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Abstract: Light use efficiency (LUE) models are widely used to estimate gross primary productivity
(GPP), a dominant component of the terrestrial carbon cycle. Their outputs are very sensitive
to LUE. Proper determination of this parameter is a prerequisite for LUE models to simulate
GPP at regional and global scales. This study was devoted to investigating the ability of the
photochemical reflectance index (PRI) to track LUE variations for a sub-tropical planted coniferous
forest in southern China using tower-based PRI and GPP measurements over the period from
day 101 to 275 in 2013. Both half-hourly PRI and LUE exhibited detectable diurnal and seasonal
variations, and decreased with increases of vapor pressure deficit (VPD), air temperature (Ta), and
photosynthetically active radiation (PAR). Generally, PRI is able to capture diurnal and seasonal
changes in LUE. However, correlations of PRI with LUE varied dramatically throughout the growing
season. The correlation was the strongest (R2 = 0.6427, p < 0.001) in July and the poorest in May. Over
the entire growing season, PRI relates better to LUE under clear or partially cloudy skies (clearness
index, CI > 0.3) with moderate to high VPD (>20 hPa) and high temperatures (>31 ˝C). Overall, we
found that PRI is most sensitive to variations in LUE under stressed conditions, and the sensitivity
decreases as the growing conditions become favorable when atmosphere water vapor, temperature
and soil moisture are near the optimum conditions.
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1. Introduction

Gross primary productivity (GPP) is an important component of the terrestrial carbon cycle and
exhibits significant spatial and temporal variations. Reliable estimation of GPP is a prerequisite
for quantifying terrestrial carbon sinks and sources. Remote sensing data have the potential
for estimating the regional distributions of GPP, as they can provide the needed spatial and
temporal coverages. They have been widely used to calculate GPP in combination with light use
efficiency (LUE) models, which commonly express GPP as the product of the amount of absorbed
photosynthetically active radiation (APAR) and a LUE term (GPP = LUE ˆ APAR) [1–4]. APAR
can be computed as the product of photosynthetically active radiation (PAR) incident on the top of
vegetation and the fraction of PAR absorbed by the vegetation canopy (FPAR). The incident PAR
can normally be obtained from meteorological observation while FPAR can be retrieved from remote
sensing data [5–8].

LUE models take advantage of remotely sensed data and are easy to operate. However,
their outputs are very sensitive to LUE [9,10], which is significantly affected by numerous factors,
including vegetation species and types, nutrient supply, temperature, atmospheric water vapor
pressure deficit, soil water, and so on [9,11–16]. In most LUE models to date, the influences of these
factors on LUE are considered through the use of various scalars defined with empirical functions
and coefficients [11,17,18]. Such simplification for LUE estimation definitely induces considerable
uncertainties in calculated GPP [19–23]. Proper determination of this parameter is a prerequisite
and also a challenge for calculating GPP using remote sensing data and LUE models at regional and
global scales.

A number of studies found that LUE is well related to the photochemical reflectance index
(PRI = (R531 ´ R570)/(R531 + R570), and R531 and R570 are reflectance at wavelengths 531 and
570 nm) [3,24–37]. However, there are still some uncertainties regarding to the reliability of this
relationship as affected by many factors. Barton and North [38] indicated that PRI is strongly
influenced by sun-view geometry, and by varying soil background when the leaf area index (LAI)
of the canopy is below 3. At large view zenith angles (>30˝), PRI is also sensitive to leaf angle
distribution (LAD). Canopy LUE varies with radiation received by the canopy, while PRI also
shows a similar property due to its sensitivity to the fraction of shaded or sunlit leaves [26,39–41].
Additionally, the dependence of PRI on the shadow fraction is affected by the ratio of diffuse sky
radiation [42,43]. Therefore, the relationship between PRI and LUE is affected by various factors,
including the interference to the PRI signal by external factors not related to photosynthetic efficiency,
the structural characteristics of canopies, background signals, different reference bands (if the band is
not centered at 570 nm), and sun-view geometry [44].

In addition, changes in environmental conditions might induce some pigment activity or
photosynthetic physiology variations that confound the PRI signal [27,45–47], while they might cause
different variation patterns of LUE over a long time span. Soudani et al. [32] reported that correlations
between PRI and LUE differ seasonally based on eight years of continuous in situ observations in
deciduous and evergreen broadleaf forests. Nakaji et al. [30] also showed a limited sensitivity of PRI
to LUE across seasons in a tropical rainforest. This highlights that the hypothesis of coordinated
regulation between PRI and photosynthetic activity needs to be tested in different seasons and
ecosystems [27].

In this study, we investigated the relationships between PRI and LUE from continuous in situ
multi-angle spectral and concurrent flux measurements during a growing season in a sub-tropical
planted evergreen conifer forest in China. Planted forests in southern China occupy more than a half
of the national total area and stock volume of planted forests, which act as a dominant driver for
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the national carbon sink of forests in recent decades [48]. Specially, the objectives of this study are:
(1) investigating the variations of bioclimatic factors, PRI and LUE; (2) analyzing the seasonality of the
relationship between PRI and LUE under different circumstances; and (3) identifying factors affecting
the linkages of PRI with LUE.

2. Materials and Methods

2.1. Study Site

We observed the CO2 flux and canopy spectral reflectance of a planted evergreen coniferous
forest at Qianyanzhou Experimental Station (QYZ) in southeastern China. As a part of the Chinese
Ecosystem Research Network (CERN) and the China FLUX network, QYZ station is located in the
subtropical continental monsoon region (26˝44152”N, 115˝03147”E, elevation 102 m). According to
long-term records of an adjacent weather station (1985–2004), the mean annual air temperature and
precipitation were 17.9 ˝C and 1485.1 mm, respectively. The flux tower is built, in late August 2002,
on a gentle undulating terrain with slopes ranging from 2.8˝ to 13.5˝. The plantation, which was
planted in 1985, is dominated by Pinus elliottii, Pinus massoniana and Cunninghamia lanceolata [49,50].
The understory shrub includes mainly Loropetalum Chinense and Lyonia compta. The soil is red soil,
which is weathered from red sand rocks [51]. A field survey made in early August 2013 around
the flux tower indicates that the mean canopy height, mean diameter at breast height, and effective
green leaf area index (LAIe) of the top canopy were about 15.5 m, 18.8 cm and 3.3, respectively. LAIe
was the mean value of about 60 samples measured with Li-cor LAI2200 (LI-COR, Inc., Lincoln, NE,
USA) covering the spectral observation area, and showed little temporal variation during the study
period. Thus, LAIe was defined here as a constant for the mature evergreen forest [3], and the effect
of clumping index (Ω = 0.5) was considered on true LAI (True LAI = LAIe/Ω = 6.6).

