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Abstract: In recent decades, the monitoring of vegetation dynamics has become crucial 

because of its important role in terrestrial ecosystems. In this study, a satellite-derived 

normalized difference vegetation index (NDVI) was combined with climate factors to 

explore the spatiotemporal patterns of vegetation change during the growing season, as well 

as their driving forces in China from 2001 to 2012. Our results showed that the growing 

season NDVI increased continuously during 2001–2012, with a linear trend of 1.4%/10 years 

(p < 0.01). The NDVI in north China mainly exhibited an increasing spatial trend, but this 

trend was generally decreasing in south China. The vegetation dynamics were mainly at a 

moderate intensity level in both the increasing and decreasing areas. The significantly 

increasing trend in the NDVI for arid and semi-arid areas of northwest China was attributed 

mainly to an increasing trend in the NDVI during the spring, whereas that for the north and 

northeast of China was due to an increasing trend in the NDVI during the summer and 

autumn. Different vegetation types exhibited great variation in their trends, where the grass-

forb community had the highest linear trend of 2%/10 years (p < 0.05), followed by meadow, 

and needle-leaf forest with the lowest increasing trend, i.e., a linear trend of 0.3%/10 years. 
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Our results also suggested that the cumulative precipitation during the growing season had a 

dominant effect on the vegetation dynamics compared with temperature for all six vegetation 

types. In addition, the response of different vegetation types to climate variability exhibited 

considerable differences. In terms of anthropological activity, our statistical analyses showed 

that there was a strong correlation between the cumulative afforestation area and NDVI 

during the study period, especially in a pilot region for ecological restoration, thereby 

suggesting the important role of ecological restoration programs in ecological recovery 

throughout China in the last decade. 

Keywords: China; climate change; ecological restoration; normalized difference vegetation 

index; vegetation dynamics 

 

1. Introduction 

In recent decades, global climate change has affected the characteristics of vegetation throughout the 

world [1,2]. As a key component of terrestrial ecosystems, vegetation has an irreplaceable role in 

regulating the carbon balance, reducing greenhouse gases, and maintaining climate stability by 

modifying biophysical land-surface properties and other biochemical processes [3,4]. The instrument-

derived temperature records obtained in recent decades provide convincing evidence that northern 

terrestrial ecosystems have experienced the greatest warming rate throughout the world, particularly 

during the winter and spring [5,6], which has been reported to have significant regional impacts on the 

function and integrity of ecosystems from global to local scales [7–11]. Among the various ecosystem 

indicators, vegetation cover is considered to be a primary indicator when assessing the ecological 

environment as well as for social and economic sustainability development [12]. At present, many 

aspects of vegetation dynamics still remain poorly understood, although numerous studies have 

considered the associations between vegetation dynamics and climate change [13,14]. Therefore, 

achieving a good understanding of vegetation dynamics and their driving forces is a major objective in 

the environmental sciences, particularly when studying the effects of climate change on terrestrial 

ecosystems [15]. 

In recent years, monitoring vegetation dynamics and identifying their associated driving forces has 

become a crucial issue in studies of global climate change. Many studies based on satellite data  

have documented changes in vegetation growth with links to climate change in different regions and 

biomes [4,16–19]. China has experienced remarkable climatic warming, which has resulted in the more 

frequent occurrence of extreme weather and climate events [20]. These extreme climate events such as 

drought have significantly affected the vegetation dynamics in many parts of China [12,21]. For instance, 

recent studies have addressed the responses of natural vegetation dynamics to climate drivers in China 

during the last 30 years [22], as well as the effects of the precipitation intensity and temperature on grass 

dynamics over northern China [23]. Increasingly, studies have highlighted the importance of 

understanding the response of vegetation growth to climate change, as well as for predicting future 

interactions between terrestrial ecosystems and the climatic system. However, the responses of 

vegetation to climate change vary considerably among regions and biomes [24], and the changes within 
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various vegetation types are still poorly understood. It should be noted that changes in different 

vegetation types and their responses to climate variability are of importance for understanding the 

variations in vegetation productivity and the terrestrial net carbon uptake [25,26]. In addition, the 

conclusions of most previous studies were based on global inventory modeling and mapping studies 

(GIMMS) using the normalized difference vegetation index (NDVI), with a low spatial resolution of  

8 × 8 km2, and thus certain uncertainties may be included in regional studies of vegetation dynamics. 

