
8 9

10

11 12

1

2 3

4

7

10

5 8

96 4 4

58

9

7 5

6 4

11 12

6

Decomposition parts containing two roof planes Decomposition parts containing three roof planes

1

2 3

4

5

6 9

6 7 8 9

10

11

12

Primitive III Primitive VPrimitive IIPrimitive I Primitive IV

44

1

2 3

4 4

5

6

7
8 9

10

11

12

Sub-graph I Sub-graph III Sub-graph VSub-graph II Sub-graph IV

Decomposition 

part I

Decomposition 

part II

Decomposition 

part III

Decomposition 

part IV

Decomposition 

part V

+

(a)

(b)

(c)

(d)  

Figure 6. The recognition of each primitive in the corresponding decomposition part. (a) A 

compound building and its attributed graph; (b) the segmented planar patches contained in 

each decomposition part; (c) the sub-graph of each decomposition part; and (d) the 

recognized primitive in each decomposition part. 

After the construction of the attributed graph, the segmented planar patches have been grouped into 

the corresponding decomposition part. Figure 6b shows five decomposition parts derived from the 

attributed graph shown in Figure 6a. It can be seen that the number of planar patches contained in each 

decomposition part is different, which can narrow down the primitive’s recognition to the 

corresponding class shown in Figure 5. Subsequently, once the sub-graph of each decomposition part 

has been extracted from the attributed graph (Figure 6c), the corresponding model type can be 

recognized by sub-graph matching (Figure 6d). As can be seen in Figure 6b, there are two planar 

patches contained in the decomposition part I–III, so the recognition of these primitives are first 

narrowed down to Class 1 shown in Figure 5. Then, these primitives are recognized by the sub-graph 

matching: For sub-graph I, there are four planar patches adjacent to the anti-symmetry planar patches, 

it is a hipped roof that corresponds to the primitive shown in Figure 5e; for sub-graph II, there are two 

planar patches adjacent to the anti-symmetry planar patches respectively, it is a half-hipped roof that 
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corresponds to the primitive shown in Figure 5c; for sub-graph III, there is only one planar patch 

adjacent to both anti-symmetry planar patches, it is a variant of half hipped roof building that 

corresponds to the primitive shown in Figure 5b. The aforementioned recognition method can also be 

applied to the decomposition part containing three roof planes. For example, there are two planar 

patches adjacent to both anti-symmetry planar patches in sub-graph IV, it is a variant of hipped roof 

that corresponds to the primitive shown in Figure 5g. 

Note that the proposed method allows the overlapping of neighboring primitives in the recognition 

process, which is achieved by analyzing the corresponding sub-graph of each decomposition part. As can 

be seen from Figure 7, part of compound building shown in Figure 6a is decomposed into three 

overlapping primitives by using the proposed semantic decomposition algorithm. Such decomposition 

has two main advantages in the following reconstruction process. First, it reduces the number of 

primitives defined in the library. If the compound buildings are decomposed into some non-overlapping 

decomposition parts, the intersection of neighboring primitives will produce another primitive with 

various forms, which are difficult to be defined and reconstructed. Another advantage of such 

decomposition is that it keeps the primitive’s integrity and regularity during the semantic decomposition. 

As a result, each decomposed primitive can be represented by a few parameters, which allows the quite 

robust parameter estimation in the following reconstruction. 
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Figure 7. Semantic decomposition allowing the overlapping of neighboring primitives.  

(a) A compound building; and (b) decomposition result of the proposed method. 

2.3.4. Generation of Initial 3D Building Primitives 

Once the primitives have been recognized, the approximate reconstruction of each initial 3D 

primitives can be performed based on the primitive’s type and the corresponding planar patches. The 

generation of the initial 3D primitives is essential because it provides the initial value for the 

primitive’s parameter optimization in the following reconstruction process and a relatively smaller 

search space to find the corresponding features in the aerial imagery. In this paper, a novel initial 3D 

building model generation algorithm is proposed based on Minimum Bounding Rectangle (MBR) and 

the attributed graph, which is described as follows: 

(1) Derivation of the 2D MBR of each decomposition part. Once the decomposition of 

compound buildings has been completed, the approximate 2D outline of each decomposed primitive 

can be derived by using a MBR algorithm [46]. More specifically, the planar patches contained in each 
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decomposition part are projected onto the XY plane to derive the convex hull, and then the 2D MBR is 

determined by the rectangle with minimum area that contains all the 2D convex hull points. The MBRs 

of two decomposed primitives can be seen in Figure 8, which are colored in yellow. The utility of the 