2.2. Flux Data and LUE Calculation

The eddy covariance (EC) method has greatly advanced the understanding of stand-level carbon
fluxes and provides indirect measurements of LUE. EC data has been used in numerous studies for
calibrating and validating LUE models at leaf, stand and landscape scales [11,52–55].

Flux data measured by an open path eddy covariance system at 39.6 m and radiation measured at
41.6 m above the ground surface were used in this study [50]. Available meteorological measurements
were also made around the same flux tower, mainly including air temperature (Ta), vapor pressure
(VP), precipitation, soil moisture (SM) and temperature, etc. For long period analysis (i.e., month and
whole study period), days with total rainfall above 5 mm were excluded owing to inaccuracy of both
flux and spectral observations under rainy conditions.

GPP was calculated from measured net ecosystem productivity (NEP) with daytime ecosystem
respiration (Re) estimated with an empirical equation fitted using nighttime NEP and temperature
measurements, i.e.,

GPP “ NEP ` Re (1)

APAR was estimated using two methods. The first method calculates APAR with PAR ˆ FPAR.
FPAR was estimated according to true LAI [56] and the solar zenith angle (θ) as [57,58]:

FPAR “ p1´ ρ1pθqq´ p1´ ρ2pθqqˆ ep´GpθqˆΩˆLAI{cosθq (2)

where ρ1(θ) and ρ2(θ) are the PAR reflectivity above and below the canopy and assigned values of
0.05 and 0.06, respectively; G(θ) is the projection coefficient of leaves and is set as 0.5 for a spherical
(random) distribution of foliage inclination angles [21,57]; Ω is the clumping index determined by the
spatial distribution pattern of foliage and is set as 0.5 for this forest. The term ep´GpθqˆΩˆLAI{cosθq is
the gap fraction of the canopy at the zenith angle θ.
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Half-hourly LUE was calculated as:

LUE “ GPP{pPARˆFPARq (3)

Previous studies indicated that the fractions of diffuse and direct radiation absorbed by canopies
differ [59,60]. To capture this difference, another method for calculating LUE was performed as APAR
was calculated using the algorithm in a TL-LUE model developed by He et al. [21,61]. The specific
description of this method was presented in Appendix B.

Clearness index (CI) is the ratio of the global solar radiation on the surface of the earth (Rg) to
the extraterrestrial radiation at the top of the atmosphere (R0) [62]. R0 for any day and any moment
can be calculated using the solar zenith angle (θ) at a given place as:

R0 “ S0ˆp1 ` cosp360ˆDOY{365qq{cosθ (4)

where S0 is the solar constant (1367 W/m2); DOY represents day of the year. With observed
half-hourly total incident radiation (Rg), CI is calculated as Rg/R0.

2.3. Multi-Angle Spectral Observations

2.3.1. iAMSPEC II System

Multi-angle canopy spectral data were obtained from an improved tower-based observation
system stemmed from AMSPEC II, which was first developed by Hilker et al. [63]. The new system is
named iAMSPEC II, and was mounted at 31 m (about 16 m above the canopy) on the flux tower
in QYZ in January of 2013. The system (Appendix A) is mainly composed of a dual channel
spectrometer, a dual axis rotating device, a computer, and some accessories (e.g., uninterruptible
power supply (UPS), fans, temperature controller, wireless internet).

The spectrometer used is Unispec-DC (PP Systems, Amesbury, MA, USA) featuring 256 contiguous
bands for both upwelling and downwelling channels covering a nominal spectral range from
approximately 305 nm to 1135 nm with about 3 nm nominal bandwidth (10 nm full width, half
max). The upwelling channel measures incoming solar irradiance while the downwelling channel
simultaneously measures canopy-reflected radiance with fiber optics. This instrument allows
measurements to be conducted under different weather conditions [63]. The upward pointing fiber
optic equipped with a cosine receptor is used to acquire hemisphere sky irradiance for varying solar
altitudes. The downward-looking fiber optic, with an instantaneous field of view (IFOV) of 20˝, is
attached to an axis of the rotating device to measure canopy reflectance at various angles.

The rotating device is a pan-tilt unit, PTU-D46 (FLIR Systems, Goleta, CA, USA), possessing
two rotatable parts (pan axis is horizontal and tilt axis is vertical). The downward-looking probe is
mounted on the tilt axis with a 45˝ angular holder (Appendix A), which is different with AMSPEC
II [63]. This improvement allows the sensor head to be moved at a full range of zenith angle (θV),
while the inherent motion range of the tilt axis is only between´37˝ and 42˝ around the vertical axis.
Due to obstruction by the tower, view azimuth angles range actually from 45˝ to 325˝ (defined from
geodetic north).

Both Unispec-DC and PTU are connected to a computer (Thinkpad T430U) via the RS232
serial port. However, due to the long distance (about 50 m) from the tower to the control
house, the RS422 serial communication (using RJ45 cables) is used to connect Unispec-DC
and PTU with the computer (Appendix A). This system is controlled by a MATLAB GUI
program, which is able to automatically initialize PTU and Unispec-DC, acquire spectra from
the spectrometer, and save data every 15 min. Canopy spectra were sampled every 2~3 s
all day at a 10˝ angular step width (horizontally and vertically).
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2.3.2. Spectra Preprocessing

The irradiance and radiance can only be used after the calibration of both dark current (DC)
and the sensitivity of two channels to light. Unispec-DC lacks an internal shutter mechanism to
correct for DC automatically. However, it has a thermometer that could track the dependency of
DC on temperature. The measurements at midnight were used to fit the correlations between DC
and temperature. Daytime DC for each band was estimated using these fitted midnight correlations.
A cross-calibration approach by measuring the reflectance of a standardized reference target was
used to correct differences in light sensitivity of two channels [63]. Then, canopy reflectance (ρ) was
calculated as:

ρ “ ppρr ´ ρrDCqˆ pρ
1
i´ ρ1iDCqq{ppρi´ ρiDCqˆ pρ

1
r ´ ρ1rDCqq (5)

where ρi and ρr are the irradiance and radiance of the canopy measured using Unispec-DC,
respectively; ρiDC and ρrDC are the irradiance and radiance produced by DC, respectively; the single
quote mark means data measured from the reference target.

Data measured with view azimuth angles ranging from 45˝ to 325˝ view zenith angles less than
63˝ (true view zenith angles approximately less than 75˝ owing to IFOV), and the solar zenith angle
less than 75˝ was used. Due to failures of instruments, only data from day 101 to 275 in 2013 were
used in this study.

2.4. Statistical Data Analysis

In total, there are 3118 half-hourly samples of good quality data obtained under different
weather conditions. All variables were expressed with mean values, except for PAR and GPP which
were total values either in half-hourly or daily time units. The effects of main bioclimatic factors
(PAR, vapor pressure deficit (VPD), CI, Ta and SM) on PRI and LUE variations and their relationship
were assessed for the whole growing season and individual months using linear and logarithmic
functions (y = a ˆ x + b, y = a ˆ ln(x) + b; x and y denote bioclimatic factors and PRI or LUE,
respectively). Statistical analyses were performed using MATLAB and Microsoft Excel software.