Fortunately, a more recent NDVI dataset from the Terra MOderate Resolution Imaging Spectroradiometer 

(MODIS) is considered to be an improvement over GIMMS NDVI, and it has been used widely in 

regional vegetation detection and model analysis [27]. Therefore, studying variations in vegetation using 

MODIS NDVI in China may be an important supplement that can facilitate robust conclusions. 

In addition to the changes in climate and atmospheric composition, land-use change such as 

afforestation and reforestation may also have played an important role in vegetation dynamics [14]. 

Afforestation has been implemented worldwide as regional and national policies to sequester carbon 

dioxide from the atmosphere [28,29]. In China, a series of national policies has been implemented to 

address pressing environmental problems and to improve ecosystem services in northwestern and 

northern China, including the Three-North Belt Program, the Natural Forest Protection Program, and the 

Grain for Green Program. The widespread implementation of ecological restoration programs has 

significantly altered land cover in the region, as well as increasing the forest cover. As a result, rapid 

changes in vegetation cover have been detected in recent decades in northern China [29]. However, the 

causes of vegetation dynamics in China are complex and the contributions of climate change and ecological 

restoration remain unclear. In addition, large-scale afforestation may also alter bio-geophysical properties 

such as the surface albedo and evapotranspiration. For example, a recent study showed that the conversion 

of croplands to forests can alter plant productivity and ecosystem carbon fluxes because forests may have 

higher gross primary productivity and net ecosystem productivity than croplands [30]. These changes in 

the flux of water, energy and carbon between terrestrial ecosystems and the atmosphere will have inevitable 

effects on the regional climate. Thus, an overall evaluation of vegetation in China is necessary in order to 

clearly understand the interactions between terrestrial ecosystems and the atmosphere. 

The primary aim of this study was to explore spatiotemporal variations in vegetation and their driving 

forces in China by considering the combined effects of climate change and anthropological activity on 

vegetation dynamics during recent decades, as well as changes in vegetation during the spring, summer, 

and autumn to obtain a deeper understanding of vegetation dynamics. We aimed to address the following 

questions. (1) How the vegetation dynamics in China responded to rapid climate change and large-scale 

ecological restoration? (2) How the different vegetation types changed in response to climate change? 

To answer these questions, we performed several steps. First, we characterized the spatial patterns and 

vegetation dynamics during the growing season (defined as April to October) in China. Next, we 

analyzed the changes in different vegetation types and their responses to climate change. Finally, we 

considered the contributions of both climate change and anthropological activity to explore the driving 

forces of vegetation dynamics. 
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2. Methods and Datasets 

2.1. Datasets 

The MODIS/Terra MOD13A3 datasets obtained by NASA’s Earth Observing System during 2001 to 

2012 were used in this study (http://e4ftl01.cr.usgs.gov). The spatial and temporal resolutions of this 

NDVI dataset are 1 × 1 km2 and one month, respectively. This NDVI is used widely to study changes in 

regional vegetation coverage because of its moderate spatial resolution and high quality resulting from 

robust treatments of water, clouds, and heavy aerosols. First, the data format and projection of the raw 

MODIS-NDVI data were transformed using MODIS Reprojection Tools. Next, the growing season 

NDVI was defined as the average NDVI from April to October for each year [4]. In this study, pixels 

with a mean growing season NDVI < 0.05 were masked as non-vegetated areas. 

Meteorological datasets from 570 meteorological stations, which comprised the monthly mean 

temperatures and accumulated monthly precipitation from 2001–2012, were collected from the China 

Meteorological Data Sharing Service System (http://cdc.cma.gov.cn). In addition, vegetation types were 

obtained from a digitized 1:1,000,000 scale map of vegetation in China [31]. The vegetation was grouped 

into 12 types: needle-leaf forest (NF), mixed needle-leaf and broadleaf forest, broadleaf forest (BF), 

scrub, desert, steppe, grass-forb community (GFC), meadow, swamp, alpine vegetation, cultivated 

vegetation, and others. To assess the variability in the trends within different vegetation types, we 

selected six vegetation types: NF, BF, scrub, steppe, GFC, and meadow, each of which contained more 

than 20 meteorological stations. It should be noted that most of the selected station together with the 

surrounding 3 × 3 km2 area completely belonged to a unique vegetation type. For those stations with 

more than one vegetation types in 3 by 3 km2 window, we have corrected the boundary of the window 

according to vegetation type boundary before extracted NDVI value in order to obtain clear NDVI value 

for a unique vegetation type. 

