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Abstract: An automated procedure has been proposed to monitor by multispectral satellite
imagery the cultivation expansion between 1987 and 2013 in the arid environment of the
Fayyum Oasis (Egypt), which is subject to land reclamation. A change detection procedure
was applied to the four years investigated (1987, 1998, 2003 and 2013). This long-term
analysis is based on images from the Landsat series, adopting a classification strategy relying
on vegetation index computations. In particular: (a) the consequences of the radiometric
differences of three Landsat sensors on the vegetation index values were analyzed using data
simulated by a hyperspectral Hyperion image; (b) the problems resulting from harvesting
cycles were minimized using five images per year, after a preliminary analysis on the effects
deriving from the number of processed images; (c) an accuracy assessment was carried out
on the 2003 and 2013 maps using high resolution images for a portion of the investigated
area, with an estimated overall accuracy of 91% for the change detection. The method is
implemented in a batch procedure and can be applied to other similar environmental contexts,
supporting analyses for sustainable development and exploitation of soil and water resources.
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1. Introduction

The Landsat Data Continuity Mission (LDCM) and the launch of the Landsat 8 platform in 2013 [1,2]
offer a unique opportunity to perform monitoring activity by remote sensing on a regional scale, taking
advantage of the long time series available from precedent missions, which can be used to set up models
and to calibrate new algorithms. Landsat 8 offers significant improvements in both data quality (i.e., noise
reduction) and spectral coverage. However, it introduces also substantial changes, especially in the
coverage of visible, near-infrared and shortwave-infrared spectral bands and the entire detector system
(shifting from whisk-broom to push-broom design) [1,3].

In this context, this paper presents a change detection study over an arid region encompassing a period
of 25 years, which exploits the data from three different Landsat missions. In particular, it deals with
the expansion of the areas under cultivation in the Fayyum Oasis (Egypt), as a consequence of on-going
land reclamation.

Assessing the expansion of cultivation over time is a typical problem of change detection.
Many approaches can be found in literature [4–7], each with specific advantages and disadvantages.
Lu et al. [8] grouped change detection methods into six categories: algebra (which includes image
differencing, vegetation indexes, change vector analysis), transformation (e.g., principal component
analysis), classification, advanced models (where image reflectance values are often converted to
physically based parameters), GIS approaches and visual analysis. Generally speaking, it is not possible
to establish a priori which method of change detection is the most convenient, so the choice is often
made on a pragmatic and application-driven basis [9].

A common problem in change detection associated to ecosystem monitoring is matching the temporal
scale of the phenomena to be observed with the temporal resolution resulting from the available data.
A mismatch may compromise the ability to distinguish seasonal vegetation responses from actual
“directional” changes [10]. Whether or not the crop types are differentiated, traditional “bi-temporal”
approaches are affected by errors resulting from the different phenological state of the vegetation, even
when all the image acquisitions are repeated over the same period of the year [9].

The approach proposed in this paper and described in Section 4.2 can be considered a hybrid method,
because it combines the computation of a vegetation index with a classification process. The change
detection is then performed post classification. Several maps of vegetated vs. non-vegetated areas were
produced and each map, representing one year, is obtained by combining the information derived from
a number of images acquired in different seasons. These choices respond to the objectives of the study,
which are:

1. developing a long term monitoring of the expansion of cultivation at regional scale (regardless
the crop species), which may contribute towards defining a sustainable development strategy for
the area and for regions with similar characteristics, which are not uncommon in arid climates;

2. proposing a methodology for change detection that is cost effective, easy to implement in
an automated processing chain and sufficiently accurate;

3. evaluating how change detection can be affected by the differences in radiometric and spectral
characteristics between Landsat sensors;
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4. assessing the improvements in the detection of cultivated areas which can be obtained using a
number of images to produce the classification for a specific year.

The change detection was carried out on a set of Landsat images from 1987 to 2013, while the
cross-comparison analysis among the sensors of the Landsat series was performed on the basis of
simulated data, generated from a hyperspectral Hyperion image.

