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Abstract: A novel approach is proposed for classifying the polarimetric SAR (PolSAR) 

data by integrating polarimetric decomposition, sub-aperture decomposition and decision 

tree algorithm. It is composed of three key steps: sub-aperture decomposition, feature 

extraction and combination, and decision tree classification. Feature extraction and 

combination is the main contribution to the innovation of the proposed method. Firstly, the 

full-resolution PolSAR image and its two sub-aperture images are decomposed to obtain 

the scattering entropy, average scattering angle and anisotropy, respectively. Then, the 

difference information between the two sub-aperture images are extracted, and combined with 

the target decomposition features from full-resolution images to form the classification 

feature set. Finally, C5.0 decision tree algorithm is used to classify the PolSAR image.  

A comparison between the proposed method and commonly-used Wishart supervised 

classification was made to verify the improvement of the proposed method on the 

classification. The overall accuracy using the proposed method was 88.39%, much higher 

than that using the Wishart supervised classification, which exhibited an overall accuracy 

of 69.82%. The Kappa Coefficient was 0.83, whereas that using the Wishart supervised 

classification was 0.56. The results indicate that the proposed method performed better 

than Wishart supervised classification for landscape classification in urban area using 

PolSAR data. Further investigation was carried out on the contribution of difference 

information to PolSAR classification. It was found that the sub-aperture decomposition 

improved the classification accuracy of forest, buildings and grassland effectively in  

high-density urban area. Compared with support vector machine (SVM) and QUEST 
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classifier, C5.0 decision tree classifier performs more efficient in time consumption, 

feature selection and construction of decision rule. 

Keywords: polarimetric SAR; sub-aperture decomposition; polarimetric decomposition; 

decision tree 

 

1. Introduction 

Classification is one of the most important applications of Polarimetric synthetic aperture radar 

(PolSAR) images, especially in urban areas [1–3]. The rich information obtained from the backscatter 

signal of the ground features and polarimetric target decomposition of the echo signals [4] contains  

the electromagnetic scattering characteristics of the target objects, and it is usually used in  

understanding the scattering characteristics [4] and classification of the ground features [5–10]. 

Entropy/Alpha/Anisotropy–Wishart is one of the most famous PolSAR classification methods [11]. In 

this approach, the PolSAR data is first initialized by the Cloude–Pottier decomposition [9], and then the 

maximum likelihood classification is applied to extract the best-fit complex Wishart distribution [12] of 

the samples. But this method requires that the distribution of ground features follow a normal 

probability distribution function [13]. The complex distribution of ground features, especially for those 

in high-density urban area, often violates this premise and leads to poor classification results. 

A full-resolution PolSAR image is obtained by synthesizing the signals scattered from the target in 

all azimuths [14]. The azimuth dependent backscattering is related to the type of target. The  

back-scattering of the same target under different azimuths would be different [15], as it is called 

anisotropy. But these differences have not been fully considered yet [14–16]. Sub-aperture 

decomposition technique [17], also known as time-frequency analysis, can make use of this different 

information from the changing azimuths. In recent years, progresses have been increasingly achieved 

by applying the sub-aperture decomposition to the target detection and extraction of the ground features. 

Ainsworth analyzed the high correlation between the sub-aperture images and extracted non-stationary 

targets from high-resolution PolSAR image [17]; Reigber detected the architectural structure in urban 

areas by verifying the point scatter with high correlation between the sub-apertures [18]; Runkle built the 

relationship between the irradiation direction and object orientation, and extracted the artificial targets 

through Hidden Markov Model (HMM) [19]. Good results can be obtained by using some of the above 

methods, but they require high intensity computation (e.g., coherence between the two sub-aperture) or 

complex algorithm (e.g., statistical inference on the distribution of surface features). 

