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Abstract: We applied the Small Baseline Subset multi-temporal InSAR technique (SBAS) to two
SAR datasets acquired from 2003 up to 2013 by Envisat (ESA, European Space Agency) and
COSMO-SkyMed (ASI, Italian Space Agency) satellites to investigate spatial and temporal patterns
of land subsidence in the Sibari Plain (Southern Italy). Subsidence processes (up to ~20 mm/yr) were
investigated comparing geological, hydrogeological, and land use information with interferometric
results. We suppose a correlation between subsidence and thickness of the Plio-Quaternary
succession suggesting an active role of the isostatic compensation. Furthermore, the active back
thrusting in the Corigliano Gulf could trigger a flexural subsidence mechanism even if fault activity
and earthquakes do not seem play a role in the present subsidence. In this context, the compaction
of Holocene deposits contributes to ground deformation. Despite the rapid urbanization of the area
in the last 50 years, we do not consider the intensive groundwater pumping and related water table
drop as the main triggering cause of subsidence phenomena, in disagreement with some previous
publications. Our interpretation for the deformation fields related to natural and anthropogenic
factors would be a comprehensive and exhaustive justification to the complexity of subsidence
processes in the Sibari Plain.
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1. Introduction

Many coastal and delta plains worldwide are affected by land subsidence phenomena [1,2],
which often involve inhabited areas causing conspicuous economic costs.

Examples come from different geodynamic, geological, climatic and social contexts. In Italy,
subsidence due to a combination of natural causes and anthropogenic activities is observed in the
Venice coastland and the Po delta plain [3–6], while in the United States in correspondence of the
coastal areas of Southern Louisiana and Mississippi [7–11]. Other examples are observed in the
Yellow River and Yangtze China Deltas [12,13], along the Taiwan coastland [14–16], in the Indonesian
Semerang city [17], in Thessaloniki coastal plain and municipality region (Northern Greece) [18,19].

Over the last decades, the land subsidence monitoring has been significantly improved
thanks to the earth observation techniques based on Interferometric Synthetic Aperture Radar
(InSAR). Furthermore, the recent advances in radar satellite capabilities and techniques based
on the interferometric analysis of large datasets [20–29] have allowed even better spatial and
temporal resolutions.
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We applied multitemporal differential SAR Interferometry technique and specifically the Small
Baselines Subset (SBAS) approach [20] to investigate the ground deformations of the Sibari Plain
(SP), located in the northeastern sector of the Calabria Region (Southern Italy) covering an area of
~500 km2. This Plain involves an important economic weight due to the agricultural production and
a cultural appeal related to the presence of the ancient Sybaris, a powerful Greek colony in Magna
Grecia founded in 720 BC. The area is also susceptible to flooding risk, reduced by means of a drainage
channels network.

The used SAR datasets cover the temporal interval spanning from May 2003 and September
2013 for both ascending and descending orbits acquired by Envisat and COSMO-SkyMed satellites
(for details see Table 1). Envisat is a European Space Agency (ESA) satellite operating in the
C-Band (5.6 cm of wavelength) launched in the 2002 and operating up to 2012, with a revisiting
period of 35 days, covering an area of about 100 ˆ 100 km. The COSMO-SkyMed mission
consists of a constellation from the Agenzia Spaziale Italiana (ASI) in the X-Band frequency (3.2 cm
of wavelength). The first satellite of the constellation has been launched in June 2007 and the
constellation (four satellites) has been fully operative by the end of 2010. The used acquisitions
(Himage mode) are characterized by a swath of about 40 ˆ 40 km2 with a revisiting time period
of 16 days.

Table 1. Used image datasets. Ground resolution values are obtained after a multi-looked operation.

Satellite Orbit Type Track/Beam No. of Used
Images

No. of
Pairs Temporal Span Ground

Resolution (m)
Incidence

Angle

Envisat Ascending 86 38 137 4 May 2003 to
19 September 2010 90 23

Envisat Descending 222 33 115 27 August 2003 to
25 August 2010 90 23

COSMO-SkyMed Ascending B12 12 25 5 December 2012 to
19 July 2013 25 39

COSMO-SkyMed Descending B03 33 60 29 October 2009 to
2 October 2010 25 29.3

Moreover, the availability of ascending and descending datasets allowed us to discriminate the
vertical and east-west displacement components.