2D MBR is that it can provide the approximate 2D eave corners (corners (1–4) in Figure 8) of each 

decomposed primitive, which is crucial for the generation of initial 3D primitives. In addition, the 2D 

MBR can be used to determine the initial parameters and the main orientation of each decomposed 

primitive, which is necessary for the subsequent reconstruction steps. 

a b

e

d

d d

a b

e

c c

MBR MBR

(1)

(2) (4)

(3)

(5)

(6)

(1)

(2) (4)

(3)

(5)

(6)

(a) (b)  

Figure 8. The generation of initial 3D primitives using MBRs and the corresponding 

planar patches. (a) The generation of initial 3D primitives with concave shapes; and (b) the 

generation of initial 3D primitives with convex shapes. 

(2) Generation of the initial 3D primitives. To derive the initial 3D primitives, the approximate 3D 

corners of each primitive should be calculated. In this study, 3D corners of primitives are classified as 

eave corners (corners (1–4) in Figure 8) and ridge corners (corners (5–6) in Figure 8) because they are 

calculated by using different methods. For ridge corners, they are calculated by the intersection of 

concurrent planar patches. For example, 3D coordinates of the corner (5) in Figure 8 can be calculated by 

the intersection of planar patch a, b, and c. However, the 3D eave corners cannot be calculated by the 

intersection of 3D planes because the wall planes are absent. In this case, the 2D MBRs can substitute the 

walls to provide the approximate 2D eave corners (xi, yi) of each decomposed primitive, and then the 3D 

eave corners can be calculated by using the 2D eave corners and the corresponding 3D plane equation. 

As can be seen from Figure 8a, 3D coordinates of the eave corners (1–2) can be calculated by using the 

2D eave corners ((x1, y1), (x2, y2)) and the 3D plane equation of planar patch a. 

However, the 3D eave corners of basic primitives with convex shapes may not be located at the 

corners of the MBR, which can be seen in Figure 8b. In this case, corner (2) and corner (4) cannot be 

calculated using the MBR and the corresponding 3D planes. To address this problem, a 3D plane 

(bottom plane) is first estimated using the 3D coordinates calculated from the MBR and anti-symmetry 

planar patches, and then the 3D eave corner can be derived using this bottom plane and two adjacent 

planes. For example, 3D eave corner (2) in Figure 8b can be derived by the intersection of planar patch 

a, d and the estimated bottom plane. Note that the primitive’s type determines the calculation method 

of the 3D eave corners. For example, the 3D eave corners of primitive (b), (d), and (g) in Figure 5 are 
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calculated by using the method illustrated in Figure 8b, and the 3D eave corners of other primitives are 

calculated by using the method illustrated in Figure 8a.  

2.4. Image Feature Extraction and Building Modeling 

The main idea of the proposed method is to decompose compound buildings into basic building 

primitives, and then each building primitive is reconstructed using the constraints from LiDAR data 

and aerial imagery. In this process, the relevant features should first be extracted from the LiDAR data 

and aerial imagery to form the cost function, and then a non-linear least squares optimization is 

performed to reconstruct the building model. In this study, the features from LiDAR data are the 

segmented planar patches which have been extracted by RANSAC, and the features from the 

perspective aerial imagery are the 2D image corners of each building primitive which can be derived 

depending on the initial 3D building primitives generated from above process. 

2.4.1. Feature Extraction from Perspective Aerial Imagery 

Using the known orientation parameters of the aerial imagery, the initial building primitives derived 

from LiDAR data can be projected onto the corresponding aerial imagery, which can be seen in  

Figure 9a. It can be seen that, the back projected wireframe provides a relatively smaller searching 

space to find the corresponding features in the aerial imagery. Thus, a buffer is constructed from the 

initial building’s boundary to derive a sub-image, and then the corner extraction procedure is 

conducted on this sub-image as follows: 

(1) The discrete edge pixels are first detected by applying a canny edge detector [47] on the  

sub-image where the initial building primitive appears, followed by linking edge pixels to derive line 

segments. Then, line segments whose lengths are smaller than a given threshold are removed. The 

resulting edge map is shown in Figure 9b. It can be observed that there are still too many edge pixels in 

the building region and it is hard to find the correct building edges. 

(2) To filter the irrelevant edge pixels, buffer regions are generated based on each back projected 

edge of the initial model (pairs of red dot lines in Figure 9c), and only the edge pixels that are inside 

the defined buffer are considered as candidate edge pixels. The buffer size is set according to the point 

spacing of the LiDAR point cloud. Figure 9c shows the edge pixels located in each buffer region of an 

initial hipped roof model; different colors represent different groups of edge pixels in the buffer zone. 