2. Study Area

The Fayyum depression is one of the most productive agricultural regions of Egypt and has been since
ancient times. For this reason it is often designated in literature as Fayyum Oasis. The first systematic
reclamation of the area dates back to the XIX century B.C., under the Pharaohs of the XII dynasty.
Nowadays, over 2.5 million people live in the oasis with a mean population density of 1400 people
per km2. The oasis and surrounding desert also have a wealth of natural and cultural heritage sites [11].
To ensure a sustainable use of these resources, the Fayyum Oasis and, in particular, Lake Qarun were
designated as a conservation area in 1989.

The oasis occupies a topographically depressed area, located about 90 km south-west of Cairo [12].
The northern and deepest part of the depression is covered by Lake Qarun, which extends for
about 240 km2. To the south and east, the lake is surrounded by agricultural land, whose elevation
ranges from about 40 m below sea level to about 30 m above. The main crops are cereals (maize,
wheat, sorghum and rice), vegetables, fruit, cotton and livestock fodder. Only 20% of the cultivations
are perennial and the cropping intensity (the total cropped area divided by the physical area) is 190%,
which means that there are two cycles a year for many crops [13].

The typical Saharan climate of the area, with scarce precipitations (less than 10 mm/year) and
very high evaporation potential, has a strong control over the ecosystem [14,15]. The water needs of
the oasis are entirely supplied by fresh Nile water, which is distributed around the cultivated fields
through a network of canals. Discharge waters are collected into Lake Qarun and partly into the
adjacent Wadi El-Rayan depression [16]. This hydrological setting and the increasing human pressure,
as a consequence of the expansion in cultivation, have been causing land degradation and deterioration
in lake water quality (in particular, salinisation and eutrophication [17,18]). Recent studies indicate
that 54% of cultivated soils are affected by a severe risk of chemical degradation, due to climatic,
pedological and topographical factors, and 65% are subject to improper land management and irrigation
practices, heightening the actual risk [19].

3. Materials

3.1. Hyperspectral Data

Hyperspectral data were used to simulate a consistent set of images of the Landsat series (covering the
same area at the same time) and to evaluate the impact on the change detection process of the radiometric
differences among the Landsat sensors.

One image from the Hyperion sensor (installed onboard the Earth Observing 1 platform) was acquired
on 15 December 2009. It covers a narrow portion (7.5 km wide) of the western part of the Fayyum Oasis



Remote Sens. 2015, 7 14022

(Figure 1). Hyperion is a pushbroom sensor which provides 242 bands, continuously covering the visible
and near infrared portion of the spectrum, between 0.4 and 2.5 micrometers, with a spectral resolution
of approximately 10 nm [20].

Figure 1. Location of the study area and data coverage.

3.2. Landsat Data

The dataset for the change detection study consists of 56 multispectral Landsat 5 TM, Landsat 7 ETM
and Landsat 8 OLI frames, belonging to rows 39 and 40 of path 177. The time steps to be investigated
were chosen from years with at least five cloud- and haze-free scenes (representative for all seasons)
available in the Landsat archive (Table 1). The minimum of five images is a compromise between
data availability and desirable accuracy, as discussed in Section 6. In all, twelve frames were collected
from 1987, ten from 1998 (plus two from February 1999 to compensate for a lack of winter images
in 1998), ten from 2003 and 20 from 2013 (plus two from January 2014, also in this case to compensate
for a lack of winter images).

Table 1. Satellite images from the Landsat archive used for the change detection analysis.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1987 TM TM TM TM TM TM
1998 TM TM TM TM TM
1999 TM
2003 ETM ETM TM TM TM
2013 OLI OLI OLI OLI OLI OLI OLI OLI
2014 OLI
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3.3. High Resolution Data

As stated by Hecheltjen et al. [7], “accuracy assessment remains a challenge in change extraction
analyses, principally due to the limited availability of complete timely in situ ground information”.
Usually, when good quality control points verified on the ground are not available, the land cover map is
compared with some higher quality information source [21].

In order to provide the reference data for 2013 land cover, several images from the Google Earth
platform were used, acquired between April and December of the same year. For 2003, only few images
acquired between October 2002 and February 2003 were available and only the eastern part of the oasis
was covered. For this reason, the accuracy assessment was limited to a 20 by 20 km area, located in the
north-eastern border of the oasis, which is believed to be representative of the major dynamics occurring
in the region. This area, in fact, is one of the most affected by the reclamation process taking place over
the last two decades, and one of the most prone to salinisation and calcicity-related degradation [22].