Finally, the retrieved InSAR results were validated by means of GPS measurements then
analyzed and interpreted considering the available geological and hydrogeological information as
well as new data collected during our field surveys.

2. Geological Setting

The SP is located along the boundary between Calabrian Arc and Southern Apennines (Figure 1),
with the Pollino massif to the north and Sila massif to the south. The Calabrian Arc represents
a fault-bounded continental fragment within the western Mediterranean orogeny. The tectonic
evolution is related to the subduction and rollback of Ionian oceanic lithosphere and the slow
convergence between the Eurasian and African-Adriatic continental plates [30–32]. The Southern
Apennines are a NW-SE oriented segment of the Apennines thrust belt. It is characterized by a duplex
structure, which consists of two thrusts belts overlapping the Apulian platform [33–36].

In the SP, the chain is prevalently composed by Apenninic terranes overlapped by thin Calabrian
Arc units [37]. The first ones, outcropping along the northwestern side of the SP, are made by
Mesozoic-Tertiary carbonatic succession and “flyschiod” deposits overlapped by Plio-Pleistocene
siliciclastic succession [38–40]. Instead, the Calabrian Arc terranes, cropping out along the southern
margin, consist of igneous and metamorphic rocks [41] (Figure 1).

In the central sector of the SP, the basement is overlapped by a thick Miocene-Holocene
succession; the mio-pliocenic deposits represent the infilling of the Sibari-Corigliano Basin, which
evolution is strictly connected with the Sangineto Line activity [42,43], and they are deformed by
fault activity with formation of morphological/structural highs and lows [44]. In [45], the authors
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suggest the existence of WNW-ESE trending shallow-crustal folds, developed within a recent and
still active transpressional field.
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Figure 1. Simplified lithological map of the study area with projection of the faults of ITaly HAzard
from CApable faults database [46] and of the Sybaris fault zone (f.z.) [47].

The boundaries between the SP and Pollino and Sila massifs are marked by dislocations
produced along plio-holocenic high angle faults. The latter is represented in the NW sector by the
NW-SE normal fault of the Sangineto Line [48,49], while in correspondence of the Sila Massif it
consists of the WNW-ESE Rossano-Corigliano fault (Figure 1). The recent activity of these faults
is still debated [49–53].

The existence of NE-SW trending normal fault in the area of the Crati Delta is suggested by [48];
recent coseismic evidences related to a NE-SW structural lineament, maybe active during the period
between the II and the VII-IX century A.D., are observed in Parco del Cavallo and Casa Bianca
archaeological sites [47].

Five to eleven different order of marine terraces are recognized along the outer limit of the plain
and uplift rates greater than 3.5 mm/yr are estimated [50,54,55].

Holocene deposits are the result of the post Last Glacial Maximum (LGM) transgression and the
following (started about 6 ka B.P.) normal regression related to the Crati Delta progradation [56,57].
The Holocene evolution occurred in a tectonic-controlled setting, which drives the thickness and the
facies association lateral variability of the deposits [57]. The post LGM succession consists of marine
clayey-silty deposits, overlapping a late Pleistocene coarse-grained unit, passing upward to costal,
deltaic and continental ones [57–59].

In the Northern sector, the main geomorphological elements are the alluvial fans of Raganello
River, Satanasso Fiumara and Saraceno Fiumara.
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Historical Subsidence

Subsidence is a well-known phenomenon in the Sybaris archaeological area (Figure 2), testified
by the presence of three overlapping ancient towns, the Greek Sybaris (720-510 BC), the Hellenistic
Thurii (444-203 BC) and the Roman Copiae (193 BC), presently buried between 7 and 3.5 m [60].

In [61], the author calculates subsidence ratesě0.57 mm/yr (2330–860 ka B.P.) andě4.31 mm/yr
(860 ka B.P.—present) for Casa Bianca, ě0.35 mm/yr (2660–1600 ka B.P.) and ě2.05 mm/yr (1600 ka
B.P.—present) for Parco del Cavallo, ě0.4 mm/yr for Stombi.