(3) As seen in Figure 9c, there are many edge pixels that do not belong to the actual building 

boundaries still reserved in each buffer, so the RANSAC algorithm [48] is applied to each group of 

edge pixels to filter irrelevant edge pixels again, and then the inliers can be used to estimate the 

equations of 2D straight lines. The result can be seen in Figure 9d; pixels with different colors indicate 

different groups of inliers. 

(4) During back projection, the geometry and topology of the initial building primitives are 

transformed into two dimensional features, and the topological relationships between them are 

preserved. That is, once the primitive’s type is determined, the relationships among the corners and the 

corresponding model edges are available from a 3D initial model reconstructed from LiDAR data. 

Consequently, after the straight lines have been derived from the aforementioned steps, the 2D corners 
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of each building primitive can be extracted by the intersection of neighboring straight lines, which can 

be seen in Figure 9e. 

 

Figure 9. The process of corner extraction from aerial imagery. (a) Initial model back 

projected onto the corresponding aerial imagery; (b) initial model superimposed onto the 

edge map; (c) edge pixels in the buffer zone; (d) inliers of RANSAC superimposed onto 

the gray image; and (e) the extracted 2D corners. 

2.4.2. Building Modeling Using Constraints from LiDAR Data and Perspective Aerial Imagery 

After the aforementioned process, both the planar patches and the accurate 2D image corner of each 

building primitive can be acquired, together with the primitive’s type and initial parameters, the 

accurate 3D building primitives can be derived by using a primitive-based reconstruction algorithm 

proposed by Zhang et al [41]. In this method, two constraints from LiDAR data and aerial imagery are 

used for the reconstruction of each building primitive. First, the back-projections of the 3D primitive’s 

vertices onto the aerial image should perfectly superpose onto the extracted corners; this constraint can 

be expressed by the collinearity equation. Second, the primitive’s vertices should be exactly on the 3D 

planes extracted from LiDAR point clouds; this constraint can be expressed by the point-to-plane 

distance. According to these constraints, the observation functions can be established as Equation (1). 

𝑥𝑖 = 𝑥𝑝 − 𝑓
𝑎1(𝑋𝑖 − 𝑋𝑆) + 𝑏1(𝑌𝑖 − 𝑌𝑆) + 𝑐1(𝑍𝑖 − 𝑍𝑆)

𝑎3(𝑋𝑖 − 𝑋𝑆) + 𝑏3(𝑌𝑖 − 𝑌𝑆) + 𝑐3(𝑍𝑖 − 𝑍𝑆)
 

(1) 𝑦𝑖 = 𝑦𝑝 − 𝑓
𝑎2(𝑋𝑖 − 𝑋𝑆) + 𝑏2(𝑌𝑖 − 𝑌𝑆) + 𝑐2(𝑍𝑖 − 𝑍𝑆)

𝑎3(𝑋𝑖 − 𝑋𝑆) + 𝑏3(𝑌𝑖 − 𝑌𝑆) + 𝑐3(𝑍𝑖 − 𝑍𝑆)
 

𝑑𝑖 = |𝐴𝑋𝑖 + 𝐵𝑌𝑖 + 𝐶𝑍𝑖 + 𝐷|/√𝐴2 + 𝐵2 + 𝐶2 

where, xi, yi: Projected image coordinates of the 3D primitive’s vertex i; xp, yp, f: Image coordinates of 

the principle point and the principle distance; Xi, Yi, Zi: 3D coordinates of the primitive’s vertex i in the 

object coordinate system; XS, YS, ZS: 3D coordinates of the perspective center in the object coordinate 
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system; [

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

]: the elements of the rotation matrix that depend on the rotation angles; 𝑑𝑖: the 

distance of a 3D primitive’s vertex i to the corresponding 3D roof plane; A, B, C, D: plane parameters 

that can be estimated from the 3D points located on the same 3D roof plane. 

Note that the 3D coordinates of each primitive’s vertex (Xi, Yi, Zi) in Equation (1) can be calculated 

by the shape parameters and pose parameters, which are the unknown parameters that need to be 

optimized. In this paper, the shape parameters are used to describe the shape and size of the primitive, 

and the pose parameters define three translation parameters (Xm, Ym, Zm) and three rotation parameters 

(ωm, φm, κm) of the primitive relative to the object coordinate system. For example, the unknown 

parameters of a gabled roof primitive are pose parameters (Xm, Ym, Zm, ωm, φm, κm) and shape 

parameters (l, w, h). l and w refer to the length and width of the gabled roof, h refers to the height of 

the roof ridge relative to Zm. Using shape parameters, we can derive the vertex’s coordinate (Ui, Vi, Wi) 

of the gabled roof primitive in the model coordinate system, which can be seen in Figure 10. 