2.2. Methods 

2.2.1. Analysis of Trends in Vegetation Dynamics 

Linear regression can be used to simulate the trends in vegetation dynamics for each pixel. The slope 

of the linear regression was employed as an index to fit the trend in the vegetation dynamics for every 

pixel using the least squares method for a given study period, which can comprehensively reflect the 

spatiotemporal variation characteristics of vegetation coverage [32,33]. The slope is calculated as follows: 
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(1) 

where Slope is the trend in the vegetation dynamics, n is equal to 12, i is the order of year from 1 to 12 

in the study period, and NDVIi is the mean NDVI in the ith year. The NDVI exhibits an increasing trend 

when Slope > 0 and a decreasing trend when Slope < 0. 
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2.2.2. Analysis of the Intensity of the Vegetation Dynamics 

An anomaly is defined as a standardized departure from the average growing season NDVI [34,35], 

which has been used widely as a proxy for assessing the intensity of vegetation dynamics: 

      NDVISD/NDVIMeanNDVIi i 
 (2) 

where NDVIi is the mean growing season NDVI for year i, and Mean(NDVI) and SD(NDVI) are the 

average and standard deviation, respectively, of the growing season NDVI from 2001 to 2012. Anomalies 

were divided into three levels: (1) |σ(i)|<1, referred to as weak intensity, both positive (IW+) and negative 

(IW–); (2) |σ(i)|>1, referred to as moderate intensity, both positive (IM+) and negative (IM–); and (3) |σ(i)|>2, 

referred to as large intensity, both positive (IL+) and negative (IL–). 

2.2.3. Partial Correlation Analysis 

Climatic drivers affect vegetation growth simultaneously, so the vegetation dynamics are coupled 

with the effects of climate factors. Thus, ordinary correlation analysis may introduce bias during the 

analysis of the relationship between vegetation dynamics and climate factors. An advantage of partial 

correlation analysis is that when two variables are associated simultaneously with a third variable, the 

impact of the third is excluded, and only the correlation between the other two variables is estimated 

during correlation analysis [36]. This is an effective method for overcoming the shortcomings of ordinary 

correlation analysis. The formula for partial correlation analysis is as follows: 
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where rxy·z is the partial correlation coefficient between variables x and y after fixing variable z; and  

rxy, rxz, and ryz are the correlation coefficients between variables x and y, x and z, and y and z, respectively. 

The correlation coefficient is calculated as follows: 
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(4) 

where rxy is the correlation coefficient for x and y, whose value ranges from –1 to 1. 

It should be noted that, in the current study, we employed site-by-site partial correlation analysis to 

explore the responses of the vegetation dynamics to climate factors, as follows: (1) based on the 

meteorological sites, we extracted annual and monthly NDVI values from 3 × 3 km2 areas; and (2) using 

these NDVI values, we calculated the partial correlation coefficients between the NDVI and the annual 

and monthly mean temperature and precipitation. 

3. Results and Discussion 

3.1. Trend and Intensity of Vegetation Dynamics on a National Scale 

During the 12-year investigation period (2001–2012), the average NDVI for China increased with a 

linear trend of 1.4%/10 years (p < 0.01). Figure 1 shows that the average annual NDVI curve can be 
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divided into two principal stages, as follows. (1) The mean NDVI increased significantly during  

2001–2002 at a rate of 4.96%, which might reflect the large-scale implementation of the GGP program 

introduced in 2002; (2) The mean NDVI during 2002–2012 exhibited a significant increase with a linear 

trend of 0.7%/10 years (p < 0.01). Moreover, the mean NDVI ranged from 0.4029 to 0.4170, with a 

change rate of 2.94%. 

 

Figure 1. Inter-annual variation in the NDVI throughout China during 2001–2012. The 

values on the curve represent the change rate between two adjacent years. 