The subsidence in the archaeological area starts in the late Pleistocene up to the Holocene and
is due by a combination of causes as neotectonic activity, glacio-eustatic variations and sediments
compaction [62–64]. In the archaeological area the subsidence variability is correlated to the lateral
variation of facies [65] and the most of geotechnical subsidence can be ascribed to a very compressible
clay layer, laterally discontinuous, between 35 and 40 m of depth [62,65]. Since the 1950s, ~20 cm
of subsidence have been recorded and ascribed to groundwater exploitation and related primary
consolidation [65,66]. The subsidence in the Casa Bianca and Parco del Cavallo sites is confirmed
by [67], which instead calculates a mean uplift rate of ~0.5 mm/yr in the last 11.2 ka for the
Stombi site and hypothesizes that subsidence started 4ka B.P. and is ascribed to the deposition of
fine compressible sediments, so excluding the tectonic contribution. The author of [68] highlights
a temporal variability for the mean subsidence rates showing a peak of ~5–6 mm/yr in the Early
Holocene whilst stability or small uplift in historical age (~3–1.3 ka B.P.) for the Casa Bianca and
Parco del Cavallo sites, no subsidence in the Stombi site and uplift (~1.5 mm/yr) 6 km toward SE
from archaeological area; this differential subsidence is mainly controlled by local tectonic structures.
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Figure 2. The archaeological sites of the ancient Sybaris (see inset in Figure 1 for its location).

3. InSAR Adopted Tecnique

The classical differential SAR Interferometry (InSAR) is a technique that allows us to estimate
the ground surface movements occurred between two different passes of the satellite over the same
area using Synthetic Aperture Radar (SAR) data. The phase difference at each pixel is calculated after
proper image co-registration resulting in a new image, called interferogram, an interference pattern
made up of fringes [69]. Each fringe represents a ground movement along the sensor line of sight
(LOS) equal to λ/2 (where λ is the adopted radar wavelength).
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There are many physical phenomena contributing to phase measurements: phase
variations within a pixel, the contribution of orbital variations, topography, atmosphere, and
displacement. These contributions are estimated and then removed so to obtain only the effective
ground displacement.

Our goal is to investigate the temporal evolution of the detected deformations. To this aim
several different approaches have been proposed in the last decade to generate time series of ground
displacement, capable of measuring the ground velocities rates with accuracies of ~1 mm/yr [70].
In this work, we applied the Small Baseline Subset InSAR technique (SBAS; [20]). The used SAR
images were coupled based on constraints of small temporal and spatial baselines. The SBAS
algorithm combines these acquisitions, also included in different interferometric subsets, using
a minimum norm criteria combination of the velocity deformation, based on the Singular Value
Decomposition (SVD) method. During the SBAS processing the estimation and removal of temporally
decorrelated atmospheric artefacts are performed using double-pass filtering in the temporal and
spatial domains, as explained in [20]. Moreover, we used the SRTM DEM (90-m resolution) for the
subtraction of topography phase (http://www2.jpl. nasa.gov/srtm). Once the displacement time
series is retrieved, the mean ground velocity in the time period covered by the data was calculated.

In detail, we applied the SBAS technique to four image datasets, two acquired from the European
Space Agency (ESA) Envisat sensor and two from the Italian Space Agency (ASI) COSMO-SkyMed
satellites. The first group contains 32 Envisat images acquired on the descending orbit (track 222,
frame 2803), in the period 2004–2010 imposing 700 days as maximum temporal baseline and
350 meters for the maximum perpendicular one and considering 100 pairs. Instead, the ascending
dataset (track 86, frame 789) is formed by 38 ASAR images acquired in the period 2003–2010 setting
900 days for the maximum temporal baseline and 350 meters for the maximum spatial one resulting
in 135 interferograms. The second group (COSMO-SkyMed data) was composed of 28 images from
the ascending orbit considering 180 days for the maximum temporal baseline and 700 meters as
maximum spatial baseline resulting in 137 interferograms, spanning the interval 2011–2013 and
12 images from the descending orbit, acquired in the interval 2011–2012 setting 100 days for the
temporal and 1000 meters for the spatial maximum baselines respectively forming 47 interferograms.
We used the Sarscape software (Sarmap, CH) applying a looking factors equal to 20 and 4 for the
azimuth and range direction, respectively for the ascending and descending Envisat processing
obtaining a ground resolution of 80 meters and 11, 12 for the COSMO-SkyMed case with a final
ground posting of 25 meters; later downgraded to 100 meters for the post-processing analysis. The
initial performed multi-looking operation reduced the image radar noise (speckle) and increased the
signal to noise ratio.