 

Figure 10. The model coordinates of the gabled primitive’s vertices calculated by  

shape parameters. 

When transforming the primitive from the model coordinate system (𝑈𝑉𝑊) to the object coordinate 

system (𝑋𝑌𝑍), three translation parameters (𝑋𝑚, 𝑌𝑚, 𝑍𝑚) and three rotation parameters (𝜔𝑚, 𝜑𝑚, 𝜅𝑚) 

are used, which can be expressed as Equation (2). 

[

𝑋𝑖

𝑌𝑖

𝑍𝑖

]

𝑜𝑏𝑗𝑒𝑐𝑡

= [

𝑋𝑚

𝑌𝑚

𝑍𝑚

]

𝑜𝑏𝑗𝑒𝑐𝑡

+ 𝑅𝑚𝑜𝑑𝑒𝑙
𝑜𝑏𝑗𝑒𝑐𝑡

(𝜔𝑚, 𝜑𝑚, 𝜅𝑚) [

𝑈𝑖

𝑉𝑖

𝑊𝑖

]

𝑚𝑜𝑑𝑒𝑙

 (2) 

Based on the aforementioned transformation, the constraints of a gabled roof expressed in Equation 

(1) can be formulated as: 

{

𝑥𝑖 = 𝑓𝑥(𝑋𝑚, 𝑌𝑚, 𝑍𝑚, 𝜔𝑚, 𝜑𝑚, 𝜅𝑚, 𝑙, 𝑤, ℎ)
𝑦𝑖 = 𝑓𝑦(𝑋𝑚, 𝑌𝑚, 𝑍𝑚, 𝜔𝑚, 𝜑𝑚, 𝜅𝑚, 𝑙, 𝑤, ℎ)

𝑑𝑖 = 𝑓𝑑(𝑋𝑚, 𝑌𝑚, 𝑍𝑚, 𝜔𝑚, 𝜑𝑚, 𝜅𝑚, 𝑙, 𝑤, ℎ)

 (3) 

Using these constraint equations, the cost function to be minimized can be formulated as Equation (4): 

∑(𝑥𝑖 − 𝑥𝑖
′)2 + ∑(𝑦𝑖 − 𝑦𝑖

′)2 + ∑(𝑑𝑖)2 → 𝑚𝑖𝑛 (4) 

(0,0,0) U

V

W

(l,0,0)

(0,w,0) (l,w,0)

(0,w/2,h) (l,w/2,h)

l

w

h
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In Equation (4), (𝑥𝑖 , 𝑦𝑖) is the back projected image coordinates of the primitive’s vertex 𝑖, which 

can be calculated by the collinearity equation; (𝑥𝑖
′, 𝑦𝑖

′)  is the image coordinate of the primitive’s 

vertex  𝑖 , which can be derived by corner extraction from aerial imagery; 𝑑𝑖  is the distance of a 

primitive’s vertex 𝑖 to the corresponding roof surface. Starting from the initial values of the shape and 

pose parameters, the optimal parameters can be determined by using a non-linear least squares 

optimization. In this paper, the LM (Levenberg-Marquardt) non-linear least squares optimization 

algorithm [49] is used to optimize the cost function. Finally, 3D buildings can be represented using the 

optimized shape and pose parameters. By this means, the constraints from LiDAR data and aerial 

imagery can be tightly integrated into a parameter optimization procedure to derive the accurate 3D 

building primitives. 

3. Experimental Results  

3.1. Description of the Datasets 

Two datasets containing the LiDAR point cloud and aerial imagery were used in our experiments to 

validate the proposed method. The “Vaihingen” dataset was provided by the ISPRS test project on 

urban classification and 3D building reconstruction [50], which was acquired by the Leica ALS50 

system with an average point density of 4 points/m2 at a mean flying height of 500 m above ground 

level. Multispectral aerial images were also captured from the Intergraph Z/I imaging’s DMC (Digital 

Mapping Camera) with a GSD (Ground Sampling Distance) of 8 cm. 

The Strasbourg dataset was obtained in 2004 using the Optech ALTM 1225 with an average height 

of 1440 m, and the point density is approximately 1.3 points/m2. Aerial images that were acquired 

using a Vexel UltraCamX with a GSD of 15 cm were also contained in the Strasbourg dataset. For the 

aforementioned two datasets, the interior and exterior parameters were also distributed with the 

corresponding aerial images. 