Figure 2 shows the inter-annual variations in the percentage of land area with differences in the 

intensity of the vegetation dynamics from 2001 to 2012. The area with vegetation greenness increased 

from 21% in 2001 to 69% in 2012, i.e., an increase of 2.2%/year (p < 0.05), which suggests that there 

was an overall increasing trend in vegetation greenness throughout the entire period. The vegetation 

greenness IM+ and IL+ increased simultaneously, and the rates of increase for IM+ and IW+ were 

1.2%/year (p < 0.05) and 0.3%/year (p < 0.05), respectively. In addition, the area with vegetation 

decreased from 2001 to 2012 at the same rate of –2.2%/year (p < 0.05). This significant decline in 

vegetation greenness can be attributed mainly to a decrease in the area with IM– rather than the area 

with IW–, which supports earlier findings [36]. However, the land fraction of vegetation with  

IM– decreased at a rate of –1.1%/year (p < 0.1) during the entire study period. 

3.2. Spatial Pattern of Vegetation Dynamics 

Linear regression analysis was used to detect trends in the NDVI changes. The results showed that 

the spatial changes in NDVI clearly differed between 2001 and 2012, where the areas with increasing 

and decreasing trends accounted for 70.14% and 29.86%, respectively. Significance tests of the changes 

in the NDVI were also conducted, which showed that the NDVI in 30.5%, 30.8%, and 21.4% of the 

entire study area increased significantly at the 0.01, 0.05, and 0.1 levels, respectively. By contrast, the 

NDVI in 4.7%, 6.8%, and 5.8% of the entire study area decreased significantly at the 0.01, 0.05, and 0.1 

levels, respectively. Provincial statistics showed that most regions of China had an increasing trend. 

Regions with vegetation browning were distributed mainly in Shanghai, Zhejiang, Jiangxi, and Fujian, 

whereas most of the greening regions were located in Shanxi, Shaanxi, and Ningxia (Table 1). 
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Figure 2. Percentage of land area with different NDVI intensities throughout China. 

Table 1. Vegetation dynamics in different provinces during 2001–2012. 

Province 
Trend 

%/10 Years 
Increase (%) Decrease (%) Province 

Trend 

%/10 Years 
Increase (%) Decrease (%) 

Heilongjiang 0.90 57.09 (14.7) 42.91 (5.02) Guangxi 0.21 52.56 (12.49) 47.44 (8.92) 

Xinjiang 0.46 72.06 (23.73) 27.94 (5.09) Guangdong 0.10 51.88 (14.18) 48.12 (12.41) 

Shanxi 6.44 92.64 (79.69) 7.36 (1.64) Hainan 2.21 70.05 (31.65) 29.95 (5.65) 

Ningxia 4.40 90.06 (52.56) 9.94 (2.06) Jilin 2.28 76.35 (25.06) 23.65 (2.55) 

Xizang 0.34 61.93 (14.22) 38.07 (5.39) Liaoning 3.85 87.26 (46.91) 12.74 (2.11) 

Shandong 3.63 81.06 (49.68) 18.94 (5.85) Tianjin 1.75 66.38 (33.16) 33.62 (12.48) 

Henan 3.92 84.58 (46.05) 15.42 (3.85) Qinghai 1.93 86.41 (48.41) 13.59 (1.82) 

Jiangsu 0.25 55.28 (22.96) 44.72 (17.80) Gansu 2.77 88.11 (49.66) 11.89 (1.04) 

Anhui 2.92 77.18 (38.84) 22.82 (5.36) Shaanxi 5.42 88.02 (76.87) 11.98 (1.68) 

Hubei 1.93 76.75 (28.84) 23.25 (3.15) Neimenggu 1.56 76.32 (23.77) 23.68 (1.72) 

Zhejiang −1.33 40.08 (9.12) 59.92 (24.41) Chongqing 2.02 78.84 (36.02) 21.16 (2.73) 

Jiangxi −0.18 49.79 (14.94) 50.21 (12.68) Hebei 3.18 78.99 (41.91) 21.01 (6.07) 

Hunan 0.20 55.07 (15.17) 44.93 (9.73) Shanghai -2.18 35.22 (13.71) 64.78 (36.48) 

Yunnan 1.00 61.16 (17.83) 38.84 (6.50) Beijing 2.54 77.00 (33.97) 23.00 (8.80) 

Guizhou 1.90 70.73 (23.65) 29.27 (3.45) Sichuan 0.93 64.53 (17.71) 35.47 (5.32) 

Fujian −1.51 32.76 (7.83) 67.24 (27.16)     

The bold values in brackets denote significant (p < 0.05) changes in vegetation. 