During the processing the precise orbital files (Envisat case) were used to estimate and remove
orbital errors and Ground Control Points (GCPs) were selected, especially along the frame borders
(in slant range geometry) and possibly over stable areas, to remove residual ramps. A stable point
(under the geological point of view) was chosen as reference point (red star) for the retrieved mean
ground velocity maps (Figure 3).

Initially, we validated our results comparing the ascending and descending velocity map after
shifting the former with respect to the reference point of the latter preventing the subsidence areas.
We also validated the Envisat results comparing with the available GPS in the whole SAR frames
(Figure 3). Firstly, we projected the GPS velocities onto the ascending and descending SAR LOS
respectively then we averaged the InSAR velocities in correspondence of the GPS benchmarks
considering a buffer area of 200 meters. The comparison between GPS and InSAR velocities is shown
in Figure 3a,b for the ascending and descending tracks. Except for very few GPS benchmarks, the
velocities differences are within 1.5 mm/yr, which is the associated error to the multi-temporal SAR
outputs. Unfortunately, it has not been possible to perform the same validation method for the CSK
results because not enough CGPS are available. However, considering the common similar patterns
and trends for both Envisat and CSK ascending and descending retrieved maps, we convinced the
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good quality of the obtained CSK results. Note that for the CSK processing we focused our study on
the Sibari Plain.

To this aim, we calculated the East (E) and Vertical (V) component solving the following system
of equation:

E “ ppu2d{detq ˆ pAsc´ pn2aq ˆ Nqqq ´ ppu2a{detq ˆ pDsc´ pn2dˆ Nqqq (1)

V “ pp´e2a{detq ˆ pAsc´ pn2aq ˆ Nqqq ` ppe2a{detq ˆ pDsc´ pn2dˆ Nqqq (2)

where det “ ppe2dˆ u2dq ´ pu2aˆ e2dq

where u2d, e2d, n2d, u2a, e2a and n2a are the descending and ascending cosine directors respectively,
and Asc and Dsc are the ascending and descending mean velocity maps.
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Figure 3. (a) Ascending and (b) descending line of sight (LOS) ground velocity maps. Red star
represents the stable point (stable means that the mean velocity is 0 mm/yr) used as reference point.
In the maps are also plotted the GPS benchmarks used during the validation of the Envisat results.
The diagrams show the comparison between the LOS Synthetic Aperture Radar (SAR) velocities and
GPS. The correlation coefficient is respectively 0.51 and 0.65 for the ascending and descending cases,
while the mean squared error is 1.1 mm and 1.2 mm.

Concerning the third condition, we imposed the North equal to the interpolated CGPS one. The
final Vertical and East component (Figure 4) result quite sparse, this mainly depends on the difficulty
to obtain a large coverage for the ascending and descending velocity maps due to the land cover
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and agricultural use of the investigated area leading to a fast coherence loss. Moreover, about the
East component some overestimated values are present in the North Eastern part probably due to
unwrapping errors due to the presence of the mountains.

We performed the previous post-processing steps for the full SAR frames and only at a later
stage; we focused our analysis and interpretations referring to the East and Vertical component about
the Sibari Plain area.
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Figure 4. Mean deformation velocity components computed from (a,b) Envisat and
(b,c) COSMO-SkyMed dataset. (a,c) Vertical velocity component; positive values indicate uplift and
negative values subsidence. (b,d) East component; positive values indicate eastward displacement
and negative values indicate westward displacement. The area covered by COSMO-SkyMed data is
represented by inset (1) in the panel a.