4. Methods

4.1. Landsat Sensor Comparison

The change detection study presented in Section 4.2 made use of three Landsat sensors (TM, ETM
and OLI), therefore it is useful to assess to what extent the different radiometric characteristics of the
sensors can affect the computation of vegetation index values.

The most relevant differences can be found in the behaviour of the relative spectral response functions
(RSRFs) and in the number of quantisation levels. The near-infrared band of the OLI sensor is by far
narrower than the corresponding TM and ETM bands (the bandwidth of OLI band 5 is about 30 nm,
while ETM band 4 is 130 nm). Furthermore, OLI images are quantised in 12 bits instead of the 8 bits of
its predecessors.

In order to evaluate the effects of these differences, a set of Landsat images (TM, ETM, OLI) covering
the same area was generated performing a spectral convolution on the Hyperion image.

It is well known that hyperspectral images require more complex calibration procedures to retrieve
accurate radiance values, because of their lower signal to noise ratio, the strong correlation between
contiguous bands and some artefacts, like smiling and streaking or outlier pixels [23]. In the present
study, the calibration were performed by a set of software applications developed by CSIRO (Australian
Commonwealth Scientific and Industrial Research Organisation) [24]. The most sensitive step in this
phase is de-streaking, the removal of a vertical line pattern caused by a distinctive push-broom sensor
along-track effect.

Starting from the calibrated radiance values, two image cubes were computed: the top of atmosphere
(TOA) reflectance image and the surface reflectance (SR) image. The former was obtained by dividing
the spectral radiance by the solar irradiance (assuming a lambertian behaviour), whilst the latter required
an atmospheric correction model. For this study, the atmospheric correction was performed using
the Visual SixS software package [25], which is an implementation of the 6SV radiative transfer code.

Spectral convolutions were performed on the two hyperspectral image cubes to simulate multispectral
images acquired by TM, ETM and OLI sensors. Both TOA and surface reflectances were considered.
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SR values simulated from the atmospheric corrected hyperspectral image are useful to evaluate the
radiometric differences among the corresponding bands of the different Landsat sensors, in particular
the near infrared (NIR) ones. In this way, it is also possible to quantify the impact of these differences
in the normalised difference vegetation index (NDVI) values.

On the other hand, TOA reflectance values allow to simulate the effectiveness of the invariant
object correction method [26] in accommodating both atmospheric effects and inconsistencies due to
the radiometry of the different sensors. SR signatures of a few selected pixels were extracted from
the simulated TM image; these signatures were used as reference to calculate the OLI surface reflectance
starting from the simulated OLI TOA reflectance. In fact, this procedure reproduces the normalisation
technique used in the change detection analyses presented in Section 4.2.

4.2. Change Detection

This section describes the work carried out at regional level to quantify the expansion of cultivated
land over the past decades, implementing a new automated software tool for this purpose. As mentioned
in Section 2, a wide variety of crops are cultivated in the study area, both perennial and seasonal. Here,
however, the only aim is to measure the total extension of the cultivated fields, regardless the crop types.

In order to achieve the desired level of automation, a hybrid method was proposed, based on the
computation of a vegetation index and a classification process. All the images collected from the Landsat
archive were therefore classified into “vegetated” or “non vegetated” areas; the classification is carried
out by calculating the NDVI (on SR values) and defining a threshold.

To process the entire dataset, a fully automated procedure was implemented in ENVI-IDL. Once set
up, the batch programme is designed in such a way that the final user need only select the images to be
processed and the classified map is generated in output.

The procedure involves several steps (Figure 2). Firstly, mosaicking is carried out for the two Landsat
frames covering the entire oasis (about 2880 km2), for each acquisition date. However, before the
vegetation index was computed, several pre-processing operations were implemented, as the entire time
series had to be as homogeneous and coherent as possible, in terms of both geometry and radiometry.
Clearly, all the images must be spatially co-registered to avoid detecting spurious changes. The data
set consists only of geometrically corrected L1T products, which are coherent with each other (with an
accuracy of less than one pixel), all being orthorectified using the same data (i.e., GLS2000) [27].