3.2. Experimental Results 

In the previously mentioned datasets, a total of eight representative buildings are selected to validate 

the proposed method. Among these buildings, there are seven compound buildings, which are 

characterized by a combination of basic building primitives. Figure 11 shows the decomposition and 

reconstruction results of these compound buildings. In addition, there is also a complex flat roof 

building in the test data, which can be seen in Figure 12.  

As seen in Figure 11, the compound buildings in Part (i) can be automatically decomposed into 

some semantic primitives defined in the library, e.g., the complex building in Figure 11a can be 

automatically decomposed into three hipped building primitives. Figure 11 (Part ii) shows the 

decomposition results of different compound buildings; wireframes in different colors indicate 

different building primitives derived from the proposed decomposition method, and points in different 

colors represent different segmented planar patches. Once the compound buildings have been 

decomposed into basic primitives and the corresponding features have been extracted from LiDAR 

data and aerial imagery, the reconstruction of the building models can be achieved by using a  

non-linear least squares optimization. 
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Figure 11. Experimental results of the proposed method. Parts (a–g): the selected seven 

compound buildings for the experiments; and parts (i–iiii): aerial imagery, decomposition 

results, and the initial roof models (wireframes in different colors indicate different 

decomposed primitives), back projections of the reconstructed models (green wireframes), 

and 3D visualization of the reconstructed models. 
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For a qualitative evaluation of the proposed method, the reconstructed 3D building models are back 

projected to the corresponding aerial imagery, which are shown in Figure 11 (Part iii). As can be seen 

from it, the 2D green wireframes superimposed on the aerial images are the projections of the 3D 

reconstructed building models; they are located at their correct locations and coincide well with the 

corresponding building edges on the aerial imagery, which means that the proposed method can 

generate accurate building models. When the roof models have been reconstructed, the complete 3D 

building models can be derived by extruding the roof outline to the ground when a DEM is available, 

or to a ground plane with a given height. Figure 11 (Part iiii) shows the 3D visualization of the 

reconstructed building models, models with different colors indicate different reconstructed primitives. 

Note that there are also some complex building roofs that do not contain ridge lines in a real urban 

environment; an example can be seen in Figure 12a, which is a complex flat roof building with a 

polygonal shape. In this case, the proposed decomposition algorithm cannot work to reconstruct these 

complex buildings. For this type of building, a polygonal model is designed, and then the constraints 

from the 2D image corners and 3D planar patches from LiDAR data are used to reconstruct this 

polygonal building model [41]. This procedure is illustrated in Figure 12. 

 

Figure 12. Reconstruction of a complex flat building with polygonal shape. (a) The 

segmented planar patch of a complex flat roof (blue points); (b) the extraction of 3D 

boundary points (red points); (c) the grouping result of the 3D boundary points; (d) the 

grouping boundary points that are back projected onto the aerial imagery; (e) edge 

detection on the sub-image; (f) edge pixels in the neighborhood of the back-projected 

boundary points; (g) inliers of the RANSAC; (h) results of 2D corner extraction; and (i) the 

reconstructed 3D flat building model. 
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After rooftop segmentation, the LiDAR points located on the same plane at different elevation 

levels can be extracted, and the 2D image corners of each building can be detected with the help of 

these planar patches using the following steps. First, the 3D boundary points of each planar patch are 

obtained by using the modified convex hull method [51], and then these 3D boundary points are 

grouped into different groups by using sleeve algorithm [14]. Red points shown in Figure 12b are the 

extracted 3D boundary points and Figure 12c shows different group of boundary points. Second, the 

grouped 3D boundary points were projected back to the aerial imagery and the canny detector was 

applied to the aerial imagery to derive the 2D edge pixels. A buffer (15 pixels, indicating 

approximately two times the point spacing) surrounding these projected boundary points was defined 

to find the corresponding 2D edge pixels on the image. These are demonstrated in Figure 12d and 

Figure 12e. Finally, the RANSAC algorithm was applied to each group of 2D edge pixels (Figure 12f) 

to filter the irrelevant edge pixels and derive straight lines (Figure 12g), and then 2D corners can be 

extracted by the intersection of the neighboring straight lines, which can be seen in Figure 12h. Once 

the 2D corners have been extracted from the aerial imagery, the type of the corresponding polygonal 

building model is known, and then accurate building models can be derived by using constraints from 

aerial imagery and the corresponding LiDAR planar patch. Figure 12i shows the final 3D building 

model reconstructed from the aforementioned procedure. 