3. Results

3.1. Variability of PRI with Multiple View Angles

Within 15 min of spectral observation, PRI dramatically varied with view angles (Figure 1). As
solar radiation was nearly constant during this period, this variation of PRI was mostly induced by
viewing different portions of the canopy at different angles. Figure 1a,b used spectral data obtained
from 10:45 a.m. to 11 a.m. on day 218 under clear sky conditions (n = 218), when the solar azimuth
angle was about 105˝ (here defined from geodetic north) and the solar zenith angle was about 28˝.
Figure 1a showed PRI varied with different view azimuth angles (VAA, here defined from geodetic
south to conveniently calculate the angle between sun and viewer) and view zenith angles (VZA).
The PRI values in the backward scattering direction were generally lower than those in the forward
scattering direction. Figure 1b illustrated PRI variations in relation to the angle between the sun and
viewer (θr) as the value of PRI was the lowest near the hotspot (θr « 0) and was high when the sun
and viewer were far apart. Figure 1c and d used spectral data obtained from 14:45 to 15:00 on day 218
(n = 175), when the solar azimuth angle was about 258˝ and the solar zenith angle was about 31˝. The
variation patterns of PRI with view angle and θr were quite similar to those shown in Figure 1a,b.
For half-hourly comparison with LUE, the top-canopy PRI was calculated as the mean value of the
multi-angle PRI, which could reduce the angular effects to some extent with hundreds of samples
evenly distributed at different angles.
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Figure 1. Variability of PRI with different view angles at different times. (a) and (b) used data obtained 
from 10:45 a.m. to 11 a.m. on day 218, while (c) and (d) used data obtained from 14:45 to 15:00; (a) and 
(c) showed variability of PRI with different view azimuth angles (VAA) and view zenith angles 
(VZA); (b) and (d) illustrated PRI variations in relation to the angle between sun and viewer (θr). 

3.2. Seasonal Patterns of Bioclimatic Factors, Productivity, PRI, and LUE 

Figure 2 illustrates the seasonal variations of the bioclimatic parameters of productivity, PRI, 
and LUE. A data gap from day 228 to 229 was caused by instrumental failure. Ta, VPD, PAR, CI, and 
GPP exhibited mostly similar seasonal patterns (Figure 2a,b), while PRI and LUE showed opposite 
trends (Figure 2c). According to the temporal pattern of precipitation, the seasonal dynamics can be 
characterized by two phases (Figure 2a): the rainy season from day 101 to 167 and the dry season 
from day 168 to 275. In the rainy season, SM (at 5 cm) was high. The dry season was characterized by 
less precipitation, low SM, and continuously high temperature. 

VPD, PAR, and CI varied synchronously across the season. In the dry season, VPD was high (up 
to 50 hPa sometimes) due to high temperatures. Meanwhile, SM decreased quickly due to high 
evapotranspiration consumption. During the period from day 218 to 225, daily maximum 
temperatures were continuously above 35 °C. Such a long-term heat wave was second only to that 
which occurred in 2003 during the years from 2003 to 2013 with flux measurements available. During 
the period from day 196 to 226, rainfall was low and temperature was high. We defined this period 
as a summer depression period (highlighted by a red rectangle in Figure 2). 

GPP exhibited an overall seasonal variation similar to air temperature (Figure 2a). However, 
GPP declined during the summer depression period. Previous studies also reported that high 
temperatures and low soil water content might cause GPP to decline in this forest [64,65]. 

The seasonal patterns of LUE and PRI appeared to be complicated. LUE generally varied 
inversely with PAR, and reached the lowest level during the summer depression period. PRI could 
track variations of LUE to some extent, especially in the dry season. Although PRI and LUE were 
correlated, the variability of PRI was greater than that of LUE. In the rainy season, the fraction of 
diffuse radiation was high, which might induce high LUE [23,42]. Overall, PRI inversely varied with 
PAR. However, the change of PRI with PAR was not obvious on rainy or overcast days. PRI was more 
obviously correlated with PAR and CI in the dry season than in the rainy season. Moreover, PRI, 
GPP, and LUE all apparently decreased during the depression period with continuously high 
temperature. 

Figure 1. Variability of PRI with different view angles at different times. (a) and (b) used data obtained
from 10:45 a.m. to 11 a.m. on day 218, while (c) and (d) used data obtained from 14:45 to 15:00;
(a) and (c) showed variability of PRI with different view azimuth angles (VAA) and view zenith angles
(VZA); (b) and (d) illustrated PRI variations in relation to the angle between sun and viewer (θr).

3.2. Seasonal Patterns of Bioclimatic Factors, Productivity, PRI, and LUE

Figure 2 illustrates the seasonal variations of the bioclimatic parameters of productivity, PRI,
and LUE. A data gap from day 228 to 229 was caused by instrumental failure. Ta, VPD, PAR, CI, and
GPP exhibited mostly similar seasonal patterns (Figure 2a,b), while PRI and LUE showed opposite
trends (Figure 2c). According to the temporal pattern of precipitation, the seasonal dynamics can be
characterized by two phases (Figure 2a): the rainy season from day 101 to 167 and the dry season
from day 168 to 275. In the rainy season, SM (at 5 cm) was high. The dry season was characterized by
less precipitation, low SM, and continuously high temperature.

VPD, PAR, and CI varied synchronously across the season. In the dry season, VPD was high
(up to 50 hPa sometimes) due to high temperatures. Meanwhile, SM decreased quickly due to
high evapotranspiration consumption. During the period from day 218 to 225, daily maximum
temperatures were continuously above 35 ˝C. Such a long-term heat wave was second only to that
which occurred in 2003 during the years from 2003 to 2013 with flux measurements available. During
the period from day 196 to 226, rainfall was low and temperature was high. We defined this period
as a summer depression period (highlighted by a red rectangle in Figure 2).

GPP exhibited an overall seasonal variation similar to air temperature (Figure 2a). However,
GPP declined during the summer depression period. Previous studies also reported that high
temperatures and low soil water content might cause GPP to decline in this forest [64,65].