16010



Remote Sens. 2015, 7, 16004–16023

InSAR Results

In the following, we report the deformation pattern of SP at a large scale retrieved by InSAR
processing and discuss the results in detail using available tectonic, stratigraphic, geomorphological
and hydrogeological information. We investigate natural and/or human causes of the vertical and
horizontal surface displacements.

The distribution of Vertical component shows a coastal area (from Villapiana Lido to Marina
di Schiavonea) characterized by subsidence with velocity up to ~´20 mm/yr (Envisat and
COSMO-SkyMed sensors); on the contrary, boundary areas of SP show ~0 mm/yr on the vertical
velocity component (Figure 4).

The horizontal Eat-West component shows low displacement values that are inside the errors
range and are not significant.

In the archaeological area, the subsidence rate is ~2 mm/yr (Envisat) and ~3 mm/yr
(COSMO-SkyMed) for the Parco del Cavallo site and ~2 mm/yr (Envisat) for the Casa Bianca site.
These values are comparable to the velocities calculated by previous authors [61,67].

4. Discussion

We analyzed different causes contributing to subsidence phenomena. To this aim, we compared
the InSAR results in time and space with the geodynamic and structural settings, the seismicity
distribution, the spatial variation of the Plio-Quaternary and Holocene deposits successions thickness
and compaction, depth variation of the water table and urban sprawl.

4.1. Geodynamic Setting

The SP is located at the junction of the Calabrian Arc and the Southern Apennine. Moving
few kilometers towards SE from the SP, the geodynamic setting is complicated by the presence of
the junction (Apulia Escarpment) (Figure 1) between the thin Ionian basin crust (southward) and
the thick crust of the Apulian platform (northward). In the Ionian Sea, in front of the SP an active
oblique-contractional belt (the Amendolara Ridge) is recognized. The latter is due to the combined
effects of subduction retreat of the Ionian slab underneath Calabria and stalling of Adriatic slab retreat
underneath the Apennines [71]. The belt consists of the alignment of three anticlines (Amendolara,
Rossano and Cariati) bounded by a main SW-verging back-thrust (Figure 5a).

A flexural subsidence, probably triggered by a back-thrusting [72], is considered one of the
mechanisms to explain the ground subsidence detected by InSAR results along coastal sector of the
SP (Figure 5b).

4.2. Structural Setting and Earthquakes

Possible relationship between SP subsidence and recent tectonic activity relies on the analysis of
structural lineaments reported into the Italy Hazard from Capable faults database [46]. According to
the main faults bounding the SP, we subdivided it in three sectors (Figure 5a) and with foreseen
different deformation patterns for the three sectors from InSAR ascending and descending time
series (Figure 6). The analysis of the averaged Envisat displacement time series show very similar
trends for the three investigated areas, although with different absolute values. On the other hand,
COSMO-SkyMed time series show a different deformation pattern for each sector.
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Figure 5. (a) The Amendolara Ridge located in the Ionian Sea in front of the Sibari Plain. The
bathymetric map (modified from [73]) shows the presence of three morphological highs (Amendolara,
Rossano and Cariati highs). The main structural elements (thrusts and anticlines) are extracted
from [71]. In the map is showed the hypocenters location of the earthquakes occurred between 2003
and 2010 (ISIDe [74]) with the relative magnitude and hypocentral depth. Onshore capable faults
from [46] and focal mechanisms from [45]. Yellow dashed lines are the boundaries of three selected
sectors (1. Corigliano; 2. Crati Delta; 3. Sibari-Villapiana) for Envisat and COSMO-SkyMed time
series analysis (Figure 6). (b) Sketch (based on the interpretation of the seismic profile F75-89 of [45])
representing the trigger of the flexural subsidence due to the overlap of the Amendolara Ridge back
thrusts on Calabrid and Southern Apennines units.