4. Discussions 

4.1. Comparison Analysis of the Proposed Semantic Decomposition Method 

In this section, four related building reconstruction methods based on roof topology graphs are 

compared with the proposed method according to the decomposition results, and the different 

decomposition results of the same compound building are used to illustrate the novelty of the proposed 

method, which can be seen from Figure 13. Figure 13 (left) shows the rooftop segmentation results, the 

number of the segmented planar patches and the corresponding roof topology graph, and Figure 13 

(right) shows the different decomposition results (planar patches contained in each decomposition part) 

and the reconstructed 3D building models. 

Seo [12] extracted wing models from LiDAR data by analyzing the surface patch adjacency graphs, 

and then aggregated these wing models for the reconstruction of complex buildings. As can be seen 

from Figure 13a, the wing models used in this method were only the combination of planar patches, 

but not semantic building primitives that were familiar to people. Thus, they cannot be represented as 

parametric forms to adopt a model-driven method for the reconstruction. To extract parametric models 

from the LiDAR points, Verma et al. [22] defined simple roof shapes as GI, GL, and GU models, which 

can be recognized by the corresponding sub-graphs. These simple roof shapes were searched from the 

roof topology graphs and then reconstructed by fitting them to the point clouds. For the compound 

building model in Figure 13, the decomposition result is a GU shape model in Verma et al. [22], which 

is still a combination of basic building primitives (Figure 13b). This decomposition will reduce the 

flexibility of the building reconstruction because it needs to define a more complicated building 

primitive and then extract it using an exhaustive search. 
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Figure 13. Decomposition results of different building reconstruction methods using roof 

topology graph. Left: the rooftop segmentation results, the number of the segmented planar 

patches and the corresponding roof topology graph. Right: the decomposition results and 

the reconstructed 3D building models. (a) The decomposition result of the reconstruction 

method proposed by Seo [12]; (b) the decomposition result of the reconstruction method 

proposed by Verma et al. [22]; (c) the decomposition result of the reconstruction method 

proposed by Oude Elberink and Vosselman [37]; (d) the decomposition result of the 

reconstruction method proposed by Xiong et al. [52]; and (e) the decomposition result of 

the proposed method. 

In the paper of Oude Elberink and Vosselman [37], airborne laser scanner data and an existing 2D 

map were used to reconstruct building models based on a target-based graph matching algorithm. The 

decomposition result of this method was the assignment of a target graph to the corresponding planar 
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patch and intersection lines, which will result in redundancy because the segmented planar patches and 

the corresponding intersection lines might have matched with multiple targets. As can be seen from 

Figure 13c, the decomposition results of this method were three gabled roofs, two half-hipped roofs 

and two L-shaped roofs. In addition, these primitives are not semantic primitives with fixed parametric 

description, but the group of intersection lines and the corresponding planar segments. Based on the 

same roof topology graph, Xiong et al. use flexible building primitives (loose nodes, loose edge, and 

minimum cycles) for 3D building reconstruction [52]. By searching minimum cycles from the roof 

topology graph, the inner corners can be detected and calculated by intersecting the concurrent planes 

(Figure 13d), and then the outer corners were computed by assuming horizontal or vertical planes 

using boundary points. Finally, the complete building model can be derived by linking all inner corners 

and outer corners. Using corners as basic primitives is flexible for building reconstruction, but it is 

usually difficult to determine the topological relationship of different corners and the linking lines. In 

addition, building models generated from these methods are geometric models, but the semantic 

information about the building’s type is always missed in the reconstruction process. 

Differing from the aforementioned method, the results of the proposed automatic decomposition 

algorithm are semantic building primitives, which can be easily interpreted by the architects. As can be 

seen from Figure 13e, the decomposition results of the proposed method are three hipped roofs, which 

have semantic information about the building’s type. Such decomposition is much simpler and can be 

easily accepted by human being. In addition, each semantic building primitive used in this paper can 

be represented by a parametric form, which reduces the model parameters and facilitates the 

integration of aerial imagery in the following reconstruction process. Furthermore, the results of the 

proposed decomposition method are basic building primitives allowing overlapping in the 

reconstruction procedure. Such decomposition and reconstruction are more flexible because only a 

small set of simple building primitives need to be contained in the predefined library. 

4.2. Analysis of the Sub-Graph Searching and Initial Primitive’s Generation 

Among most decomposition methods using sub-graph matching, the process of searching sub-graph 

in the roof topology graph is complex. That is to say, for each predefined primitive, the corresponding 

sub-graph is searched in a certain order, such as in a decreasing order of complexity of primitives [22]. 