The seasonal patterns of LUE and PRI appeared to be complicated. LUE generally varied
inversely with PAR, and reached the lowest level during the summer depression period. PRI could
track variations of LUE to some extent, especially in the dry season. Although PRI and LUE were
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correlated, the variability of PRI was greater than that of LUE. In the rainy season, the fraction of
diffuse radiation was high, which might induce high LUE [23,42]. Overall, PRI inversely varied with
PAR. However, the change of PRI with PAR was not obvious on rainy or overcast days. PRI was more
obviously correlated with PAR and CI in the dry season than in the rainy season. Moreover, PRI, GPP,
and LUE all apparently decreased during the depression period with continuously high temperature.
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Figure 2. Seasonal variations of (a) SM (at 5 cm), Ta, VPD; (b) GPP, CI, PAR; and (c) PRI, LUE 
measured every half hour from 7 a.m. to 17:30 when the solar zenith angles were less than 75°. The 
solid lines indicated 50 samples’ moving averages. The red rectangle indicated the depression period. 

As presented in Figure 3, PAR could explain 52% of LUE variance (Figure 3b), followed by VPD 
(Figure 3a) and Ta (Figure 3c). LUE decreased significantly with increases of PAR, Ta, and VPD (p < 0.05). 
PRI also decreased with increases of PAR, Ta, and VPD. Both PAR (Figure 3e) and VPD (Figure 3d) could 
explain more than 20% of PRI variance. The correlations between PRI and Ta are weak (Figure 3f). 

Figure 2. Seasonal variations of (a) SM (at 5 cm), Ta, VPD; (b) GPP, CI, PAR; and (c) PRI, LUE measured
every half hour from 7 a.m. to 17:30 when the solar zenith angles were less than 75˝. The solid lines
indicated 50 samples’ moving averages. The red rectangle indicated the depression period.

As presented in Figure 3, PAR could explain 52% of LUE variance (Figure 3b), followed by VPD
(Figure 3a) and Ta (Figure 3c). LUE decreased significantly with increases of PAR, Ta, and VPD
(p < 0.05). PRI also decreased with increases of PAR, Ta, and VPD. Both PAR (Figure 3e) and VPD
(Figure 3d) could explain more than 20% of PRI variance. The correlations between PRI and Ta are
weak (Figure 3f).
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Figure 3. Relationships of half-hourly bioclimatic parameters (i.e., VPD, PAR, and Ta) with  
LUE (a–c); and with PRI (d–f) observed from 9 a.m. to 16:30 each day across the season. 

3.3. Temporal Variation of the Relationship between PRI and LUE 

Figure 4 shows the correlation coefficients (R) of half-hourly PRI with LUE on individual days 
with more than five good-quality observations between 9 a.m. and 16:30 with high solar elevation 
angles. Generally, PRI is positively correlated with LUE. Among 163 days, PRI was significantly 
correlated with LUE on 58 days (p < 0.05). 

 

Figure 4. Correlation coefficients (R) of half-hourly PRI with LUE on individual days, with data 
acquired from 9 a.m. to 16:30. The length of error-bars represents the p-value of each linear regression. 
PR: positive correlation, NR: negative correlation. 

The correlations of PRI with LUE changed with weather conditions. PRI was significantly 
correlated with LUE on 40.6% of the days in the dry season. The corresponding ratio decreased to 
22.4% in the rainy season. On days when PRI was significantly correlated with LUE, PRI was affected 
by both CI and VPD before day 206. On the following days, VPD was a more important factor for 
regulating PRI than CI. During the period of consecutively high temperature in August, VPD was 
high and acted as the dominant controller of GPP. It increased continuously after sunrise, resulting 
in a corresponding decrease of GPP due to the closure of leaf stomata. As a consequence, LUE 
continuously decreased. Meanwhile, a continuous decrease of PRI was observed since the fraction of 
radiation used for carbon fixation continuously decreased during daytime. PRI was positively 
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Figure 3. Relationships of half-hourly bioclimatic parameters (i.e., VPD, PAR, and Ta) with LUE (a–c);
and with PRI (d–f) observed from 9 a.m. to 16:30 each day across the season.

3.3. Temporal Variation of the Relationship between PRI and LUE

Figure 4 shows the correlation coefficients (R) of half-hourly PRI with LUE on individual days
with more than five good-quality observations between 9 a.m. and 16:30 with high solar elevation
angles. Generally, PRI is positively correlated with LUE. Among 163 days, PRI was significantly
correlated with LUE on 58 days (p < 0.05).
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Figure 4. Correlation coefficients (R) of half-hourly PRI with LUE on individual days, with data
acquired from 9 a.m. to 16:30. The length of error-bars represents the p-value of each linear regression.
PR: positive correlation, NR: negative correlation.

The correlations of PRI with LUE changed with weather conditions. PRI was significantly
correlated with LUE on 40.6% of the days in the dry season. The corresponding ratio decreased to
22.4% in the rainy season. On days when PRI was significantly correlated with LUE, PRI was affected
by both CI and VPD before day 206. On the following days, VPD was a more important factor for
regulating PRI than CI. During the period of consecutively high temperature in August, VPD was
high and acted as the dominant controller of GPP. It increased continuously after sunrise, resulting
in a corresponding decrease of GPP due to the closure of leaf stomata. As a consequence, LUE
continuously decreased. Meanwhile, a continuous decrease of PRI was observed since the fraction
of radiation used for carbon fixation continuously decreased during daytime. PRI was positively
correlated with both LUE and GPP. Similar phenomena were also found on some other clear days
with high VPD (>20 hPa). Some unexpected significantly negative relationships between PRI and
LUE were observed on or shortly after some heavily raining days. At this site, fluxes were measured
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using an open path EC system. When the sensor is wet, the accuracy of the measured flux is low.
Water accumulated on leaves also impacts the measurements of the optical spectra. Uncertainties in
estimated GPP and measured spectra resulted in an unexpected relationship between PRI and LUE.

Figure 5a,b show the relationships between LUE and PRI at half-hourly and daily temporal
scales, respectively, throughout the study period. Significant logarithmic correlations were found
at both half-hourly and daily temporal scales, even though the coefficients of determination (R2)
were not very high. The difference in dominant regulators of PRI and LUE variations appeared to be
the reason for the low correlation coefficients between PRI and LUE throughout the entire growing
season (Figure 3). The difference in the correlations between these two temporal steps indicates that
the temporal scale can have some effects on the correlation of PRI with LUE.
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For individual months, logarithmic relationships between daily average PRI and LUE were
presented in Figure 6. The relationship varied dramatically throughout the growing season. The
worst regression between PRI and LUE was observed in May due to the abundance of rainy days.
PRI can act as a good indicator of LUE in July and August, in which severe drought and consecutive
high temperature occurred.
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3.4. Effects of Bioclimatic Factors on the Ability of PRI as a Proxy of LUE

Light, water and temperature are the most essential factors regulating photosynthesis. The
effects of these bioclimatic factors on PRI and LUE and on the ability of PRI to indicate LUE
were investigated.