The purpose of the current study is to assess the potential of applying sub-aperture decomposition 

and Cloude–Pottier decomposition jointly to classify the PolSAR image. The core of the approach is 

the extraction and application of the feature set acquired by implementing Cloude–Pottier 

decompositions on the full-resolution PolSAR image and its sub-aperture images. Decision tree 

classifier [20] can be used for classification. It can efficiently select the most important features and 

give a better understanding of the results.  
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2. Experimental Data 

The study area is located in San Francisco, CA, USA. The PolSAR data set used here is acquired by 

the C-band Airborne-Synthetic Aperture Radar (AIRSAR) in the NASA/JPL on 15 July 1994. The 

look angle ranges from 21.5° to 71.4°. The range resolution is about 6.6 m, and the azimuth resolution 

is about 9.3 m. In order to maintain the spatial resolution of the data, the original data without further 

processing (de-speckling) is used as the experimental data (Figure 1). 

 

Figure 1. AIRSAR C-band polarimetric image of San Francisco with Pauli color-coding (Red: 

|HH − VV|, Green: |HV|, Blue: |HH + VV|). HH (horizontal transmit and horizontal receive), 

HV (horizontal transmit and vertical receive), VV (vertical transmit and vertical receive). 

It can be seen from the experimental data (Figure 1) that there are mainly four classes of ground 

covers, i.e., sea surface, vegetation, buildings and quasi-natural surface. The quasi-natural surface 

includes bare grounds, parking lots, sand, etc. The vegetation consists of forest and grassland. The 

building is divided into two parts based on the orientation of the building relative to the radar line of 

sight [21]. One is considered as the ortho-building (pink), which is vertical to the radar line-of-sight, 

and the other is considered as slant-building (green) whose main scatter center is at an oblique 

direction with the respect to the radar illumination. To simplify the process, 6 classes were selected to 

represent ground features in the study: water, forest, grassland, ortho-building, slant-building and 

others (quasi-natural surfaces). 

The samples, which will be divided into the training and validation sets, were manually and 

randomly selected based on the optical image applied by Google Earth. The optical image was used to 

distinguish the ground truth, which was acquired in August 1993 and has a resolution about 1 m high 

precision in the buildings area. The number of samples for each class was determined according to the 

proportion of the class and the balance between the other classes. In order to show clearly, the 
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distribution of the samples is shown on span image in Figure 2. Table 1 presents the number of pixels 

selected for the training and validation sets of each class. 

 

Figure 2. The distribution of the samples shown on the span image. 

Table 1. Statistical chart of the sample data. 

Class Training (Pixels) Validation (Pixels) Total 

Water 6656 6540 13,196 
Forest 850 884 1734 

Grassland 1031 1090 2121 
Ortho-Building 1373 1312 2685 
Slant-Building 1563 1642 3205 

Others 1522 1489 3011 
Total 12,995 12,957 25,952 

3. Methodology 

The main procedure consists of three parts (Figure 3): sub-aperture decomposition, feature 

extraction and combination, and decision tree classification. The steps are detailed below: 
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Figure 3. Flow chart of the PolSAR image classification combining with the  

sub-aperture decomposition. 

3.1. Sub-Aperture Decomposition 

Every pixel in SAR image does not correspond to a single observation of sight, but to a certain 

range of azimuthal look angle. This series of azimuthal look angle is defined as sub-aperture, and  

sub-aperture images can be obtained by performing the sub-aperture decomposition [15,16] on the  

full-resolution PolSAR image under certain azimuthal look angle. The transient characteristics of the 

target under different azimuthal look angles in the scattering of the electromagnetic waves are 

different. Therefore, the polarimetric information and physical characteristics of the targets could be 

mined by using the difference information of the echo waves scattered from the targets in the  

sub-aperture images. Moreover, the classification characteristics representing different scattering types 

are extracted and used in ground feature classification. In this section, two sub-aperture images under 

different azimuthal look angles are generated. 
  



Remote Sens. 2015, 7 1385 

 

3.2. Feature Extraction and Combination 

Cloude–Pottier decomposition is applied to the PolSAR images to obtain the feature set 1: 

scattering entropy (H), anisotropy (A) and scattering angle (αഥ) The Cloude–Pottier decomposition is 

also conducted on the two sub-aperture images, respectively, and feature set 2, with its elements of 

ΔH, ΔA and Δαഥ is obtained through the differences between H, A and αഥ of each sub-aperture image, 

respectively. Feature set 1 and 2 are combined to form the feature set for the target identification. The 

technology is introduced in detail as follows. 