In addition, if a unique threshold is adopted for all images, each must be calibrated and corrected
for atmospheric effects, at least in a relative way. To address this issue, the TM image acquired on
28 June 2003 was chosen as the reference scene, with respect to the remainder of the series. This is
the only image that was pre-processed manually to apply the appropriate atmospheric correction using
the 6SV radiative transfer code [28]. The required input parameters were derived from MODIS Terra
atmospheric products.

All the other images were calibrated automatically using the invariant object method [26].
The spectral signatures of a few selected rock outcrops (i.e., basalt or limestone) were extracted from
the previously corrected reference image; these surfaces are assumed to be spectrally invariant over
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time. Each image was then normalised to the reference image using a linear regression based on these
invariant objects.

Figure 2. Block diagram outlining the main processing steps implemented in the
automated procedure.

A threshold on the NDVI value was established for the reference image (NDVI > 0.25) on the basis of
image statistics and with the aid of photo-interpretation. The criteria followed are illustrated in Figure 3.
A few samples of bare soil, urban and vegetated areas (covering 0.45, 0.90 and 0.93 km2 respectively)
were identified by photo-interpretation. The histogram of NDVI values for these three categories were
analyzed to define the threshold. The main problem here is represented by the overlap between vegetation
and urban land covers. For example, given the distributions of Figure 3, the critical NDVI value
of 0.25 is approximately “equidistant” from the means of the two distributions (about 1.7 times its
standard deviation); according to Chebyshev’s inequality, the probability of classifying a “vegetated”
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pixel correctly is greater than 68%, whereas the probability of wrongly including an “urban” pixel in the
vegetation class is lower than 19%.

Figure 3. Histograms of NDVI for bare soil, urban and vegetated land cover samples,
identified through photo-interpretation. The overlap between distributions of vegetation and
urban land covers is illustrated.

The NDVI value was then computed on each single image (see Figure 4) and the predefined threshold
applied to distinguish the vegetated areas. In the light of the outcomes of the cross-comparison analysis
described in Section 5.1, the threshold value was adjusted to 0.26 for Landsat 8 images, according to the
equation of the regression line showed in Figure 5f.

Finally, the representative classification for a specific year was produced on a per-pixel basis
by counting the number of Landsat images acquired in that year where the pixel was classified as
“vegetated”. For example, the pixel defined as cultivated in Figure 4 was classified as vegetated in
the images acquired in April, August and December 1998 and as non-vegetated in those acquired in May
and October of the same year; this means that it belongs to “Class 3” in the 1998 combined classification,
since it was classified three-times as vegetated.

4.3. Accuracy Assessment

The assessment of the accuracy of the maps produced was carried out by photo-interpretation using
high resolution imagery. The assessment was not performed on the single-image maps but only on the
aggregated classifications. In particular, two years were evaluated, 2003 and 2013. The accuracy was
evaluated also for the change detection between these two years.

Change, in general, is a rare event [29], in the sense that only a limited number of pixels in the scene
are actually affected by change. Thus, to assess the accuracy of a change detection map, a stratified
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sampling design is to be implemented in order to prioritise sampling in areas where change occurred
and avoid accuracy overestimation. The zone, in which the accuracy assessment was performed, was
therefore divided in two strata. The first stratum is defined by comparing the classifications of 2003
and 2013 and it contains the pixels where a change in land cover was detected. The second stratum
contains all the remaining pixels.

Figure 4. NDVI time series of two pixels (see Figure 6 for location). The first (green circles)
belongs to a field under cultivation since 1987, while the second (blue diamonds) belongs to
land reclaimed in 2011. The continuous grey line indicates the threshold of the NDVI value.

In the “no change” stratum 116 points were selected on a regular grid according to systematic
sampling strategy, since it achieves the criterion of spatial balance [21]. The grid spacing was set to 2 km.
In the “change” stratum, instead, 50 check points were randomly selected, since a systematic sampling
was not feasible due to the limited extent of the stratum. Two points were discarded, because it was
impossible to determine their major land cover type (considering the 30 m pixel size of Landsat images).
The land cover was assessed through photo-interpretation of the high resolution images provided by
Google Earth. The visual interpretation, here, reproduced the classification process, so points interpreted
as cultivated in at least one high resolution image are assigned to the vegetated reference data. However,
plots of land which appear ploughed are considered cultivated even if a green cover is not present.