In April, when Ta was low, both LUE and PRI were less sensitive to Ta, but were more sensitive
to PAR, leading to a moderate correlation between LUE and PRI (Figure 7). PRI was decoupled
with LUE in May, as LUE was significantly correlated to the three bioclimatic factors while the
PRI variation was irrelevant to any of them, due to the abundance of rainfall which might induce
uncertainties in spectral observations. The correlation between LUE and Ta was much stronger than
all other five correlations in June, while the correlation between PRI and LUE was not strong. In July,
all six correlations were at a high level which made the best correlation between PRI and LUE among
all six months. In this month, there were many sunny or slightly cloudy days (CI > 0.5). Since then,
in August and September, PRI was much more correlated to VPD while LUE was more correlated to
PAR, which apparently caused the decline of the correlation between PRI and LUE.
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Figure 7. Variations of linear coefficients of determination (R2) between PRI or LUE and the
three bioclimatic parameters (i.e., VPD, PAR, and Ta) observed from 9 a.m. to 16:30 each day at
monthly interval.

Figure 8 illustrated variations of diurnal correlation coefficients (R) of half-hourly PRI with LUE
binned according to different daily means of bioclimatic factors and GPP. With increases of VPD,
PAR and CI, the R increased obviously (Figure 8a–c). The R of half-hourly PRI with LUE changed
marginally with daily mean air temperatures when the daily mean air temperatures was below 30 ˝C
and then increased considerably with the further increase of daily mean air temperatures. The R of
half-hourly PRI with LUE slightly decreased with the increase of soil moisture (Figure 8d). Overall,
PRI performed better in tracking diurnal variations of LUE on clear and dry days than on overcast
and wet days. In addition, the ability of PRI to track LUE became weaker on days with low and high
daily GPP (Figure 7f).

Figure 9 showed the variations of diurnal correlation coefficients (R) between half-hourly PRI
and LUE in the two-dimensional space of two bioclimatic parameters. High values of R between PRI
and LUE were mostly under conditions when VPD was above 20 hPa. If VPD was above 30 hPa, PRI
was able to track LUE well regardless of the values of the other bioclimatic factors (Figure 9a–c). As
to same given values of Ta, SM, PAR and CI, the ability of PRI to act as a proxy of LUE increased with
VPD. The effects of CI and PAR on the relationship of PRI with LUE were not synchronous (Figure 9e).
When PAR was less than 4 MJ¨m´2¨d´1, R was low, but decreased with the increase of CI when PAR
varied from 4 to 8 MJ¨m´2¨d´1. Additionally, the values of R were generally high when PAR was
above 8 MJ¨m´2¨d´1. For different levels of SM (Figure 9f), high values of R were mostly found on
sunny or slightly cloudy days (CI > 0.5).
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Figure 9. (a–f) Diurnal correlation coefficients (R) between PRI and LUE as affected by two bioclimatic factors. 
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the ability of PRI to track LUE. Under the condition of Ta above 30 °C and PAR above 0.3 MJ∙m−2∙hh−1, 
PRI was significantly correlated with LUE. When CI was below 0.3, PRI and LUE were poorly 
correlated. This analysis further confirmed that PRI is able to act as an effective indicator of LUE 
under clear or partially cloudy skies (CI > 0.3) with moderate to high VPD (>20 hPa) and high 
temperatures (>31 °C). In total, 630 samples satisfy such criteria. PRI could explain 33.5% of the 
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Table 1. Linear coefficients of determination (R2) between half-hourly photochemical reflectance 
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V
PD

(h
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) 

<10 
0.0943 *** 0.0432 0.0189 0 0 
(175) (289) (222) (0) (0) 

10–20 
0 0.2352*** 0.0693*** 0.0908*** 0 
(0) (66) (439) (321) (0) 

20–30 
0 0 0.3203** 0.1800*** 0.6266* 
(0) (0) (23) (467) (9) 

30–40 
0 0 0 0.1239*** 0.3155*** 
(0) (0) (0) (73) (106) 

>40 
0 0 0 0 0.1966*** 
(0) (0) (0) (0) (33) 

R2 
CI

<0.15 0.15–0.30 0.30–0.50 0.50–0.70 >0.70 

V
PD

(h
Pa

) <10 
0.0095 0.0119 0.0008 0.0031n 0.1161 
(241) (242) (131) (62) (10) 

10–20 
0.0537 0.0133 0.0154 0.0009n 0.0058n 
(32) (162) (267) (268) (97) 

20–30 0 0.0977 0.1003*** 0.0744*** 0.0112n 

Figure 9. (a–f) Diurnal correlation coefficients (R) between PRI and LUE as affected by two
bioclimatic factors.

The ability of PRI to track LUE changed with different combinations of bioclimatic factors
(Table 1). There are 2223 paired samples of PRI and LUE in total between 9 a.m. and 16:30 throughout
the entire study period. When these samples were binned according to VPD in conjunction with
Ta, PRI was correlated with LUE at the significance levels of 0.05, 0.01 and 0.001 for 1712, 1703,
and 1680 samples. Classifying samples according to the configuration of VPD and Ta could greatly
improve the ability of PRI to track LUE. Under the condition of Ta above 30 ˝C and PAR above
0.3 MJ¨m´2¨hh´1, PRI was significantly correlated with LUE. When CI was below 0.3, PRI and LUE
were poorly correlated. This analysis further confirmed that PRI is able to act as an effective indicator
of LUE under clear or partially cloudy skies (CI > 0.3) with moderate to high VPD (>20 hPa) and
high temperatures (>31 ˝C). In total, 630 samples satisfy such criteria. PRI could explain 33.5% of the
variations of LUE when satisfied samples were lumped together, while PRI could only explain 5.3%
of the LUE variations when the remaining 1593 samples were lumped together.

Table 1. Linear coefficients of determination (R2) between half-hourly photochemical reflectance
index (PRI) and light use efficiency (LUE) binned according to two different bioclimatic factors
throughout the whole season. Numbers in parentheses are samples in individual groups binned
according to two bioclimatic factors.

R2 Ta (ºC)
<20 20–25 25–30 30–35 >35

VPD(hPa)

<10
0.0943 *** 0.0432 0.0189 0 0
(175) (289) (222) (0) (0)

10–20
0 0.2352*** 0.0693*** 0.0908*** 0
(0) (66) (439) (321) (0)

20–30
0 0 0.3203** 0.1800*** 0.6266*
(0) (0) (23) (467) (9)

30–40
0 0 0 0.1239*** 0.3155***
(0) (0) (0) (73) (106)

>40
0 0 0 0 0.1966***
(0) (0) (0) (0) (33)
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Table 1. Cont.