Cloude–Pottier decomposition [22] is an eigenvector analysis method based on coherence matrix.  

The polarimetric coherence matrix [T] is decomposed into the sum of three independent coherence 

matrices [Tn]: 
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where α௜ corresponds to the physical mechanism of the process of target scattering, and its range is 

0°~90°; β௜ denotes the azimuth angle of the target relative to the radar line-of-sight; ∅௜, δ௜, and γ୧ 
are phase angles of target scattering [22]. In order to better describe the stochastic characteristics of 

media, Cloude and Pottier [10,23] gave the definitions as follows: 
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where ௜ܲ is the probability obtained from the eigenvalue of [T]. H is the scattering entropy (0 ≤ H ≤ 1), 

and represents the stochastic characteristic of the target from isotropic scattering (H = 0) to complete 

stochastic scattering (H = 1). αഥ is the scattering angle, representing the change of average scattering 

mechanisms from odd scattering (αഥ = 0°) to dipole scattering (αഥ = 45°) and then to even scattering  

(αഥ  = 90°) [23]. The anisotropy A characterizes the relative magnitudes of the second and third 

eigenvalues. A 5 × 5 window was chosen when calculating H/alpha decomposition. 

As a result of Cloude–Pottier decomposition to the full-resolution PolSAR image, entropy (H), 

anisotropy (A) and alpha (αഥ) are taken as feature set 1. Besides, the differences information (ΔH, ΔA  

and Δαഥ) between the results of the Cloude–Pottier decomposition to the two sub-aperture images are 

taken as feature set 2, which is defined as follows: 
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2 1H H H    (7) 

2 1A A A    (8) 

1 2α α α    (9) 

where ܪ௜, ܣ௜ and αഥ (݅ ൌ 1, 2) represent polarimetric entropy, anisotropy and average scattering angle of 

the two sub-apertures. Feature set 2 are combined with feature set 1 to identify ground targets. 

To further understand the capability of distinguishing ground features using feature set 1 and 2, the 

training samples of forest, grassland and slant-buildings were selected, and their scatter diagrams were 

plotted using feature set 1 and 2, respectively (Figure 4). Red points are the slant-buildings, green 

points are forest and yellow points are grassland. 

As shown in Figure 4, feature set 2 can distinguish slant-buildings from forest (Figure 4b), and it 

can improve the separability between forest and grassland (Figure 4d). In Figure 4f, grassland and  

slant-buildings are mixed slightly but it performs better than feature set 1 (Figure 4e). In summary, 

feature set 2, compared with feature set 1, can mine more information from the original PolSAR 

image, and is more suitable for ground feature identification. 

(a) (b) 

(c) (d) 

Figure 4. Cont. 
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(e) (f) 

Figure 4. The scatter diagrams of forest, slant-buildings and grassland in feature set 1 and 2. 

Scattering entropy (H), anisotropy (A) and scattering angle (αഥ) are decomposed from the 

PolSAR image. The same Cloude–Pottier decomposition is also conducted on the two  

sub-aperture images, respectively, and feature set 2, with its elements ΔH, ΔA and αഥ,  

is obtained through the differences between H, A and αഥ  of each sub-aperture image, 

respectively. (a) Feature set 1: forest and slant-buildings; (b) Feature set 2: forest and  

slant-buildings; (c) Feature set 1: forest and grassland; (d) Feature set 2: forest and 

grassland; (e) Feature set 1: forest, grassland and slant-buildings; (f) Feature set 2: forest, 

grassland and slant-buildings. 