In this case, it is usually an exhausting search. By contrast, the searching of basic primitives in this 

paper is more efficient than the aforementioned methods. It is explained by the fact that the  

anti-symmetry planar patches can be easily extracted from the attributed graph, and then the relevant 

planar patches that are adjacent to these anti-symmetry planar patches are efficiently retrieved to 

constitute a sub-graph, which can avoid the exhausting sub-graph searching in the roof topology graph. 

After identifying of sub-graphs in the roof topology graph, the ridge corners can be calculated by 

the intersection of concurrent planar patches. To achieve the complete models, building outlines should 

be determined in most reconstruction methods. In this process, the building outlines are derived either 

by extraction and regularization of boundaries or by auxiliary horizontal and vertical planes, and then 

the initial building model is generated based on the derived ridge corners and building outlines. This 

process is usually complicated because it needs to reconstruct the complex topology relationship 

between line segments that are linked by the corners. In this paper, this complexity is reduced by 
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decomposing the compound building into simple building primitives with inherent topology 

relationships among corners, line segments, and planes. As a result, the outline of each decomposed 

primitive can be easily derived by using MBR algorithm, and then these initial 3D primitives can be 

easily generated based on the primitive’s type, the corresponding planar patches and the 2D MBR. 

4.3. Accuracy Assessments of the Reconstructed Building Models 

The geometric accuracy of the reconstructed building models is evaluated in two ways. First, we 

compare the coordinates of the reconstructed roof corners with the ones acquired by space intersection 

using stereo images and calculate the RMSE (Root-Mean-Square Error) of each primitive, which can 

be seen in Figure 14a. In Figure 14 a, the maximum RMSE in the horizontal direction is smaller than 

0.25 m, and the maximum RMSE in the vertical direction is smaller than 0.20 m. For the total of 

sixteen building primitives, the average RMSE values are 0.11 m and 0.12 m in the horizontal and 

vertical directions, respectively, which indicate that the proposed building reconstruction method has 

high geometric accuracy in both the horizontal and vertical directions. Second, the distances from the 

LiDAR point clouds to the reconstructed roof are calculated to validate the reconstructed errors, which 

can be seen in Figure 14b. In Figure 14b, the standard deviation and the mean of the distances from the 

LiDAR points to the corresponding 3D building model are smaller than 0.07 m in most cases, which 

proves the high vertical accuracy of the reconstructed building model. Note that the vertical accuracy 

evaluated by the LiDAR point clouds is higher than that evaluated by the space intersection. This 

inconsistency may be originated from the manual work during the measurement of 2D image corners 

from stereo images. 

  
(a) (b) 

Figure 14. Accuracy assessment of the proposed method. (a) RMSE of the reconstructed 

building model in the horizontal and vertical directions; and (b) mean and standard deviation 

of the distances from the LiDAR point clouds to the reconstructed building models. 

In addition to the reconstruction of the aforementioned represented buildings, the proposed method 

is applied to data sets of the ISPRS benchmark [53], which contain three test areas with different 

characteristics. The organizer of this ISPRS Test Project maintains the web page that shows the 

continuous comparison of different methods [54], and the geometric accuracy comparison result of 

different reconstruction methods is presented in Table 1. In this table, RMSD refers to average root 
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mean square error in the XY plane and RMSZ refers to average root mean square error in the Z 

direction. The result of the proposed method is highlighted in green. 

Table 1. Geometrical accuracy of different reconstruction methods in three test areas. 

Researchers and References 
Area 1 Area 2 Area 3 

RMSD (m) RMSZ (m) RMSD (m) RMSZ (m) RMSD (m) RMSZ (m) 

J.Y. Rau [55] 0.9 0.6 0.5 0.7 0.8 0.6 

Oude Elbrink and Vosselman [37] 0.9 0.2 1.2 0.1 0.8 0.1 

Xiong et al. [39] 0.8 0.2 0.5 0.2 0.7 0.1 

Perera et al. [40] 0.8 0.2 0.3 0.3 0.5 0.1 

Dorninger and Pfeifer [9] 0.9 0.3 0.7 0.3 0.8 0.1 

Sohn et al. [56] 0.8 0.3 0.5 0.3 0.6 0.2 

Awrangjeb et al. [19] 0.9 0.2 0.7 0.3 0.8 0.1 

He et al. [57] 0.7 0.2 0.6 0.3 0.7 0.2 

The proposed method 0.8 0.3 0.5 0.3 0.6 0.1 

As shown in Table 1, the average horizontal error and vertical error of the proposed method in three 

test areas are 0.8 m and 0.3 m (Area 1), 0.5 m and 0.3 m (Area 2), 0.6 m and 0.1 m (Area 3), 

respectively. Though the elevation accuracy (RMSZ) is comparable with other reconstruction methods, 

the plane accuracy (RMSD) of the proposed method outperforms most of other reconstruction 

methods. It is because the accurate features derived from aerial imagery can be tightly integrated into a 

parameter’s optimization by decomposing the compound buildings into basic building primitives. 