R2 CI
<0.15 0.15–0.30 0.30–0.50 0.50–0.70 >0.70

VPD(hPa)

<10
0.0095 0.0119 0.0008 0.0031n 0.1161
(241) (242) (131) (62) (10)

10–20
0.0537 0.0133 0.0154 0.0009n 0.0058n
(32) (162) (267) (268) (97)

20–30
0 0.0977 0.1003*** 0.0744*** 0.0112n
(0) (33) (92) (217) (157)

30–40
0 0 0.5707*** 0.1025*** 0.2105***
(0) (0) (14) (99) (66)

>40
0 0 0 0.0598 0.4611*
(0) (0) (0) (21) (12)

R2 PAR (MJ m´2 hh´1)
<0.15 0.15–0.30 0.30–0.45 0.45–0.60 >0.60

VPD(hPa)

<10
0.0123* 0.0011 0.0073 0.0000 0
(345) (272) (57) (12) (0)

10–20
0.0925** 0.0165* 0.0342** 0.0006 0.0797n
(84) (272) (266) (181) (23)

20–30
0.1201 0.0888* 0.1677*** 0.0511** 0.0348
(15) (58) (135) (184) (107)

30–40
0 0 0.2534*** 0.0824* 0.1741***
(0) (0) (45) (69) (65)

>40
0 0 0.0711 0.2337 0.4024*
(0) (0) (7) (16) (10)

R2 PAR (MJ m´2 hh´1)
<0.15 0.15–0.30 0.30–0.45 0.45–0.60 >0.60

Ta (ºC)

<20
0.0271 0.0006 0.1302 0.4787n 0
(137) (27) (8) (4) (0)

20–25
0.0074 0.0034 0.2280*** 0.0642 0
(135) (144) (47) (29) (0)

25–30
0.0570** 0.0109 0.0045 0.0399 0.0317n
(131) (288) (169) (90) (6)

30–35
0.0662 0.022 0.2367*** 0.0674*** 0.0959***
(40) (143) (252) (278) (147)

>35
0 0.5467 0.3722*** 0.3053*** 0.3409***
(0) (5) (30) (63) (50)

R2 CI
<0.15 0.15–0.30 0.30–0.50 0.50–0.70 >0.70

Ta (ºC)

<20
0.0223 0.0003 0.0229 0.0244 0
(108) (40) (19) (9) (0)

20–25
0.0004 0.0412* 0.0004 0.1000* 0.1702
(93) (118) (77) (47) (20)

25–30
0.0737* 0.0160 0.0006 0.0039 0.0435
(63) (185) (215) (177) (44)

30–35
0.0001 0.0179 0.1420*** 0.0810*** 0.0079
(12) (90) (182) (348) (228)

>35
0 0 0.5091** 0.3115*** 0.3809***
(0) (0) (13) (87) (48)
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Table 1. Cont.

R2 PAR (MJ m´2 hh´1)
<0.15 0.15–0.30 0.30–0.45 0.45–0.60 >0.60

CI

<0.15
0.0124 0 0 0 0
(276) (0) (0) (0) (0)

0.15–0.30
0.0402** 0.0061 0 0 0
(168) (266) (0) (0) (0)

0.30–0.50
0 0.0006n 0.0619*** 0 0
(0) (291) (214) (0) (0)

0.50–0.70
0 0.0133n 0.0770*** 0.1285*** 0.2985***
(0) (49) (248) (330) (39)

>0.70
0 0 0.005n 0.0657** 0.2805***
(0) (0) (45) (131) (166)

*: (p < 0.05); **: (p < 0.01); ***: (p < 0.001), n: negative correlation.

4. Discussion

4.1. Feasibility of PRI to Indicate LUE

During this study period (Figure 2), GPP roughly varied with temperature in the rainy season,
but was limited by the water condition in the dry season. Differently, PRI and LUE showed quite
complicated seasonal variations due to polytropic meteorological conditions. According to diurnal
(Figure 4), monthly (Figure 6), and six-month results (Figure 5), PRI showed the potential to be a
proxy of LUE in this sub-tropic evergreen coniferous forest, but the best correlations between PRI
and LUE are found only under certain meteorological conditions.

Significant positive correlations between PRI and LUE were found on some days (Figure 4),
months (Figure 6), as well as throughout the study period (Figure 5). These results are consistent
with previous studies at canopy scales and different temporal scales [3,26,32,44,66]. LUE is mostly
determined by environmental stress factors that reduce photosynthetic rates, such as photoinhibition
in short terms and water deficit in long terms. This reduction inversely increases the proportion
of absorbed energy dissipated as heat, which can be detected by the decrease of R531, forming the
basis of PRI [33,37,55,67]. Thus, PRI could track LUE at different temporal scales. Garbulsky et al. [44]
indicated different types of relationships between PRI and LUE. In this study, PRI was mostly linearly
correlated to LUE at the diurnal scale and logarithmically correlated to LUE for longer periods, which
was possibly due to the complicated canopy structure of conifer forest.

PRI was announced as a short-term variable index [32,34], which allowed it to track the variation
of LUE at short temporal scales. However, even though PRI could track LUE variations to some extent
(Figure 2c), some distinctive variations among bioclimatic factors, PRI and LUE were observed, which
indicated that PRI and LUE were driven by different factors (Figures 3 and 7–9) during such a long
period [30]. Additionally, the difference in meteorological conditions between the rainy and dry
seasons further magnified this gap.

4.2. Uncertainties in the Relationship between PRI and LUE

The relationships of PRI and LUE over long periods were significant, but were scattered
(Figures 5 and 6). Moreover, a negative correlation between PRI and LUE (Figure 4) highlighted
the complexity of the confounding factors regulating PRI and LUE, which had been discussed by
many works [24,26,38,39,41,47,68–72] and are still far from settled. Three factors might be the main
causes for the scattered relationship between PRI and LUE.

First, solar radiation affects the relationship between PRI and LUE over different temporal scales.
As shown in Table 1, at the same levels of CI, correlations between PRI and LUE generally became
stronger with increasing PAR. During the entire study period, PAR was the key factor controlling
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variations of both half-hourly PRI and LUE (Figure 3). When the study period was separated to six
months, radiation became a ’double-edged sword’, although the most important determinant of the
correlation between PRI and LUE was always the relationship of PRI with PAR (Figure 7). Under
rainy or severely overcast sky conditions, since canopy reflectance observations were contaminated
by rain or low illumination, abnormal PRI might be observed that induced inconsistent, even negative
correlations of PRI with LUE (Figure 4). In May, because of frequent alternations between sunny and
rainy conditions, the relationship between PRI and LUE was very scattered. Even if only data on
clear and slightly overcast days in this month were used, this relationship was still poor, which was
consistent with the findings reported by Soudani et al. [32]. In the dry season, both PRI and LUE
were more sensitive to VPD and Ta than to PAR, especially during the summer depression period.
However, as illustrated in Table 1, the strongest correlation between PRI and LUE was not found at
the highest level of VPD, indicating that the ability of PRI to track LUE is compromised under high
atmospheric water stress.