3.3. Decision Tree Classification 

Different from the Maximum Likelihood classification method based on the statistical distribution 

function, the decision tree is a classifier with high speed, high accuracy, simple generation mode and 

applicability to large datasets [24]. Not requiring pre-decided data distribution, this algorithm is 

popularly used in data mining for complicated, non-linear mapping. Here we used C5.0 [25] decision 

tree to construct the classification rules because it has the following features: (1) generation of intuitive 

rules, enhancing user understanding of the algorithm; (2) robustness to missing data; (3) fast operation 

speed; (4) a powerful boosting technique, i.e., boosting and cost-sensitive tree building [26]. 

In this study, feature set 1 and the 2 were combined into a multichannel image. A feature vector was 

then formed for each of the selected 25,952 pixels (Table 1). Twelve thousand nine hundred and 

ninety-five training pixels (vectors) were used to develop the C5.0 decision tree model, and then the 

classification result is applied to the 12,957 validation pixels using the developed C5.0 tree to evaluate 

the classification accuracy. 

4. Results and Discussion 

4.1. Comparison between the Proposed Method and the Wishart Supervised Classification 

The results of the proposed method are compared to that of the Wishart supervised classification 

method [13] to verify the improvement of the proposed method on the classification. Our research is 

mainly about the application of the new method in urban area (as marked with red rectangle in Figure 1), 

thus comparisons of the classification results in urban area are shown in Figure 5. 
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(a) (b) 

Figure 5. Classification Results of Wishart supervised and proposed method. (a) Classification 

result obtained by Wishart supervised classification method; and (b) Classification result 

obtained by the proposed method. 

From Figure 5, it can be seen that the classification result obtained by Wishart supervised 

classification method (Figure 5a) are generally greenish. Most of the slant-buildings are classified as 

forest improperly. However, the proposed method (Figure 5b) shows a good discriminate ability of the 

ground features. The buildings and vegetation are well distinguished. 

To verify the improvement that the proposed method brings to the classification accuracy, 

quantitative analysis was made through four parameters, namely, overall accuracy (OA), Kappa 

Coefficient, user’s accuracy (UA) and producer’s accuracy (PA) [27]. The confusion matrices of 

classification results are shown as follows (Tables 2 and 3). 

Table 2. Confusion matrix of Wishart supervised classification method. (PA = producer’s 

accuracy, UA =user’s accuracy, OA =overall accuracy). 

Class Water Forest Grassland Ortho-Building Slant-Building Others PA (%) 

Water 6257 13 168 0 0 102 95.67 

Forest 58 356 422 0 32 16 40.27 

Grassland 44 306 595 4 110 31 54.59 

Ortho-Building 0 49 222 499 535 7 38.03 

Slant-Building 35 188 647 91 659 22 40.13 

Others 599 34 168 0 7 681 45.74 

UA (%) 89.48 37.63 26.78 84.01 49.07 79.28 

OA (%): 69.82 Kappa Coefficient: 0.56 
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Table 3. Confusion matrix of the proposed classification method. (PA = producer’s 

accuracy, UA =user’s accuracy, OA =overall accuracy). 

Class Water Forest Grassland Ortho-Building  Slant-Building Others PA (%) 

Water 6433 7 14 0 0 86 98.36 

Forest 18 709 121 0 11 25 80.20 

Grassland 13 138 631 15 190 103 57.89 

Ortho-Building 0 0 7 1146 149 10 87.35 

Slant-Building 0 19 180 71 1286 86 78.32 

Others 85 18 55 6 77 1248 83.81 

UA (%) 98.23 79.57 62.60 92.57 75.07 80.10 

  OA (%): 88.39  Kappa Coefficient: 0.83 

From Tables 2 and 3, it can be readily seen that the overall accuracy using the proposed method  

is 88.39%, much higher than that using the Wishart supervised classification, which exhibits an overall 

accuracy of 69.82%. The Kappa Coefficient is 0.83, whereas that using the Wishart supervised 

classification is 0.56. Through the confusion matrix (Table 2), it can be seen that there are a lot of 

misclassifications among slant-buildings, forest and grassland. However, the misclassifications have 

been decreased obviously using the proposed methods. The UA values of grassland and forest using 

Wishart supervised classification method are only 26.78% and 37.63%, while those using proposed 

method are increased by 35.82% and 41.94%, respectively. Taking the slant-buildings as an example, 

the UA of slant-buildings using the Wishart supervised classification method is 49.07%. However,  

in the proposed method, it is increased by 26.00%. 