In north China, the NDVI mainly exhibited an increasing spatial trend, whereas there was a dominant 

decreasing trend in south China. The areas with highly significant increases (p < 0.01) were distributed 

mainly in the north of Shaanxi, Shanxi, and southern Qinghai provinces. The areas with decreasing trends 

were located in the southeast and northeast regions of China, specific areas of the Tibetan Plateau, and the 

north of Xinjiang (Figure 3). Further analysis showed that the average trends in the NDVI were 0.8%/10 

years, 1.4%/10 years, and 1.8%/10 years (p < 0.01) during spring (April and May), summer (June to 

August), and autumn (September and October), respectively (Supplementary Figure S1). Moreover, the 

significantly increasing trend in the NDVI was due mainly to the increasing trend in the NDVI during the 

spring over the arid and semi-arid areas of northwest China, as well as to the increasing trend in the NDVI 

during the summer and autumn in the north and northeast of China. In addition, it should be noted that 

there was a significant decreasing trend during autumn in most areas of the Tibetan Plateau. 
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Figure 3. Spatial patterns of trend (a) and its significance (b) of the vegetation dynamics in 

China during 2001–2012. 

3.3. Vegetation Dynamics for Different Vegetation Types 

At the biome level, forest ecosystems generally have a higher NDVI than other ecosystems. For forest 

ecosystems, NF had a higher NDVI than BF in our study. It should be noted that GFC had the same high 

NDVI as NF, which may be attributed to the warm and wet climate in south China. Scrub had the fourth 

largest NDVI, followed by meadow. Steppe, which is distributed mainly in Inner Mongolia, Tibet, and 

the north of Xinjiang, had the lowest NDVI in the growing season, which may be mainly due to the cold 

and dry climate (Figure 4). 

 

Figure 4. Spatial averaged NDVI for different vegetation types. 

Figure 5 shows that all of the selected vegetation types had slight increasing trends during the study 

period with a linear trend of 0.3%–2%/10 years. NF, BF, and GFC had the three highest NDVI values 

(from 0.6493 to 0.6932), where GFC had the highest linear trend of 2%/10 years (p < 0.05). Steppe had 

the lowest NDVI value (from 0.1932 to 0.2320) and it had an increasing trend of 1.4%/10 years. 
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Figure 5. Inter-annual variation in the NDVI for different vegetation types: (a) NF;  

(b) BF; (c) scrub; (d) steppe; (e) GFC; and (f) meadow. 

Moreover, the intensity of the improvements in vegetation greenness for scrub, steppe, GFC, and 

meadow were better than those for NF and BF (Figure 6). In particular, the area with vegetation 

greenness increased from 39% to 52% at a rate of 0.34%/year for NF, from 37% to 61% at a rate of 

0.77%/year for BF, from 25% to 63% at a rate of 1.67%/year for scrub (p < 0.05), from 21% to 76% at 

a rate of 2.41%/year for steppe (p < 0.05), from 24% to 64% at a rate of 2.2%/year for GFC (p < 0.05), 

and from 23% to 68% at a rate of 2.3%/year for meadow (p < 0.01). This suggests that there was an 

overall increasing trend in the selected vegetation types throughout the entire study period. This increase 

in vegetation greenness is attributed mainly to increases in the area of vegetation greenness IM+ and IL+ 

for most vegetation types, but especially NF and BF. The highest rate of increase occurred with IM+ for 

all six vegetation types: 0.25%/year for NE, 0.61%/year for BF, 0.99%/year for scrub (p < 0.05), 

1.24%/year for steppe (p < 0.05), 1.23%/year for GFC (p < 0.05), and 1.22%/year for meadow (p < 0.01). 

By contrast, the area with vegetation browning decreased from 2001 to 2012 at a rate corresponding to the 

increased rate of vegetation greening. The highest rate of decrease also occurred with IM– for all six 

vegetation types: –0.22%/year for NF, –0.37%/year for BF, –0.79%/year for scrub, –1.18%/year for 

steppe, –0.97%/year for GFC (p < 0.10), and –1.15%/year for meadow (p < 0.05). 

3.4. Correlation between Vegetation Dynamics and Climate Factors 

Global climate change has changed the regional patterns of temperature and precipitation, thereby 

influencing vegetation growth [12]. In order to understand the driving forces that underlie vegetation 

dynamics, we analyzed the correlations between NDVI, temperature, and precipitation. The results 

showed that the cumulative precipitation in the growing season had a dominant effect on the vegetation 

dynamics compared with temperature for all six vegetation types, which agreed well with recent  
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studies [37]. In addition, nonlinear responses of vegetation to climate factors were also detected in the 

relationships between NDVI, temperature, and precipitation (Figure 7). At the biome scale, clear 

differences were detected in the responses of vegetation growth to climate variability. For instance, 

64.42% and 65.85% of the vegetation dynamics could be explained by precipitation in BF and scrub, 

respectively, which were higher than those for the other four biomes. In terms of temperature, the 

strongest correlation was found with NF with an R2 of 0.4626, whereas the other vegetation types all 

had weak correlations with temperature (Table 2). 