At the diurnal scale, the findings here were slightly different from the conclusion declared
by Gamon and Bond [27]. In this sub-tropic conifer forest, both radiation (i.e., PAR and CI) and
VPD (Figure 8a,b,d) are dominant factors regulating the correlation between PRI and LUE. Under
conditions of moderate to high PAR, CI, VPD, and Ta, the correlation coefficients between PRI and
LUE were high (Figures 8a–d and 9), indicating the ability of PRI to act as a proxy of LUE under
climatic stress. A paired factors analysis illustrated the complexity of correlation between PRI and
LUE under different weather conditions (Figure 9). The relationship between PRI and LUE differed
in different months and under different combinations of bioclimatic factors (Table 1), implying the
necessity to estimate LUE based on PRI using different empirical equations in different months and
under different weather conditions. It is still a challenge to derive a generalized relationship between
LUE and PRI.

Tower-based LUE was estimated according to GPP derived from NEP measurements and
empirically estimated APAR. The latter would definitely affect the relationship between PRI and
LUE. When APAR was calculated using the two-leaf LUE approach, which differentiates the
different interactions of direct and diffuse radiation within the canopy and the different responses of
photosynthesis rates of sunlit and shaded leaves to incoming PAR, the ability of PRI to approximate
LUE was improved (Appendix C). For thoroughly investigating the ability of PRI to indicate LUE,
accurate estimates or measurements of APAR were required.

The effect of sun-view geometry on PRI has been discussed in many ways [3,27,40,41,69,73],
and with no doubt that multi-angle measurements are the best way to tackle this issue (Figure 1).
The fraction of sunlit leaves of the whole canopy is the biggest at noon. However, the sensor is
possibly unable to observe all sunlit leaves at this moment, which might lead to a smaller diurnal
variation of observed PRI than the reality. Similarly, Gamon and Bond [27] also reported that the
relationship between PRI and PAR was influenced by the ratio of observed sunlit leaves to shaded
ones. At the beginning and the end of the growing season, the values of PRI were relatively low.
This phenomenon might be caused by more measurements of sunlit leaves with low PRI, which was
induced by larger solar zenith angles. Therefore, it is needed for an effective way to reduce the impact
of sun-view geometry and varied shadow and sunlit fractions on PRI. A semi-empirical kernel-driven
bidirectional reflectance distribution function (BRDF) model was first applied to standardize the
directional reflectance to one direction that significantly enhanced the correlation between canopy PRI
and LUE [3]. However, based on in situ observations and model simulations, Cheng [72] mentioned
that, as directional PRI responses associated with sunlit/shaded foliage, various sunlit/shaded
canopy ratios affected the utilization of canopy PRI over different stages of corn during a growing
season. Additionally, the best sunlit/shaded canopy ratio for retrieving “true” canopy PRI might
change with canopy types. Thus, a best direction with a proper sunlit/shaded foliage ratio, a
structure-based parameter, needs to be considered when using the BRDF model to interpret canopy
PRI. Furthermore, the contribution of the background to the reflectance of the forest canopy varyies
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with the changing view angle [31,74], and it is hard to eliminate the influence of the background
signal using the semi-empirical kernel-driven model.

Additionally, the changing diffuse fraction of the incident radiation amplified the effect of
sun-view geometry. It is necessary to consider the impact of diffuse irradiance that may cause
variations of structurally and physiologically absorbed PAR, which induces carbon uptake [75,76],
and further influences the relationship between PRI and LUE (Appendix C) under changing sky
conditions. As both PRI and LUE are very sensitive to the shadow fraction in the canopy [39,42],
separating the canopy to sunlit and shaded parts and then calculating the true (two-leaf) PRI and
LUE of the whole canopy might be a robust and widely applicable approach to overcome this issue,
based on the multi-angle observation. Further consideration of this approach could help interpret
PRI information to identify underlying leaf physiological mechanisms, and to reduce uncertainties in
LUE estimates using remote-sensing observations.

According to recent works presented by Wong and Gamon [77] and Felella et al. [46], long-term
variation of PRI was mainly driven by pigment pools or the carotenoid:chlorophyll (Car/Chl) ratio.
In this conifer forest, abundant new leaves sprout out in early spring around March, and an amount
of old leaves falls in late autumn around October, meaning that the canopy Car/Chl ratio exhibited
considerable seasonal variations. In addition, the Car/Chl ratio also changes vertically within the
canopy. However, the ways of these variations affecting the relationship between PRI and LUE might
be different or in different magnitudes at different times in the growing season, causing the scatters in
the correlation between PRI and LUE over the whole season [44]. In this study, the Car/Chl ratio was
assumed to be constant, as there was not an effective way to evaluate its effect only with multi-angle
spectral data for this site.

4.3. Unresolved Questions

The correlation between PRI and LUE has been tested over a wide range of ecosystems. A
universal relationship of PRI with LUE has not been found yet due to the complex response of plant
photosynthesis to radiation under various environmental conditions [44]. The relationship between
PRI and LUE and the sensitivity of this relationship to bioclimatic factors vary in different types
of ecosystems.

For boreal forests, previous studies mainly investigated the effects of non-physiological factors
(e.g., sun-view geometry) on the relationship between PRI and LUE, as the distinct canopy structure
makes the observed PRI strongly dependent on the sun-view geometry [3,14,40,41,53,54,78]. With
considering or eliminating these factors, PRI is strongly correlated with LUE and can be used to
monitor regional productivity over long time periods [3,24,25,79]. Even though PRI is useful for
tracking seasonal changes in LUE as affected by temperature and nutrient variations in evergreen
forests, the influences of the seasonal Car/Chl ratio and temperature variations via the expansion
of leaves and aging on PRI signals cannot be neglected [46,47,66,77,80]. These factors need to be
further investigated.

In temperate ecosystems, PRI is also useful for detecting water stress [81] and estimating LUE
or carbon uptake [82–85] in conifer forests. Soundani et al. [32] found different factors driving PRI
variations and the relationship between PRI and LUE under various environmental conditions for
temperate deciduous and evergreen broadleaf forests. Additionally, the highest correlations between
PRI and LUE were mostly observed under clear or slightly overcast sky conditions. However, they
reported an insignificant correlation of PRI with APAR or LUE during a drought period in 2010, due
to an insufficient signal-to-noise ratio for the PRI measurement. Besides, according to a significant
correlation between PRI and GPP found in their study, we infer that a long-term drought might
induce changes in the pigment pool size and leaf morphology, which further confound the PRI
signals [77,86]. Variations of solar radiation and diffuse radiation also affect the relationship between
PRI and LUE [27,42].
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Grace et al. [87] found that PRI could track seasonal (dry/rainy) variations of LUE in Botswana.
However, Nakaji et al. [30] exhibited limited sensitivity of the PRI to LUE, while a model with both
PRI and VPD as predictors is able to significantly improve LUE estimation for a tropical evergreen
rainforest, as there is no clearly defined dry/rainy season cycle. In Mediterranean forests, which often
suffer heat and drought stress in summer, PRI is successfully used to detect water stress on LUE and
assess LUE across different seasons [31,88–91].