The application of Wishart supervised classification method requires the ground features statistical 

distribution conforms to a certain probability distribution function. When the distribution of the ground 

features is complex or PolSAR data with the high spatial resolution are used, this assumption is always 

hard to be satisfied. For example, the experimental area is a high-density urban area, so the Wishart 

classifier’s assumption is not applicable. However, decision tree model does not require such 

assumptions, and it is more suitable for supervised classification of PolSAR data in complex ground 

features [28]. The sub-aperture decomposition is not used at this point. Fortunately it improves the 

classification accuracy from the perspective of multiple features. 

4.2. Influence of Sub-Aperture Decomposition 

In this section, the H/A/αഥ-C5 method was designed to find out the contribution of sub-aperture 

decomposition used in the proposed method. In the proposed method, both feature set 1 (H, A and αഥ 

from the full-resolution PolSAR image) and feature set 2 (difference information between the two  

sub-aperture images) were input into the C5.0 decision tree algorithm, while only feature set 1 were 

used for H/A/αഥ-C5 method. In this way, the influence of the sub-aperture decomposition brought to the 

proposed method could be dug out. In order to take a closer view of the classification results, a subset 

is used to show the differences between using H/A/αഥ-C5 and the proposed method (Figure 6). 
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Figure 6. Details of the Classification Results from H (entropy)/A (anisotropy)/αഥ (scattering 

angle)-C5 and proposed method. (a) ground truth; (b) H/A/αഥ-C5; (c) proposed method. 

From Figure 6, as the results of classification using H/A/αഥ-C5, it can be seen that most of the grassland 

has been mistakenly classified as others, and the forest in the middle of the picture were misclassified as 

slant-buildings. However, the proposed method can effectively avoid the misclassifications referred to 

above, as well as obtain a better visual consequent of the six ground features. 

The importance of every feature was calculated in SPSS Clementine v14.2, and sorted in 

descending order. The importance of H, ∆αഥ, αഥ-A, ΔA and ΔH is 0.23, 0.21, 0.17, 0.16, 0.13, 0.10, 

respectively. The features extracted from sub-aperture decomposition are as important as  

Cloude–Pottier decomposition. ∆αഥ  plays an essential role in the proposed method. Due to all the 

features that work together in the classification process, the quality of image classification has 

improved significantly. 

The confusion matrix of the H/A/αഥ-C5 method (Table 4) was calculated with the experimental data 

and the detailed quantitative analysis are given by comparison with the proposed method (Table 3). 

Table 4. Confusion Matrix of H (entropy)/A (anisotropy)/αഥ (scattering angle)-C5 Classification 

Method. (PA = producer’s accuracy, UA =user’s accuracy, OA =overall accuracy). 

Class Water Forest Grassland Ortho-Building Slant-Building Others PA (%) 

Water 6429 11 5 0 0 95 98.3 

Forest 15 599 174 0 43 53 67.76 

Grassland 25 254 470 8 258 75 43.12 

Ortho-Building 0 0 4 1143 162 3 87.12 

Slant-Building 4 51 174 85 1290 38 78.56 

Others 146 38 89 9 97 1110 74.55 

UA (%) 97.13 62.85 51.31 91.81 69.73 80.79 

OA (%): 85.21 Kappa Coefficient: 0.79 

It was illustrated by the result of comparing with Tables 3 and 4 that the sub-aperture decomposition 

played a limited role, as the OA and Kappa Coefficient of the proposed method are only increased by 

0.0318 and 0.04, respectively. However, when a more detailed comparison was performed on the PA 

and UA of these two methods, the advantages of the sub-aperture decomposition became more 

apparent. It can be seen from Tables 3 and 4, that the misclassifications of forest and grassland are the 

most serious. A certain proportion of the grassland is mistakenly classified as forest and  

slant-buildings. The values of PA and UA are 43.12% and 51.31%, respectively. The polarization 
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orientation angle shifts are induced by surfaces with nonzero azimuth slopes as well as by man-made 

targets that are not aligned in the along-track direction [29]. These shifts produce higher  

cross-polarization (HV) intensity and make coherency or covariance matrix reflection asymmetrical. 