In detail, the ascending time series reveal a general trend characterized by an increase of the
negative displacements but with greater absolute values in the southern sector. The descending time
series highlight an increase of negative displacements in the Corigliano sector with values between
10 mm and ´5 mm in the Villapiana-Sibari sector, and an expected increasing positive trend in the
Crati Delta sector. This trend can be related to the presence of a horst bounded by Crati and Timparelle
faults [48].

A comparison between ground deformation pattern and seismicity was performed taking into
account the earthquakes occurrences and magnitude [74] during the time covered by SAR data
(Figure 5a). No significant earthquakes struck the study area excepting for one shallow offshore
M 4.5 event on 27 June 2006 [74] with none ground deformation effects (Figure 6).

Therefore, we can exclude the presence of seismically-induced displacement and we hypothesize
that the structural settings could indirectly influence the ground subsidence phenomena.
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Figure 6. Envisat and COSMO-SkyMed both ascending and descending time series (error = ˘1 mm)
for the three selected sectors delimited by ITHACA [46] faults (location in Figure 5). Black dotted line
represents the earthquakes (M = 4.5) occurred on 27 June 2006.

4.3. Role of the Plio-Quaternary Succession Load

Possible relationships between subsidence and spatial variation of the Plio-Quaternary
succession thickness in the Crati Delta area (Figure 7a) as reconstructed from multichannel seismic
profiles and well data [75] was investigated. The thickness observed in the seismic profile has been
converted from Two Way Travel time to meter using an average velocity of 2000 m/s for the Pliocene
and Pleistocene deposits based on the sonic logs, available for Thurio and Ogliastrello wells, analyzed
by [44].

The Envisat Vertical component superimposed to the Plio-Quaternary succession isopach map
(Figure 7b) shows a prevalent distribution of vertical displacement rates toward the coastline, where
the deposits are thicker.

We compared ground velocity profiles, for the Envisat Vertical component, with the
corresponding profiles of the Plio-Quaternary deposits thickness. The comparison (Figure 7c)
shows a good correlation between the general subsidence trend and the Plio-Quaternary succession
thickness. We observed higher subsidence values in the E and NE sectors of Crati Delta, where the
Plio-Quaternary succession is thicker. In the SW sector, the reduced thickness corresponds with
lower subsidence values. Lower values are also detected in the S-SE sector (Corigliano harbor
area), where the presence of shallow igneous-metamorphic bedrock drives the Plio-Quaternary
succession thickness.

Furthermore, we considered the ascending and descending ground velocity values in
correspondence of the seismic profiles and wells locations, correlating the ground velocity with the
thickness of Plio-Quaternary deposits (Figure 8). Both ascending and descending velocities increase
with the growth of the succession thickness.

Based on the above analysis results, we found a direct correlation between subsidence spatial
trends and distribution of the thickness of Plio-Quaternary deposits, which amplify the subsidence
phenomenon as well documented during the evolution of the sedimentary basins [76–81].
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4.4. Holocene Deposits

A possible correlation between subsidence and Holocene sediments compaction was
investigated focusing on the lithological features, thickness and stratigraphic architecture of the
Holocene deposits.

We analyzed 200 boreholes (Demanio Idrico Prov. Cosenza, [82,83]) and literature data [57,61,65]
to define lithology, vertical-lateral variations and thickness of the post-LGM deposits. An isopach
map of the Holocene succession superimposed with the Envisat Vertical component was generated
(Figure 9a). The greater vertical displacement values are located in the area of the Holocene deposits
accumulation but the larger subsidence rates do not correspond to the major depozones.

To well investigate the second topic, we compared each Vertical displacement value of with
the corresponding thickness of the Holocene deposits (Figure 9b).We also performed a comparison
between thickness and vertical component in correspondence of each borehole, if SAR data are
available (Figure 9c).

The analysis reveals that the Holocene sediments compaction does not play a dominant role in
the subsidence of the SP area, on the contrary as described for other delta plains [5,7].

Subsidence rates of 3–5 mm/yr induced by to the Holocene deposits consolidation due to
phreatic and confined water tables drop are calculated by [66] and are not sufficient to justify the
vertical displacements inferred by SAR data.