Studies of PRI in sub-tropical forests are very limited. To our knowledge, only one study in a
Pinus taiwanensis forest pointed out that PRI is more sensitive than photosystem II efficiency to water
deficits, and is closely related to photosynthetic capacity at both high- and low-elevation sites in
different seasons [92]. In our study, the strongest correlation between PRI and LUE was found during
the dry season (Figures 8 and 9 and Table 1), which confirms the sensitivity of PRI to water and heat
stress previously reported for tropical and Mediterranean forests [87–91,93–95] and its ability to detect
variations of LUE under stress conditions similar to that in other forests.

The distinction of illumination between the rainy and dry seasons and different proportions of
observed sunlit and shaded leaves caused by the diurnal variation of sun-view geometry confounded
this finding that PRI works better in tracking LUE under dry and heat stresses. Moreover, whether
canopy pigment ratios changed under continuous heat and drought stress could further change the
PRI signal is still unclear. To better understand the potential of PRI to be a proxy of LUE and advance
carbon uptake monitoring capabilities in this sub-tropical coniferous forest, these confounding factors
need to be clarified through further research.

5. Conclusions

Multi-angle tower-based optical spectra and flux datasets acquired during the period from April
to September 2013 were used to study the ability of PRI to act as a proxy of LUE in a sub-tropic
planted coniferous forest stand in Southern China. The following conclusions could be drawn from
this study.

(1) Both half-hourly PRI and LUE decreased with increases of VPD, Ta, and PAR. LUE is
more sensitive to changes of these bioclimatic factors than PRI. Significantly positive diurnal
correlations between PRI and LUE were mostly found on clear or partially cloudy days.

(2) Significant logarithmic relationships were found between LUE and PRI at both half-hourly
and daily scales across the study period. Correlations of PRI with LUE varied dramatically
throughout the growing season. The correlation was the strongest (R2 = 0.6427, p < 0.001) in July
and the poorest in May.

(3) The ability of PRI to track LUE varied with bioclimatic factors. Generally, the effectiveness of
PRI in indicating diurnal change of LUE increased with the increases of VPD, Ta, and PAR. As
to the entire study period, PRI is more effective in detecting the changes of LUE under clear or
partially cloudy skies (CI > 0.3) with moderate to high VPD (>20 hPa) and high temperatures
(>31 ˝C).

(4) Overall, we found that PRI is most sensitive to variations in LUE under stressed conditions, and
the sensitivity decreases as the growing conditions become favorable when atmosphere water
vapor, temperature and soil moisture are near the optimum conditions.
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Appendix B. Two-Leaf Algorithm for LUE Calculation

This algorithm differentiates the transfers of diffuse and direct radiation within a canopy and
separates leaves into sunlit and shaded portions. The total LAI can be separated into sunlit LAI (Lsun)
and shaded LAI (Lsh). Sunlit leaves can absorb both direct and diffuse radiation, while shaded leaves
can only absorb diffuse radiation. The APAR on per unit leaf area was calculated separately for sunlit
(APARsun) and shaded leaves (APARsh) [21,59–61], and the total canopy APAR calculated using this
algorithm was termed as TL_APAR:

TL_APAR “ APARsunˆLsun ` APARshˆLsh (A1)

APAR on the per unit leaf area was calculated separately for sunlit (APARsun) and shaded leaves
(APARsh), and sunlit LAI (Lsun) and shaded LAI (Lsh) were calculated as [21,59–61]:

Lsun “ 2cosp1´ e´0.5ΩˆLAI{cosθq (A2)

Lsh “ LAI´Lsun (A3)

APARsun “ p1´αqˆ pPARdirˆ cosβ{cosθ ` APARshq (A4)

APARsh “ p1´αqˆ p1´ δqˆ ppPARdir´PARdif,uq{LAI ` Cq (A5)

C “ 0.07ΩˆPARdirˆp1.1´ 0.1LAIqe´cosθ pA5q (A6)

PARdif,u “ PARdifˆ e´0.5ΩˆLAI{p0.537` 0.025LAIq (A7)

δ “ 0.2p1´ e´0.5ΩˆLAI{p0.537` 0.025LAIqq (A8)

where α is the albedo related to vegetation types set as 0.15 for coniferous forest; PARdif and PARdir
are the diffuse and direct components of incoming PAR, respectively, and they are calculated using
equation A9; PARdif,u is the diffuse PAR under the canopy; (PARdif ´ PARdif,u)/LAI represents
the diffuse PAR on per unit leaf area within the canopy; C quantifies the contribution of multiple
scattering of the total PAR to the diffuse irradiance per unit leaf area within the canopy; β is the mean
leaf-sun angle and is set as 60˝ for a canopy with spherical leaf angle distribution; δ is a correction for
the nonlinear response of leaf photosynthesis to the vertical variation of diffuse radiation within the
canopy; and θ is the solar zenith angle.
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Diffuse and direct PAR were partitioned [21,59,60] with parameters calibrated using the daily
clearness index (CI) and total incoming radiation as:

PARdif “ PARˆp0.7702 ` 3.6895CI´ 15.4527CI2 ` 16.9828CI3´ 5.7773CI4q (A9)

Half-hourly LUEc was calculated as:

LUEc “ GPP{TL_APAR (A10)

Appendix C. Performance of LUEc Calculated Using Two-Leaf Algorithm

Considering the impact of varying irradiance and shadow fraction of canopy on temporal
variation of LUE, we re-calculated canopy LUE (LUEc) on the basis of a two-leaf model, and Figure A3
showed the results. Figure A3A illustrated the difference between APAR calculated with FPAR and
two-leaf APAR (TL_APAR) calculated using the two-leaf LUE model. APAR was totally higher
than TL_APAR, which indicated that the FPAR algorithm might overestimate the part of absorbed
PAR intercepted by non-photosynthetic parts of the canopy, especially when incident radiation was
low (with more diffuse irradiance). The correlations between PRI and LUEc (Figure A3B and C1
Apr.–Sep.) were slightly stronger compared with the results shown before (Figures 5 and 6). Even
though the performance was still not good enough, this improvement revealed that the impact of the
changing diffuse radiation fraction should not be neglected and the two-leaf approach could be an
effective way to consider this issue.Remote Sens. 2015, 7, page–page 
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Figure C1. (A) is the relationship between APAR calculated with FPAR and two-leaf APAR (TL_APAR) 
calculated using the two-leaf LUE model; Linear relationships between half-hourly mean PRI and LUE 
observed from 9 h to 16 h each day for the entire study period (B) and six months (Apr.–Sep.). 
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