The confusion matrices presented in Section 5.2 were expressed in terms of proportion of areas,
according to the following expression:

pij =
1

N

K∑
k=1

Nk

nk

nijk (1)

where pij is the proportion of area classified in the i-th class and belonging to the j-th class according to
the reference data, N is the total pixel population, K is the number of strata, Nk is the number of pixels
of the population belonging to the k-th stratum, nk is the number of pixels of the sample belonging to
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the k-th stratum and nijk is the number of pixels in the sample belonging to the k-th stratum, classified
in the i-th class but belonging to the j-th class according to the reference data.

(a) (b)

(c) (d)

(e) (f)

Figure 5. NDVI scatter plots to compare the sensors of the Landsat series, based on
simulations through one Hyperion image. (a), (b) comparison between NDVI values (TM
vs. ETM and OLI respectively) computed from reflectances derived by 6SV model and
convolved; (c), (d) NDVI values from TM image corrected by 6SV (assumed as reference)
vs. values from simulated ETM and OLI images respectively, corrected by invariant
object (IO) method; (e), (f) the same as (c), (d) but for a narrower wavelength interval
(0.24–0.26 microns). Regression lines are plotted in red colour, identity lines in black.
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It must be noted here that Equation (1) is different from the usual formula for the stratified sampling
design (cf. [30]), because in this case the strata are not coincident with the classes. Its derivation,
however, follows the general definition of an unbiased linear estimator of the population total from
a sample, which makes use of the inclusion probability, i.e., the a priori probability that a generic element
will be included in a sample of a given size [31].

Besides the commonly adopted parameters, such as the overall accuracy and the omission and
commission errors, the “quantity disagreement” and the “allocation disagreement” proposed by
Pontius Jr and Millones [32] were also computed.

5. Results

5.1. Landsat Sensor Comparison

The NDVI images obtained from the spectral convolutions described in Section 4.1 were compared
(Figure 5), analysing scatter plots and computing regression lines. In the perspective of change detection
analyses, the following outcomes are relevant:

• Considering the behaviour of the NDVI within the interval between zero and one, the correlation
between the simulated TM and ETM values is very high and the regression line of the scatter plot is
quite coincident with the identity line (Figure 5a). This means that the spectral differences between
the NIR and red bands of the two sensors are negligible for a large number of practical applications.

• The linear correlation between simulated TM and OLI values is still high (Figure 5b), even if lower
than the one between TM and ETM. However, the intercept of the regression line was found to be
about 0.02. The plot appears more scattered, therefore, if an interval of NDVI values in the TM
domain is selected, the corresponding interval of values in the OLI domain will be broader. In this
case, spectral differences can affect significantly applications which exploit vegetation indexes.

• The use of the invariant object method to perform the relative atmospheric correction of a OLI
image, assuming a TM image as reference, seems to accommodate the global bias due to the
different radiometry of the two sensors (Figure 5d). However, if the correlation is evaluated within
a narrower interval (Figure 5f), the regression line diverges significantly from the identity line.
This result may be relevant for processing chains involving thresholds, suggesting that threshold
values need to be adjusted, when moving from TM to OLI images.

5.2. Change Detection

By analysing the results of the whole classification process on the entire Landsat time series,
summarised in Table 2, it is possible to outline the expansion of the cultivated area in the Fayyum Oasis
since 1987. The total increase is estimated to be approximately 89 km2 (101 considering solution 2013b)
and the greatest increment occurred between 2003 and 2013. The major expansion areas are located close
to the borders of the oasis, while some areas changed from vegetated to non-vegetated especially around
towns and villages, likely as a consequence of the urban growth.

The statistics in Figure 6, which relate to the areas classified as vegetated in the five Landsat images
taken in 2003, show that only 49% of the pixels were identified as vegetated in all the five images
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and only 27% in at least four scenes. The total area under cultivation estimated in the 2003 aggregate
classification is 1528 km2. Using a single date classification, the result would be underestimated, and the
cultivated area would be at its minimum in May (only 1047 km2) and maximum in January (1471 km2).

Table 2. Extension of the cultivated fields in the four years under examination and areal
percentage of each class (the class number indicates how many times the pixel was classified
as vegetated during the same year). For 2013, the first solution made use of six images only
(March, May, June, August, November, January), solution “b” of all the images available.