Although the minor role of Holocene deposits compaction, the boreholes analysis highlights a
clear influence of the lateral variations of the sediments lithology for the subsidence phenomena. In
detail, we took into account the ground deformation patterns from ascending and descending Envisat
data, and the boreholes into the Saraceno and Satanasso alluvial fans areas (Figure 10a), considering
the thickness of fine-grained (silt and clay) deposits (Figure 10b,c). Greater ground velocities are
usually retrieved close to the boreholes recording a major thickness of fine-grained sediments while
the lower values are in correspondence of the coarse-grained (gravel and sand) deposits which made
up the alluvial fan bodies. Thus, the lateral variation of the fine-grained materials thickness creates
differential land subsidence.Remote Sens. 2015, 7 13 
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Figure 7. (a) Location of the used wells and seismic profiles. (b) Isopach map of the Plio-Quaternary
succession with the distribution of the Envisat Vertical component. (c) Comparison between the
thickness of the Plio-Quaternary succession and ground velocity, based on the Envisat Vertical
component, along one of the analyzed profiles (its trace in Figure 7a). The discontinuous lines for
the InSAR profile are due to missing data in the ascending and/or descending original velocity maps
due to coherence lack.
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Figure 9. (a) Envisat Vertical component overlapped to the Holocene deposits isopach map.
(b) Scatter plot Envisat Vertical component vs. Holocene deposits thickness inferred from isopach
map. (c) Comparison between Holocene sediments thickness and Envisat Vertical component in
correspondence of each borehole.
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Figure 10. (a) Analyzed boreholes between Saraceno and Satanasso alluvial fans (see Figure 1 for their
location). (b) Correlation among Envisat ascending and (c) descending velocity and the thickness of
fine-grained deposits (silt and clay).

4.5. Land Use and Historical Evolution

SP represents a geomorphological system with a rapid evolution in historical and recent times
controlled by geological processes and anthropogenic activities. The present morphological setting
results from the works of a 1960s–1990s land reclamation project aimed to convert a marshy area to an
agricultural zone. Several widespread agricultural areas (e.g., orchards, arable soils) with localized
urban settlements [84] are present in SP.

In order to define land use variations, we analyzed the 1954 and 1998 aerial photos; for a detailed
analysis of urban area growth effects. We considered three areas (Marina di Sibari; Laghi di Sibari
and C.da Ricota; see Figure 4), characterized by the same subsoil stratigraphy, and compared the
Envisat ascending and descending displacement time series concerning urban and agricultural zones
respectively (Figure 11).

In Laghi di Sibari and C.da Ricota sites, we observe a progressive temporal differentiation in the
subsidence values that increase faster in urban areas reaching a maximum difference compared with
agricultural ones of ~35 mm in August 2010 (for the descending track) and of ~25 mm in September
2010 (for the ascending one). The subsidence values are very similar for the two considered sectors in
the Marina di Sibari zone, where the descending time series show a little increase (~5 mm) of ground
deformation values into the urban area.

We observed a diffuse subsidence irrespective of the land use, with some increments of
deformation velocity in correspondence of Laghi di Sibari and C.da Ricota settlements.

Therefore, we suggest that the urban-induced loading represents an incremental factor
of subsidence.
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Figure 11. Envisat ascending and descending time series (error = ˘1 mm) comparison between urban
and agricultural areas for three selected sectors (see Figure 4 for their location).

4.6. Water Table Variations

SP is characterized by two well-defined aquifers: the shallower one (from soil surface to
´20/´30 m above sea level) separated by clayey and silty-clayey layer and the deeper one
(from ´50/´60 m a.s.l.) [85]. Both the aquifers are characterized by intense water exploitation.
The piezometric level variations of the shallow one shows 5 meters of drop between 1930s and
2002 [86,87].

We investigated to find possible correlation between groundwater exploitation and ground
deformation comparing the spatial distribution of phreatic water table variations in the time interval
1930s–2002 [86] and the Vertical velocity distribution from Envisat and COSMO-SkyMed data in the
following 2003–2013 time interval (Figure 12). In the most recent period, we have observed that
subsidence is present in areas showing rise, drop and stability of the water table.