4.4. Uncertainties and Limitations of the Proposed Method 

The rooftop segmentation results are important inputs for the subsequent building decomposition 

and modeling. When the RANSAC algorithm is implemented in an iterative way to extract planar 

patches, some LiDAR points that are not really located on the same plane can be detected. As seen in 

Figure 15a, the green colored LiDAR points in the red circle are really located on the purple planar 

patch, but are grouped into the green planar patch because the classic RANSAC algorithm only 

considers the pure mathematical principle of the plane. In this case, the normal vector consistency 

validation of the points on the extracted plane is applied. That is, the points on the extracted plane are 

fit by the least-squares method, and then the discrepancy between the normal vector of each point and 

the fitting plane is calculated. If the discrepancy is smaller than a predefined threshold, the point is 

reserved in this planar patch. Otherwise, the point may be located on other rooftop patches and will be 

put into the original building cluster for the following planar patch extraction. After the normal vector 

consistency validation, the green LiDAR points in the red circle can be correctly grouped into the 

corresponding planar patch, which can be seen in Figure 15b. Another problem of the rooftop 

segmentation is that the extracted points are on the same mathematical planes, but are spatially separated, 

as seen in the red rectangle in Figure 15c. Such coplanar patches can be separated by a connected 

component analysis, as seen in Figure 15d. 
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Figure 15. Normal vector consistency validation (a–b) and coplanar validation (c–d). 

In this paper, a semantic decomposition algorithm is proposed for the automated decomposition of 

compound buildings, which are suitable for the combination of the gabled roof building, half-hipped 

roof building, and the hipped roof building. However, the proposed method has limitations when it is 

used to reconstruct the compound buildings with arbitrary roof orientations, such as the mansard roof 

buildings. For these buildings, the pairs of anti-symmetry planar patches are absent in the building 

structure, thus they cannot be decomposed and reconstructed by the proposed method currently. In the 

future, we will add more complex building primitives for the generalization of the proposed method. 

Another limitation of the proposed method is that it has a relatively high computation complexity 

when it is used to reconstruct a large scene. It is because that the outputs of the proposed method are 

semantic models but not geometric models, so the semantic decomposition and model recognition have 

been integrated into the process of the building reconstruction. These processes will increase the 

computational cost of the proposed method. In addition, the feature extraction from LiDAR data and 

aerial imagery also have their own computational costs. 

5. Conclusions  

In this paper, an automatic decomposition and modeling method is presented to reconstruct the 

compound buildings from LiDAR data and aerial imagery. By exploiting the knowledge about local 

symmetries implicitly contained in the building structure, the proposed method automatically 

decompose the compound buildings into several semantic building primitives, and then the 

complementary characters of LiDAR data and aerial imagery are efficiently integrated for the 

reconstruction of compound building models. The proposed method is tested on two data sets with 

different point densities, and the quantitative evaluation shown in Figure 14 and Table 1 demonstrate 

that it can efficiently reconstruct compound building models with higher geometric accuracy. 

The proposed approach is a primitive-based technique, in which compound buildings can be 

decomposed and reconstructed by using a set of simple building primitives. To this aim, a novel 

decomposition algorithm is proposed to decompose the compound building models into semantic 

building primitives with fixed parametric forms, which are useful for the architects to interpret the 

structural components of the compound buildings and then build them using a CSG approach. The 

benefit of this algorithm is that it can simplify the reconstruction process of the compound building 

models, especially for the generation of compound buildings that are combinations of gabled or hipped 
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roofs. In addition, the proposed method allows the basic primitives to overlap in the decomposition 

process, which can reduce the number of basic primitives in the predefined library and keep the 

primitive’s integrity and regularity during the building reconstruction. As a result, the traditional model 

driven methods can be further extended to the automated reconstruction of compound buildings by 

using the proposed semantic decomposition method. 

However, it is still a difficult task to automatically reconstruct building models with more complex 

structures. In this paper, the compound buildings are assumed as a combination of simple primitives 

with symmetric planar patches, which are not enough for the reconstruction of a variety of complex 

buildings in reality. In the future, the non-planar roof primitives (e.g., curved structure buildings, 

cones, and cylinders) will be adopted to extend the proposed method to reconstruct more complex 

buildings, and the ground-based and mobile-based data will be integrated with the airborne data to 

create more completed building models. 
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