Year
Total Area Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 or Higher

km2 % % % % % %

1987 1500 3 4 7 12 27 47
1998 1504 5 5 11 22 41 16
2003 1528 5 6 13 27 49 -
2013 1589 3 3 5 7 17 65
2013b 1601 2 2 2 2 2 90

Figure 6. Aggregated classification of the 2003 Landsat series. The series is composed
of ten images acquired on five different dates. All the coloured pixels are classified as
vegetated and the class number indicates how many times the pixel has been classified as
vegetated. The pie-chart shows the areal percentage of each class. The red polygon delimits
the area where the accuracy assessment was performed. The red circle and the diamond
indicate the positions of the two pixels of Figure 4.
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In 2013 the situation appears different, thanks to the higher number of images available (22 images
for 11 dates). The first solution in Table 2 is obtained using only six images (March, May, June, August,
November, January), resembling the timing of previous years. The second solution (labelled 2013b,
using all the images) counts 11 classes and 57% of vegetated pixels belongs to Class 11, while 15% to
Class 10. The difference in cultivated area between the two solutions is about 0.8%. In Figure 7 a portion
of the change detection map located in the accuracy assessment area is shown.

Figure 7. Change detection map of the area around the archaeological site of Bakchias
(marked by a red circle), located in the accuracy assessment area. The areas in darkest green
colour designate the fields detected as vegetated in the oldest image of the dataset (1987).

5.3. Accuracy Assessment

The confusion matrix of the aggregated classification of 2003 is reported in Table 3a, in terms of
proportions of the area in which the assessment was performed. The overall accuracy equals to 94% and
the disagreement can be decomposed in a quantity disagreement by 4% and an allocation disagreement
by 2%. Omission error amounts to 8% for vegetated surfaces and to 3% for non-vegetated ones, whilst
commission errors amount to 2% and 11% respectively.

The overall accuracy of the 2013 aggregated classification (Table 3b, solution with six images) is
almost the same, 95%. In this case the total quantity disagreement decreases to 1%, whereas the
allocation one raises to 4%. Omission error decreases to 5% for vegetated surfaces and raises to 5%
for non-vegetated ones. Commission errors amount to 4% and 7% respectively.

In Table 4 the confusion matrix for the change detection between 2003 and 2013 classifications is
reported. The first two by two block corresponds to the “no-change” part of the matrix. The overall
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accuracy, here, is 91%, which is slightly better than the product of the accuracy values for the
two classifications. The total quantity disagreement is 4%, while the allocation one is 5%.

Closely examining the change class “Non-vegetated to Vegetated”, the specific quantity disagreement
is 3%, however, omission and commission errors are 24% and 53% respectively. Two types of
commission errors are present in this change class: the first is due to the growth of spontaneous vegetation
along canal banks or near ponds, the second to the inclusion of urban pixels, especially in rural villages.
Instead, the most frequent omission errors are related to crops with very low vegetation cover.

Table 3. Confusion matrices for the (a) 2003 and (b) 2013 classifications. “V” stands for
“Vegetated” surfaces, whilst “N” for “Non vegetated”. Matrices are expressed in terms of
proportions of area.

(a) 2003

V N

V 0.5362 0.0105 0.55
N 0.0483 0.4050 0.45

0.58 0.42 1.00

(b) 2013

V N

V 0.5572 0.0223 0.58
N 0.0280 0.3925 0.42

0.59 0.41 1.00

Table 4. Confusion matrix for the change detection between 2003 and 2013 classifications.
“V” stands for “Vegetated” surfaces, whilst “N” for “Non vegetated”, so, for example, “NV”
means a change from Non-vegetated in 2003 to Vegetated in 2013.

VV NN VN NV

VV 0.5057 0.0081 0.0012 0.0000 0.52
NN 0.0093 0.3527 0.0175 0.0093 0.39
VN 0.0093 0.0024 0.0199 0.0000 0.03
NV 0.0215 0.0130 0.0000 0.0300 0.06

0.55 0.38 0.04 0.04 1.00

6. Discussion

In Egypt, change detection studies were conducted recently in areas of intense reclamation [33,34].
In essence, they were based on the analysis of full land cover maps, obtained by supervised
classification of images acquired in different years. These classifications, however, were enhanced by
visual interpretation to improve the final accuracy. A further study by Hereher [35] over the whole
country used coarse resolution MODIS AQUA imagery and Enhanced Vegetation Index to estimate
the increment of vegetated area between 2003 and 2012 (more than 4200 km2). In all these works,
the land cover change between two years was assessed by comparing two single-date images, adopting
a “bi-temporal” approach.