The ratio of the cross-polarized component, which mainly contributes to the volume scattering power, 

increases in the slant-buildings whose main scatter center is at an oblique direction with the respect to 

the radar illumination. However, using the proposed method, classification accuracies of forest, 

grassland and slant-buildings are obviously improved. The result of quantitative analysis is consistent 

with that of the visual interpretation. The PA and UA of grassland are increased by 14.77% and 

11.29%, and those of forest are increased by 12.44% and 16.72%. Additionally, the UA of the  

slant-building is increased by 5.34% as the reduction of misclassifications of forest and grassland. The 

misclassifications of forest in the H/A/αഥ-C5 method are 43 samples, whereas that of in the proposed 

method is only 11 samples.  

The difference between the proposed method and the H/A/αഥ-C5 method is whether or not the  

sub-aperture decomposition features are input into the C5.0 decision tree algorithm, therefore, a 

conclusion can be drawn that the improvement of classification accuracy of the objects including 

forest, grassland and slant-buildings is due to the injection of sub-aperture decomposition. When the 

full decomposition-based classification method (e.g., Wishart and H/A/αഥ-C5 method) is used on  

C-band PolSAR data, the forest and grassland cannot be distinguished. By imaging the same target 

from different angles, the slight differences between the forest and the grassland can be found in the 

Sub-aperture images in C-band. As a result, sub-aperture decomposition can distinguish the forest and 

the grassland so effectively that it can be used to improve the accuracy of classification. 

4.3. Comparison among Different Classifiers 

In order to investigate the contribution of C5.0 classifier to the final accuracy, two typical classifiers 

are used to classify the study area with the same feature set as the proposed method, which include  

Support Vector Machine (SVM) [30] and Quest [28]. Comparisons of the classification results are 

shown in Figure 7. 

 

Figure 7. Details of the Classification Results. (a) Ground truth; (b) Support Vector 

Machine (SVM); (c) Quest; (d) proposed method. 
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The image of the ground truth is applied by Google Earth (Figure 7a). It is used to distinguish the 

ground truth. From the perspective of the classification of slant-building, using SVM and Quest 

classifier can lead to an over-classification. Roads will be classified as slant-buildings, while using 

C5.0 decision tree roads and slant-buildings can be better distinguished. It can be inferred from the 

classification of grassland that it still has a poor performance, though the result of using C5.0 decision 

tree algorithm is superior to the other two classifiers. 

The confusion matrixes of the classification methods, using SVM and Quest (Tables 5 and 6), were 

calculated and the detailed quantitative analysis are given by comparison with the proposed method 

(Table 3). 

Table 5. Confusion Matrix of Classification Method using Support Vector Machine 

(SVM). (PA = producer’s accuracy, UA =user’s accuracy, OA =overall accuracy). 

Class Water Forest Grassland Ortho-Building Slant-Building Others PA (%) 

Water 6350 85 60 0 8 37 97.09 

Forest 114 624 63 0 0 83 70.59 

Grassland 170 84 509 3 207 117 46.70 

Ortho-Building 3 0 5 1163 113 28 88.64 

Slant-Building 42 3 135 64 1259 139 76.67 

Others 97 136 153 68 416 619 41.57 

UA (%) 93.71 66.95 55.03 89.6 62.86 60.51 

OA (%): 81.22 Kappa Coefficient: 0.73 

Table 6. Confusion Matrix of Classification Method using Quest. (PA = producer’s accuracy, UA 

=user’s accuracy, OA =overall accuracy). 