  

  

  

Figure 6. Intensity of the vegetation dynamics for different vegetation types: (a) NF;  

(b) BF; (c) scrub; (d) steppe; (e) GFC; and (f) meadow. 
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Figure 7. Correlations between NDVI, temperature (a), and precipitation (b) for six 

vegetation types. The solid black curve indicates the fitted curve for all available stations 

without consideration of vegetation types. 

Table 2. Correlations between NDVI, temperature, and precipitation for different vegetation types. 

Vegetation 

Types 

NDVI-Temperature NDVI-Precipitation 

Fitting Model R2 Fitting Model R2 

NF quadratic polynomial 0.4626 quadratic polynomial 0.4598 

BF quadratic polynomial 0.3745 logarithm 0.6442 

Scrub quadratic polynomial 0.3368 quadratic polynomial 0.6585 

Steppe quadratic polynomial 0.1143 power function 0.2627 

GFC quadratic polynomial 0.3797 power function 0.4388 

Meadow quadratic polynomial 0.1715 power function 0.3507 

In addition to the correlation analysis described above, we further performed a partial correlation 

analysis between NDVI, temperature, and precipitation. The statistical analysis showed that the average 

partial correlation coefficients (PCCs) at the 569 meteorological stations between NDVI and temperature, 

and between NDVI and precipitation, during the study period were 0.08 and 0.18, respectively. Overall, 

the areas with positive PCCs between NDVI and temperature were distributed mainly in the northeast 

of China, the north of Xinjiang, the east of China, and most areas of Qinghai and Sichuan provinces. 

Areas with negative PCCs were located mainly in arid and semi-arid regions, such as Inner Mongolia, 

Tibet, and Shaanxi, Shanxi, and Xinjiang provinces. Areas with positive PCCs between NDVI and 

precipitation were concentrated mainly in Inner Mongolia, Gansu, Shanxi, Xinjiang, and the northeast 

of China because these are mainly arid and semi-arid regions where the soil moisture is a critical factor 

that affects vegetation growth (Supplementary Figure S2). 

On a monthly scale, positive PCCs between NDVI and temperature were obtained mainly during the 

winter and spring, and negative PCCs were found mainly in summer and autumn. This may be related 

to the relatively low temperature during the winter and spring because temperature is the dominant 

limiting factor for vegetation growth, whereas the temperature is more favorable for vegetation growth 

during the summer and autumn, when other climate factors such as precipitation and solar radiation are 

the main limiting factors. Furthermore, the maximum PCC during the entire year was extracted for every 

meteorological station (Supplementary Figure S3), where the values for 198 and 170 stations, which 
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accounted for 34.8% and 29.9% of the total, were found to be dominant in the spring and winter, 

respectively, thereby demonstrating that the spring and winter temperatures have the main effects on 

growing season vegetation. By contrast, there was a positive PCC between NDVI and precipitation 

during March to December, where the highest values occurred between March and September, which is 

consistent with the growing season (Supplementary Figure S3). We found that 179 and 159 stations, 

which accounted for 31.5% and 27.9% of the total, were dominant during the spring and summer, 

respectively, thereby demonstrating that precipitation during the growing season has an important effect 

on vegetation growth. Thus, it can be concluded that the temperature and precipitation during the spring 

are the principal factors that influence vegetation growth in China. 

For different vegetation types, the PCCs between the growing season NDVI and monthly accumulative 

precipitation were higher than those between the growing season NDVI and monthly mean temperature, 

especially during the growing season, which was consistent with the conclusions based on the annual scale 

analysis in Figure 7. However, different vegetation types also had various relationships among vegetation 

and climatic factors. Overall, the correlation between NDVI and climate factor in NF and scrub was lower 

than that for the other vegetation types. For NF, the correlation between NDVI and precipitation exhibited 

an increasing trend (Figure 8a). The steppe type had a high positive correlation between NDVI and 

precipitation in spring and summer, and a negative correlation between NDVI and temperature in summer 

and autumn (Figure 8d). The PCCs for the meadow type between NDVI and temperature and between 

NDVI and precipitation were mostly positive during the growing season, but the PCC between NDVI and 

temperature was higher than that between NDVI and precipitation (Figure 8f). 