The processing of the Landsat time series presented in this paper clearly highlights the effects of
seasonal harvesting cycles and the importance of working with many images for each year being
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studied. This challenge was investigated by Pax Lenney et al. [36] in a work assessing the status of
agricultural lands in some areas in the Nile Delta, using ten Landsat TM images dating from 1984
to 1993. They found that classification methods based on multitemporal NDVI features (i.e., statistics
describing trends), were successful in distinguishing healthy cultivated lands from non-productive lands
and to identify reclaimed areas. They found also that high-frequency multitemporal data sets are
needed to monitor agricultural landscapes, especially where agricultural practices result in great temporal
variability. The results presented in Section 5.2 of the present paper confirm the findings by Pax Lenney
and Woodcock [37], who observed an underestimation ranging between 4% and 42%, using only one
image. These facts appear to be a consequence of the wide variety of crops grown in the study area within
a flexible cropping schedule. Also a recent study by Knudby et al. [38] demonstrates that building one
supervised classification from multiple images can improve overall accuracy and fill eventual gaps in
the coverage.

The availability of a large number of OLI images in 2013 (11 dates) allowed the execution of some
tests to evaluate the variation of the area detected as vegetated as a function of the number of images
used. The vegetated area was estimated using all the possible combinations of one, two, three, etc.
images. For example, using only one image there are eleven estimates of the area since there are eleven
images, instead, using five images (of eleven) there are 462 possible combinations and so 462 estimates.
The means and standard deviations are plotted in Figure 8. The mean value grows monotonically but
asymptotically with the number of images. The choice of selecting at least five images for each year
is clearly a compromise between accuracy and limited availability of images of the earlier Landsat
missions. It should be noted, however, that the choice should be restricted to those combinations which
includes all the seasons. With this restriction, the area detected as vegetated using five images decreases
by 1.5% in average in respect of using all eleven images. A problem is the detection of short period
crops. For example, the reclaimed pixel in Figure 4 exceeded the threshold for no more than two months
consecutively. In this case, an acquisition frequency lower than one image every two months would not
ensure the detection and could lead to a lower accuracy.

Therefore, two solutions were presented in Table 2 for 2013. The first made use of six images, chosen
to resemble the situation encountered in the previous years examined. The second solution (2013b) made
use of all the eleven images available and represents a situation which is going to be common thanks to
the high acquisition rate of Landsat 8 and the availability of Sentinel-2 imagery (especially considering
the forthcoming launch of Sentinel-2b). The difference in area was found to be about 0.8%, which means
a difference of 12% in the estimate of the cultivation expansion between 1987 and 2013. Differences in
overall accuracy, instead, were found to be negligible, considering the given set of check points.

Regarding the processing chain, the critical point that most affects the results is defining the threshold
for the NDVI. In general, as noted by Lu et al. [8], the choice of threshold is highly subjective
and scene-dependent, and it is often set either through a trial-and-error procedure or using statistical
measures. In particular, setting a static threshold (based on the reference Landsat image) may lead
to either an overestimation or an underestimation of the vegetation cover, especially if a single image
classification only is considered. However, working in a context involving a wide variety of crops
(each with its specific phenological phases) and high cropping intensity, this effect can be minimised by
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using multiple images acquired during different seasons. On the other hand, a varying threshold would
compromise one of the main goals, that is, the high level of automation of the monitoring procedure.

Figure 8. Variation of the area detected as vegetated as a function of the number of images
used, considering all the possible combinations of the eleven OLI images available for 2013.
Whiskers refer to the standard deviation.

It is important to point out also that the threshold should be adjusted when moving from TM to OLI
data, because the differences in radiometry between the two sensors affects the values of the NDVI. This
adjustment, however, can be quantified a priori and implemented in the processing chain. The same
considerations apply also when using ETM and OLI sensors together. The differences in NDVI values
observed in the simulations performed on hyperspectral Hyperion data (Section 5.1) are of the same
magnitude of those reported by Li et al. [3], but in this case the simulated NDVI values from OLI are
systematically greater than the ones from TM.