Class Water Forest Grassland Ortho-Building Slant-Building Others PA (%) 

Water 6274 78 0 0 0 188 95.93 

Forest 34 696 112 1 28 13 78.76 

Grassland 60 156 497 6 290 81 45.60 

Ortho-Building 0 15 7 1125 165 7 85.75 

Slant-Building 5 13 25 88 1301 210 79.23 

Others 527 36 38 12 125 751 50.44 

UA (%) 90.93 70.02 73.20 91.31 68.15 60.41 

OA (%): 82.03 Kappa Coefficient: 0.74 

The selection of the classifier has a great influence on classification results. The OA and Kappa 

Coefficient of the classification using C5.0 decision tree are increased by about 6% and 0.1 compared 

with the classifications using QUEST decision tree and SVM. 

The influence of classifier on the accuracy of slant-buildings, others and grassland is obvious.  

Others refer to quasi-natural surfaces. Although the PA values of the three methods are similar, the 

application of SVM classifier to slant-buildings classification made an over-classification. The UA 

values of slant-building using SVM and Quest classifier are 62.86% and 68.15%, while that using the 

proposed method is 75.07%. The PA values of others using C5.0 decision tree, QUEST decision tree 

and SVM are 83.81%, 50.44% and 41.57%, respectively. The UA value of others using C5.0 decision 

tree increased by 20% compared with those using the other classifiers. The PA value of grassland 
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using C5.0 decision tree increased by 12% compared with those using QUEST decision tree and SVM,  

while The UA value of grassland using C5.0 decision tree decreased by 10.6% compared with that  

using QUEST decision tree. The application of C5.0 classifier to grassland classification made  

an over-classification. 

C5.0 decision tree has a better performance on feature space optimization and feature selection, 

especially when the feature set is large [20,24]. SVM is computationally expensive, as it is required to 

be trained and evaluated a large number of times with different subsets of features in order to achieve a 

group of optimization parameters [30]. The decision tree can provide clear classification rules that can 

be easily interpreted based on the physical meaning of the features. The rule of C5.0 tree is more 

complex than QUEST but it allows for more than the two subgroups of segmentation many times. 

QUEST decision tree is designed to reduce the processing time required for the large decision tree 

analysis [31]. In the condition of a small feature set, the complex rules built by C5.0 decision tree are 

more conducive to accurate classification. 

5. Conclusions 

In this paper, an approach for classifying the PolSAR data by integrating polarimetric decomposition, 

sub-aperture decomposition and decision tree algorithm is proposed. The sub-aperture decomposition 

showed great capability on distinguishing between slant-buildings and vegetation (forest and grassland) 

on C-band PolSAR data. As a result, the proposed method improved the PolSAR data classification 

dramatically. Its performance was compared with that of Wishart supervised classification. 

The proposed method has the following advantages: (1) it has high practicality because the PolSAR 

data is not strictly required. Although many studies have shown that multi-band classification 

technology, such as multi-frequency and PolSAR interferometry, can improve the classification 

accuracy. In practical applications, it is often difficult to meet the data requirements of these methods. 

The proposed method is more convenient because high classification accuracy could be achieved by 

only one PolSAR data band. (2) It is simple and fast. Polarimetric decomposition, sub-aperture 

decomposition and C5.0 decision tree algorithm, as the three components of the proposed method, are 

well developed and easy to use, so that both complicated pre-processing (e.g., registration in  

multi-band classification method) and intensive computation (e.g., polarimetric interferometry) can be 

avoided. (3) It is a white box. The given classifier or classification rule reveals the ground types 

associated with specific features. Therefore, unlike black box algorithms (such as neural network, etc.), 

the proposed method can give a clear physical explanation. (4) No assumptions on the distribution of 

ground features are demanded. In conclusion, this approach provides a superior way of classifying 

PolSAR data. 

Although the producer’s accuracy of grassland has been improved by using the proposed method,  

it still has a poor performance because of azimuth slopes affect the relative magnitude and phase of the 

polarimetric coherence matrix and similitude of scattering characteristics between lawn and others.  

To resolve this disadvantage, a further research will be done. 
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