3.5. Role of Ecological Restoration in Vegetation Dynamics 

In addition to the influence of climate change on vegetation, ecological restoration programs have 

also been major driving forces in China, especially since 2000. The Chinese Government has made great 

efforts towards protection and ecological construction, and several ecological restoration projects have 

been implemented, including the Three-North Shelter Forest Program (TNSFP), the Natural Forest 

Protection Program (NFPP), and the Grain for Green Program (GGP), to combat water loss and soil 

erosion, thereby facilitating ecosystem recovery from a degraded situations [28,29,38]. In this section, 

we focused on the role of ecological restoration in vegetation dynamics during recent decades. 

The TNSFP is the largest ecological afforestation program in the world. It has made great achievements 

since its initiation in 1978 and will continue for 75 years until 2050 [39]. Many research and assessment 

efforts linked to the TNSFP have focused on vegetation dynamics, and previous studies has reported that 

vegetation have greatly improved in the TNSFP region, while it varied dramatically outside the TNSFP 

region during 1981–1998 [40], indicating a positive effect of the TNSFP on vegetation growth. Meanwhile, 

regional study results also showed a substantial forest increase in Yulin district from 1974 to 2010 [41]. 

According to the latest national forest inventory, China’s forest area increased by about 3.1 × 105 km2 from 

the early 1980s (1977–1981) until the early 2000s (2004–2008) [42]. A long-term investigation of 

vegetation dynamics in the TNSFP region based on the AVHRR NDVI3g dataset showed that the overall 

state of vegetation in the study region has improved over the past three decades [43]. It should be noted 

that although extensive studies have documented the positive influence of the TNSFP, decadal evolution 
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characteristics regarding the effect of the TNSFP on vegetation coverage are still unclear and need 

further investigation. 

  

  

  

Figure 8. Partial correlation coefficients for the six vegetation types between NDVI and 

climate factors: (a) NF; (b) BF; (c) scrub; (d) steppe; (e) GFC; and (f) meadow. 

Besides the TNSFP, another large-scale ecological restoration program, NFPP, was launched by the 

Chinese Government in 1998. The purpose of the NFPP is to reduce timber harvestings, conserve natural 

forests, and increase afforestation via mountain closure, aerial seeding, and artificial planting [39]. In 

recent years, there have been increasing concerns regarding the effectiveness of the NFPP. For example, 

a recent study on vegetation dynamics in China during 2000–2010 assessed the effectiveness of the 

NFPP and concluded that the NFPP is a more effective ecological restoration program than TNSFP and 

the Nature Reserves [29], highlighting the important role of the NFPP in ecological protection and 

restoration. Meanwhile, they also noted out that the effectiveness of the NFPP varies geographically, 

and thus attention must be paid to spatial heterogeneity during implementation of large-scale ecological 

1 2 3 4 5 6 7 8 9 10 11 12-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3 (a) NF

P
C

C

Month

 Temperature

 Precipitation

1 2 3 4 5 6 7 8 9 10 11 12-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3 (b) BF

P
C

C

Month

 Temperature

 Precipitation

1 2 3 4 5 6 7 8 9 10 11 12-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3 (c) Scrub

P
C

C

Month

 Temperature

 Precipitation

1 2 3 4 5 6 7 8 9 10 11 12-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3 (d) Steppe

P
C

C

Month

 Temperature

 Precipitation

1 2 3 4 5 6 7 8 9 10 11 12-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3 (e) GFC

P
C

C

Month

 Temperature

 Precipitation

1 2 3 4 5 6 7 8 9 10 11 12-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3 (f) Meadow

P
C

C

Month

 Temperature

 Precipitation



Remote Sens. 2015, 7 15530 

 

 

restoration efforts [29]. Unfortunately, the GGP, launched in 1999, was not included in the above analysis. 

It should be noted that the GGP has contributed considerably to vegetation greening in north China. 

Therefore, the effect of the GGP on vegetation dynamics was primarily investigated in the current study. 