Although validation is still not possible because of the lack of a statistically significant amount
of ground truth data over the entire oasis, the accuracy of the classifications on the last two years
considered was assessed using high resolution images. The error matrices were not compiled for the
classifications of every single image but only for the aggregated classifications representative for the
two years. The idea behind this choice is that, independently of the day when the high resolution image
was acquired, if a reference site is seen to be cultivated on that specific day, the assumption is that it must
be classified as vegetated in the aggregate classification, since this provides a representation of the entire
year. Conversely, it is theoretically possible that some uncultivated reference sites are cultivated in
subsequent months; in this case, false errors would be introduced to the confusion matrix.

The overall accuracies achieved confirm the feasibility of the proposed method. On the one hand,
the decrease of the quantity disagreement in 2013 classification suggests that the higher number of
images used (eleven dates instead of five) improved the detection process, as can be seen also from
the decrease of the omission error of Vegetated class. On the other hand, errors due to mixed pixels
accumulate as the number of images used increases. This effect is highlighted by the raise of the
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omission error for Non-vegetated class and of the total allocation error. The problem of mixed pixels
is exacerbated in Landsat imagery because of the cubic convolution resampling algorithm applied to all
Landsat data to perform the orthorectification. Omission errors for Non-vegetated class can be related
also to the relatively high NDVI values observed in urban areas, especially in rural villages.

The use of different sensors for the change detection introduces further errors; in particular, as
described in Section 5.1, the tests carried out on simulated data show that NDVI values derived from OLI
images are more scattered than the corresponding values derived from TM or ETM images, especially
close to the threshold value. This fact contributes to the large commission error observed in the specific
change category from Non-vegetated to Vegetated.

Among the possible vegetation indexes, NDVI was chosen for the present study to carry out the
classification into “vegetated” versus “non-vegetated” categories. Other indexes based on the soil line,
such as SAVI, were also tested; however, despite providing better results in the case of very low
vegetation density, they produce more confusion in urban areas and consequently a slightly lower overall
accuracy. A possible indicator which may be implemented in future developments of the algorithm is
greenness, since it can take into account more bands than only the red and NIR ones [39].

The solution presented here was designed in order to take into account the characteristic environment
of the Fayyum Oasis, where cultivated fields are surrounded only by desert soils and there is hardly
any spontaneous vegetation. It should be noted, however, that the reclamation of desert areas through
artificial irrigation is a common practice for developing countries in arid climatic zones; this means that
interest in a specialised monitoring strategy is fully justified. The procedure described has, indeed, the
advantage of being easy to repeat and may be suitable for long-term monitoring over wide areas where
systematic and repeated field surveying is not feasible.

7. Conclusions

This work presents an efficient methodology for long-term monitoring of the expansion of cultivation
in arid environments, using three sensors of the Landsat series (TM, ETM, and the new OLI) and taking
into account their differences in radiometry. The methodology was tested in the Fayyum Oasis (Egypt).
A surface of 2880 km2 at four time steps were investigated (years 1987, 1998, 2003 and 2013); the total
increase of cultivated areas was estimated to be between 89 and 101 km2. A full change error matrix was
compiled in order to assess the accuracy of the change detection between the last two years considered.

The hybrid change detection approach, which combines the computation of the NDVI index with
a classification into “vegetated” or “non vegetated” areas, offers the advantage of concentrating all
discretionary assumptions during the initial setting-up stage, allowing for the full automation of
the procedure.

One distinctive aspect is the use of multiple images to produce a single classification that is
representative of an entire year. This proved to be essential for the following reasons: (1) it mitigates
errors due to seasonal harvesting cycles (which can lead to underestimating the cultivated surface
significantly, sometimes in excess of 30%); (2) it increases the robustness of the solution obtained using
a specific threshold (overall accuracy up to 90% for change detection), because the final decision does
not rely on a single observation.
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The methodology proposed here was designed for arid landscapes and this can limit its areas
of application. However, this solution can be applied to other regions with similar characteristics,
which are not uncommon in arid climates, and it can work even if good quality training data are not
available. Furthermore, it can be easily applied to the new Sentinel-2 imagery [40], after an appropriate
cross-comparison analysis is conducted.
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