Considering the effect of water table variation between 2002 (data from [86]) and 2013
(this work), we analyzed the distribution of the Vertical velocity (from Envisat and COSMO-SkyMed
data, Figure 12). The subsidence location does not show a strict correlation with the water table drop.
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Figure 12. Envisat and COSMO-SkyMed Vertical component superimposed respectively on the maps
of the water table variations 1930s–2002 (redrawn from [86]) and 2002–2013.

We selected 6 wells (Figure 1), with piezometric records in 2002 and 2013, and we analyzed the
Envisat time series for both ascending and descending orbit (Figure 13) considering a circular buffer
of 500 m radius. For the two wells No. 2 and 3, showing a groundwater drawdown, we observe a
displacement trend similar to the No. 1, 4, 5 and 6 ones characterized by water table rise. Moreover,
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the time series show smaller displacements rates in correspondence of the well No. 2. There is no
evidence of correlation between water table variation and displacement time series, probably because
the progressive groundwater level stabilization from 2002 to 2013. In contrast, the groundwater level
drop between 1930s and 2002 [86,87] could have been caused by a more recent consolidation process
of soft materials as observed by [88] in the Alto Guadalentin Basin.
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Figure 13. Envisat (both ascending and descending orbit) time series of the wells No. 2 and No. 4
(see Figure 1 for their location) recording respectively a water table drop and rise. In table are reported
the water table variation between 2002 and 2013 for each well.

For the confined aquifer, the lack of historical data did not allow us to analyze the effects of its
variations on subsidence.

Therefore, we conclude that water table variations are only an incremental factor of subsidence in
some areas as the Sybaris archaeological area (see Figure 2 to localize Sybaris site), where a well-points
system (80 l/s) works every time to maintain the excavations above the water table. Moreover,
in these areas, a water depletion in compressible soils could trigger an amplified and long-term
subsidence as shown in other Quaternary basins [88,89].

5. Conclusions

InSAR results from data acquired by Envisat and COSMO-SkyMed satellites, and spanning from
2003 to 2013, are able to detect ground displacements in the SP area (Calabria, Southern Italy). The
ground deformation field is dominated by a widespread-subsidence with rate up to ~20 mm/yr.

We can summarize that the location of the SP in an area marked by geodynamic and geological
complexity precluding the attribution of the ground deformation triggering factor to a unique
subsidence mechanism.

We suppose that the active oblique-contractional belt in the Ionian Sea in front of SP [45] can
trigger a flexural subsidence mechanism due to the back thrusting load above the underlying Calabrid
and Southern Apennines Units. Furthermore, the observed correlation between Plio-Quaternary
sediments thickness and ground deformation suggests that the isostatic compensation plays a
major role in the SP present subsidence. We highlight the absence of correlation between the
occurring earthquakes close to the main capable faults, so excluding the contribution of faulting
activity and earthquakes for the present SP subsidence phenomena, according to [67] (based on
geomorphological data); we hypothesize that the structural settings could indirectly influence the
ground subsidence phenomena.

Another minor triggering mechanism of subsidence is represented by the compaction of the
compressible fine-grained sediments related to the Holocene post-LGM transgression and following
Crati Delta progradation. We show the effect of the lateral transition between fine- and coarse-grained
Holocene sediments on the ground deformation spatial pattern.

Anthropogenic activities can be considered as an incremental factor of the SP subsidence. In fact,
we observe higher subsidence velocities in the more anthropized areas, where soil compaction is
amplified by urban-induced loading. In some area showing excessive water withdrawals (e.g.,
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Sybaris archaeological site), water table variations may increase the deformation velocity because
can be the origin of delayed consolidation process in soft materials.

The presence of subsidence phenomenon in the whole SP and the complicated identification of
a main triggering mechanism, due to the peculiar geological setting, is also in agreement with [90].

The results of this study show as the deformation field of complex basins may be due to
coexisting regional and local natural processes and anthropic activities. To better assess and monitor
the hazard(s) related to the detected ground deformation phenomena, a multiparametric monitoring
of SP area would be recommended.
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