In general, the NDVI is higher in forest areas than on cropland or bare land, and thus the increased 

forest area may have contributed to the satellite-observed greening of vegetation throughout China in 

recent decades [44]. Moreover, our statistical analyses detected a strong correlation between the 

cumulative afforestation areas measured by the GGP and NDVI during the study period (Supplementary 

Figure S4), thereby suggesting that GGP plays a key role in vegetation greening. This was also supported 

by regional statistics that showed that vegetation changes tended to be significantly correlated with 

cumulative afforestation areas in the pilot regions for ecological restoration (Figure 9). It is worth noting 

that although significant increases in NDVI were detected in many regions, such as Yulin and Yan’an, 

because of widespread ecological restoration in these regions, a fluctuation was observed during 2003–

2005 after a sharp increase between 2001 and 2002. This phenomenon was discussed in a previous study, 

and it was primarily attributed to the widespread die-off of trees, such as sea buckthorn, because of a 

water supply deficit [45]. These findings emphasize the importance of selecting suitable trees for the 

local environment when designing programs. In addition, there is a time-lag effect of afforestation on 

vegetation greening. 

It should be noted that large-scale afforestation has improved the regional ecological environment, 

but it has also considerably affected biogeographical processes between the land ecosystem and 

atmospheric system via energy, water, or element cycles. The feedback between land cover change and 

regional climate has attracted much attention in recent studies on regional climate variability caused by 

afforestation [46], and conclusions vary at regional to global scales. Understanding the interactions 

between the land and atmosphere can facilitate sustainable development of the ecological environment. 

  

Figure 9. Correlations between NDVI and cumulative afforestation in Yulin (a) and Yan’an (b). 

3.6. Uncertainty 

It should be noted that several uncertainties remain in our study. First, reliable datasets are 

fundamental to understanding variations in vegetation growth due to climate change and ecological 

restoration. However, satellite datasets are often subject to retrieval and sensor uncertainties, which are 

often unquantified [47]. Multisensor NDVI datasets have been used widely in local to global scale 

modeling and analysis [48], but the outcomes of these studies suggest that there is considerable bias in 
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multisensor NDVI records [48,49]. In our study, we employed MODIS NDVI to investigate the 

vegetation dynamics throughout China. We captured more spatial details of the vegetation dynamics and 

concluded that the overall trend has improved in China, which is consistent with a previous study [29]. 

Although the more recent NDVI dataset from Terra MODIS is considered an improvement over GIMMS 

NDVI [27], multi-dataset analysis allows more robust conclusions to be drawn. Second, the response of 

a certain vegetation type to climate factors may vary from region to region across China, but we 

considered them as a whole when analyzing the correlation between different vegetation types and 

climate factors. Thus, more details may be revealed by performing this experiment in different regions. 

Third, we analyzed the driving forces of vegetation dynamics by climate change and ecological 

restoration, but the specific contributions of each remain unclear. Additional experiments are still 

needed. Nevertheless, although the aforementioned drawbacks exist in our study, our findings are still 

valuable for understanding changes in growing season vegetation as well as different vegetation types. 

4. Conclusions 

In this study, we combined satellite-derived NDVI with climate factors to explore the spatiotemporal 

patterns in vegetation change during the growing season, as well as their driving forces in China from 2001 

to 2012. Our results showed that the growing season NDVI increased continuously during 2001–2012. In 

north China, the NDVI mainly exhibited an increasing spatial trend, whereas a decreasing trend was 

dominant in south China. In addition, the vegetation dynamics were mainly of a moderate intensity in 

the increasing and decreasing areas. The significantly increasing trend in the NDVI in the arid and semi-

arid areas of northwest China was attributed mainly to the increasing trend in the NDVI during the 

spring, but there was an increasing trend in the NDVI during the summer and autumn in the north and 

northeast of China. There were considerable differences in the trends for different vegetation types, 

where GFC had the highest linear trend of 2%/10 years (p < 0.05), followed by meadow, and NF had 

the lowest increasing trend. Our results also suggested that the cumulative precipitation in the growing 

season had a dominant effect on the vegetation dynamics compared with temperature for all six 

vegetation types. The response of different vegetation types to climate variability also differed 

considerably. In terms of anthropological activity, our statistical analyses demonstrated that there was a 

strong correlation between the cumulative afforestation area and NDVI during the study period, 

especially in the pilot regions for ecological restoration, thereby suggesting that ecological restoration 

programs have been important for ecological recovery throughout China in recent decade. 
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